
X/Open CAE Specification

X/Open DCE: Remote Procedure Call

X/Open Company Ltd.

 August 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Published by X/Open Company Limited under license from the Open Software Foundation (OSF).
Portions of this document include text excerpted and/or derived from the Open Software Foundation
Application Environment Specification for Distributed Computing (AES/DC) with the permission of
OSF. However, the text appearing herein does not represent the official OSF version of the AES/DC,
which is copyright 1992, 1993 Open Software Foundation, Inc. This document and the software to
which it relates are derived in part from materials which are copyright 1990, 1991 Digital Equipment
Corporation and copyright 1990, 1991 Hewlett-Packard Company.

X/Open CAE Specification

X/Open DCE: Remote Procedure Call

ISBN: 1-85912-041-5
X/Open Document Number: C309

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

xopen.co.uk

ii X/Open CAE Specification (1994)

Contents

Part 1 Remote Procedure Call Introduction 1

Chapter 1 Introduction to the RPC Specification....................................... 3
 1.1 Portability ... 4
 1.2 Services and Protocols ... 5
 1.3 Conformance Requirements... 7

Part 2 RPC Application Programmer’s Interface....................... 9

Chapter 2 Introduction to the RPC API ... 11
 2.1 RPC Programming Model Overview ... 12
 2.1.1 Client/Server Model ... 12
 2.1.1.1 Interfaces... 12
 2.1.1.2 Remoteness .. 12
 2.1.1.3 Binding.. 13
 2.1.1.4 Name Services ... 13
 2.1.1.5 Resource Models... 14
 2.1.1.6 Security Services ... 14
 2.1.1.7 Server Implementation .. 14
 2.1.2 Application/Stub/Run-time System .. 15
 2.1.2.1 RPC Run Time ... 15
 2.1.2.2 Stubs .. 15
 2.1.2.3 Application Code.. 15
 2.2 API Operations.. 17
 2.2.1 Binding-related Operations ... 17
 2.2.2 Name Service Operations .. 17
 2.2.3 Endpoint Operations... 17
 2.2.4 Security Operations... 18
 2.2.5 Stub Memory Management Operations ... 18
 2.2.6 Management Operations.. 18
 2.2.7 UUID Operations ... 18
 2.3 Binding.. 19
 2.3.1 Binding Handles... 21
 2.3.1.1 Client and Server Binding Handles... 21
 2.3.1.2 Obtaining Binding Handles.. 21
 2.3.2 String Bindings... 21
 2.3.3 Binding Steps .. 22
 2.3.3.1 Server Binding Steps .. 23
 2.3.3.2 Client Binding Steps ... 26
 2.3.3.3 Call Routing Algorithms... 27
 2.3.4 Binding Methods.. 30

X/Open DCE: Remote Procedure Call iii

Contents

 2.4 Name Service Interface.. 31
 2.4.1 Name Service Model ... 31
 2.4.2 Name Syntax Tags ... 32
 2.4.3 Name Service Attributes .. 32
 2.4.3.1 Server Entries... 32
 2.4.3.2 Group Entries... 33
 2.4.3.3 Profiles... 33
 2.4.4 Binding Searches .. 33
 2.4.5 Search Algorithm... 34
 2.4.6 Name Service Caching.. 36
 2.5 Server Model.. 37
 2.5.1 Server Concurrency and Request Buffering....................................... 37
 2.5.2 Management Interface .. 37
 2.6 Server Resource Models .. 38
 2.6.1 The Server-Oriented Model ... 38
 2.6.2 The Service-Oriented Model.. 38
 2.6.3 The Object-Oriented Model... 38
 2.7 Security ... 39
 2.8 Error Handling .. 40
 2.9 Cancel Notification... 40
 2.10 Stubs .. 41
 2.10.1 IDL to Stub Data Type Mappings... 41
 2.10.2 Manager EPVs... 41
 2.10.3 Interface Handles... 41
 2.10.4 Stub Memory Management ... 41
 2.11 RPC API Routine Taxonomy.. 42
 2.11.1 Binding Operations ... 42
 2.11.2 Interface Operations.. 42
 2.11.3 Protocol Sequence Operations .. 43
 2.11.4 Local Endpoint Operations.. 43
 2.11.5 Object Operations .. 44
 2.11.6 Name Service Interface Operations ... 44
 2.11.6.1 NSI Binding Operations .. 44
 2.11.6.2 NSI Entry Operations... 45
 2.11.6.3 NSI Group Operations... 45
 2.11.6.4 NSI Profile Operations... 45
 2.11.7 Authentication Operations .. 45
 2.11.8 The Server Listen Operation.. 46
 2.11.9 The String Free Operation.. 46
 2.11.10 UUID Operations ... 46
 2.11.11 Stub Memory Management ... 46
 2.11.12 Endpoint Management Operations ... 47
 2.11.13 Name Service Management Operations ... 47
 2.11.14 Local Management Services .. 48
 2.11.15 Local/Remote Management Services ... 48
 2.11.16 Error Messages ... 48

iv X/Open CAE Specification (1994)

Contents

Chapter 3 RPC API Manual Pages .. 49
 3.1 RPC Data Types... 49
 3.1.1 Unsigned Integer Types.. 49
 3.1.2 Signed Integer Type... 49
 3.1.3 Unsigned Character String... 49
 3.1.4 Binding Handle .. 50
 3.1.5 Binding Vector .. 51
 3.1.6 Boolean Type... 52
 3.1.7 Endpoint Map Inquiry Handle ... 52
 3.1.8 Interface Handle... 52
 3.1.9 Interface Identifier ... 53
 3.1.10 Interface Identifier Vector .. 53
 3.1.11 Manager Entry Point Vector .. 53
 3.1.12 Name Service Handle ... 54
 3.1.13 Protocol Sequence String.. 54
 3.1.14 Protocol Sequence Vector ... 55
 3.1.15 Statistics Vector .. 55
 3.1.16 String Binding... 56
 3.1.17 String UUID .. 57
 3.1.18 UUIDs... 57
 3.1.19 UUID Vector.. 57
 rpc_binding_copy () ... 59
 rpc_binding_free() ... 60
 rpc_binding_from_string_binding ().. 61
 rpc_binding_inq_auth_client () .. 62
 rpc_binding_inq_auth_info () ... 64
 rpc_binding_inq_object ().. 66
 rpc_binding_reset() ... 67
 rpc_binding_server_from_client () ... 68
 rpc_binding_set_auth_info () .. 70
 rpc_binding_set_object ()... 72
 rpc_binding_to_string_binding () .. 73
 rpc_binding_vector_free ()... 74
 rpc_ep_register().. 75
 rpc_ep_register_no_replace().. 78
 rpc_ep_resolve_binding ().. 80
 rpc_ep_unregister() ... 82
 rpc_if_id_vector_free () .. 84
 rpc_if_inq_id () ... 85
 rpc_mgmt_ep_elt_inq_begin().. 86
 rpc_mgmt_ep_elt_inq_done()... 89
 rpc_mgmt_ep_elt_inq_next() ... 90
 rpc_mgmt_ep_unregister() ... 92
 rpc_mgmt_inq_com_timeout()... 94
 rpc_mgmt_inq_dflt_protect_level () ... 95
 rpc_mgmt_inq_if_ids () ... 96
 rpc_mgmt_inq_server_princ_name()... 98
 rpc_mgmt_inq_stats()... 100

X/Open DCE: Remote Procedure Call v

Contents

 rpc_mgmt_is_server_listening() .. 102
 rpc_mgmt_set_authorization_fn () ... 104
 rpc_mgmt_set_cancel_timeout() .. 106
 rpc_mgmt_set_com_timeout().. 107
 rpc_mgmt_set_server_stack_size() .. 109
 rpc_mgmt_stats_vector_free().. 110
 rpc_mgmt_stop_server_listening() .. 111
 rpc_network_inq_protseqs() ... 112
 rpc_network_is_protseq_valid ()... 113
 rpc_ns_binding_export () .. 115
 rpc_ns_binding_import_begin () .. 118
 rpc_ns_binding_import_done ().. 120
 rpc_ns_binding_import_next () .. 121
 rpc_ns_binding_inq_entry_name() ... 124
 rpc_ns_binding_lookup_begin ()... 126
 rpc_ns_binding_lookup_done ().. 128
 rpc_ns_binding_lookup_next () .. 129
 rpc_ns_binding_select() .. 132
 rpc_ns_binding_unexport().. 134
 rpc_ns_entry_expand_name() .. 136
 rpc_ns_entry_object_inq_begin()... 137
 rpc_ns_entry_object_inq_done() .. 139
 rpc_ns_entry_object_inq_next() .. 140
 rpc_ns_group_delete()... 142
 rpc_ns_group_mbr_add() ... 144
 rpc_ns_group_mbr_inq_begin()... 146
 rpc_ns_group_mbr_inq_done() .. 148
 rpc_ns_group_mbr_inq_next() .. 149
 rpc_ns_group_mbr_remove() ... 151
 rpc_ns_mgmt_binding_unexport().. 153
 rpc_ns_mgmt_entry_create() ... 156
 rpc_ns_mgmt_entry_delete().. 158
 rpc_ns_mgmt_entry_inq_if_ids() .. 160
 rpc_ns_mgmt_handle_set_exp_age ()... 162
 rpc_ns_mgmt_inq_exp_age() ... 164
 rpc_ns_mgmt_set_exp_age() .. 166
 rpc_ns_profile_delete() .. 168
 rpc_ns_profile_elt_add () ... 170
 rpc_ns_profile_elt_inq_begin()... 172
 rpc_ns_profile_elt_inq_done ().. 175
 rpc_ns_profile_elt_inq_next() .. 176
 rpc_ns_profile_elt_remove() ... 178
 rpc_object_inq_type ().. 180
 rpc_object_set_inq_fn ()... 182
 rpc_object_set_type()... 183
 rpc_protseq_vector_free().. 185
 rpc_server_inq_bindings().. 186
 rpc_server_inq_if() .. 188

vi X/Open CAE Specification (1994)

Contents

 rpc_server_listen()... 189
 rpc_server_register_auth_info ()... 191
 rpc_server_register_if()... 193
 rpc_server_unregister_if() .. 197
 rpc_server_use_all_protseqs() .. 199
 rpc_server_use_all_protseqs_if ().. 201
 rpc_server_use_protseq() .. 203
 rpc_server_use_protseq_ep()... 205
 rpc_server_use_protseq_if().. 207
 rpc_sm_allocate ()... 209
 rpc_sm_client_free().. 210
 rpc_sm_destroy_client_context () ... 211
 rpc_sm_disable_allocate () ... 212
 rpc_sm_enable_allocate () .. 213
 rpc_sm_free() ... 214
 rpc_sm_get_thread_handle () .. 215
 rpc_sm_set_client_alloc_free () ... 216
 rpc_sm_set_thread_handle ()... 217
 rpc_sm_swap_client_alloc_free () ... 218
 rpc_string_binding_compose ()... 219
 rpc_string_binding_parse () .. 221
 rpc_string_free() .. 223
 uuid_compare().. 225
 uuid_create() .. 226
 uuid_create_nil () ... 227
 uuid_equal()... 228
 uuid_from_string().. 229
 uuid_is_nil () .. 230
 uuid_to_string () .. 231

Part 3 Interface Definition Language and Stubs 233

Chapter 4 Interface Definition Language ... 235
 4.1 Notation.. 235
 4.2 IDL Language Specification.. 236
 4.2.1 IDL Lexemes ... 236
 4.2.1.1 Keywords and Reserved Words .. 236
 4.2.1.2 Identifiers.. 236
 4.2.1.3 IDL Punctuation .. 236
 4.2.1.4 Alternate Representation of Braces... 237
 4.2.1.5 White Space.. 237
 4.2.2 Comments ... 237
 4.2.3 Interface Definition Structure.. 237
 4.2.4 Interface Header... 238
 4.2.4.1 The uuid Attribute.. 238
 4.2.4.2 The version Attribute... 238
 4.2.4.3 The endpoint Attribute.. 239
 4.2.4.4 The local Attribute.. 239

X/Open DCE: Remote Procedure Call vii

Contents

 4.2.4.5 The pointer_default Attribute.. 239
 4.2.5 Interface Body... 239
 4.2.6 Import Declaration .. 240
 4.2.7 Constant Declaration .. 240
 4.2.7.1 Syntax.. 240
 4.2.7.2 Semantics and Restrictions ... 242
 4.2.8 Type Declarations and Tagged Declarations...................................... 242
 4.2.9 Base Types ... 243
 4.2.9.1 Syntax.. 243
 4.2.9.2 Integer Types.. 243
 4.2.9.3 The char Types... 244
 4.2.9.4 The boolean Type.. 244
 4.2.9.5 The byte Type .. 244
 4.2.9.6 The void Type.. 244
 4.2.9.7 The handle_t Type .. 244
 4.2.10 Constructed Types... 244
 4.2.11 Structures... 244
 4.2.12 Unions.. 245
 4.2.12.1 Syntax.. 245
 4.2.12.2 Semantics and Restrictions ... 246
 4.2.13 Enumerated Types... 246
 4.2.14 Pipes.. 246
 4.2.14.1 Syntax.. 246
 4.2.14.2 Semantics and Restrictions ... 246
 4.2.15 Arrays... 247
 4.2.15.1 Syntax.. 247
 4.2.15.2 Semantics and Restrictions ... 247
 4.2.15.3 Arrays of Arrays.. 247
 4.2.16 Type Attributes... 248
 4.2.16.1 Syntax.. 248
 4.2.16.2 Semantics and Restrictions ... 248
 4.2.16.3 The transmit_as Attribute... 248
 4.2.16.4 The handle Attribute.. 248
 4.2.16.5 The string Attribute.. 249
 4.2.16.6 The context_handle Attribute .. 249
 4.2.17 Field Attributes... 249
 4.2.17.1 Syntax.. 249
 4.2.17.2 Semantics and Restrictions ... 250
 4.2.17.3 The ignore Attribute... 250
 4.2.18 Field Attributes in Array Declarations .. 250
 4.2.18.1 Conformant Arrays .. 250
 4.2.18.2 Varying and Conformant Varying Arrays 251
 4.2.18.3 Relationships Between Attributes... 252
 4.2.18.4 Negative Size and Length Specifications... 253
 4.2.19 Field Attributes in String Declarations.. 253
 4.2.19.1 The first_is, last_is and length_is Attributes 253
 4.2.19.2 The max_is Attribute ... 253
 4.2.19.3 The size_is Attribute .. 253

viii X/Open CAE Specification (1994)

Contents

 4.2.20 Pointers .. 253
 4.2.20.1 Syntax.. 253
 4.2.20.2 Semantics and Restrictions ... 254
 4.2.20.3 Attributes Applicable to Pointers.. 254
 4.2.20.4 Varying Arrays of Pointers.. 256
 4.2.20.5 Restrictions on Pointers ... 256
 4.2.21 Pointers as Arrays.. 257
 4.2.21.1 Pointers with the string Attribute ... 257
 4.2.21.2 Possible Ambiguity Resolved .. 257
 4.2.22 Operations... 258
 4.2.22.1 The idempotent Attribute ... 258
 4.2.22.2 The broadcast Attribute... 258
 4.2.22.3 The maybe Attribute .. 258
 4.2.23 Parameter Declarations .. 259
 4.2.23.1 Syntax.. 259
 4.2.23.2 Semantics and Restrictions ... 259
 4.2.23.3 Directional Attributes .. 259
 4.2.23.4 Aliasing in Parameter Lists ... 259
 4.2.24 Function Pointers ... 260
 4.2.24.1 Syntax.. 260
 4.2.24.2 Semantics.. 260
 4.2.24.3 Restrictions... 260
 4.2.25 Predefined Types.. 260
 4.2.26 The error_status_t Type.. 260
 4.2.27 International Character Types... 261
 4.2.28 Anonymous Types... 261
 4.3 The Attribute Configuration Source ... 262
 4.3.1 Comments ... 262
 4.3.2 Identifiers... 262
 4.3.3 Syntax... 262
 4.3.4 Include Declaration ... 263
 4.3.5 Specifying Binding Handles .. 264
 4.3.5.1 The explicit_handle Attribute .. 264
 4.3.5.2 The implicit_handle Attribute.. 264
 4.3.5.3 The auto_handle Attribute.. 265
 4.3.6 The represent_as Attribute .. 265
 4.3.7 The code and nocode Attributes... 265
 4.3.8 The in_line and out_of_line Attributes ... 266
 4.3.9 Return Statuses... 266
 4.3.9.1 The comm_status Attribute.. 266
 4.3.9.2 The fault_status Attribute... 267
 4.3.9.3 Interaction of the comm_status and fault_status Attributes....... 267
 4.3.10 The heap Attribute... 268
 4.3.11 The enable_allocate Attribute ... 268
 4.4 IDL Grammar Synopsis ... 269
 4.4.1 Grammar Synopsis .. 269
 4.4.2 Alphabetic Listing of Productions.. 273
 4.5 IDL Constructed Identifiers.. 276

X/Open DCE: Remote Procedure Call ix

Contents

 4.6 IDL and ACS Reserved Words... 277

Chapter 5 Stubs... 279
 5.1 The Application/Stub Interface... 279
 5.1.1 Parameters... 279
 5.1.1.1 Parameter Memory Management.. 280
 5.1.1.2 Client-side Allocation .. 280
 5.1.1.3 Server-side Allocation.. 281
 5.1.1.4 Aliasing... 281
 5.1.2 Default Manager EPVs.. 281
 5.1.3 Interface Handle... 281
 5.1.4 Pipes.. 281
 5.1.4.1 Processing of in Pipes... 284
 5.1.4.2 Processing of out Pipes.. 285
 5.1.4.3 Processing of in, out Pipes .. 287
 5.1.5 IDL and ACS Type Attributes ... 287
 5.1.5.1 The IDL transmit_as Attribute... 287
 5.1.5.2 The IDL handle Attribute.. 288
 5.1.5.3 Interaction of IDL transmit_as and IDL handle Attributes.......... 289
 5.1.5.4 The ACS represent_as Attribute.. 289
 5.1.5.5 Interaction of the ACS represent_as Attribute and
 the IDL handle Attribute ... 290
 5.1.5.6 Interaction of the ACS represent_as Attribute with
 the IDL transmit_as Attribute .. 290
 5.1.6 Context Handle Rundown... 290
 5.2 Interoperability Requirements on Stubs .. 292
 5.2.1 Operation Numbers .. 292
 5.2.2 Error Handling During Floating-Point Unmarshalling 292

Part 4 RPC Services and Protocols.. 293

Chapter 6 Remote Procedure Call Model ... 295
 6.1 Client/Server Execution Model... 296
 6.1.1 RPC Interface and RPC Object .. 296
 6.1.1.1 RPC Interfaces ... 296
 6.1.1.2 RPC Objects.. 296
 6.1.2 Interface Version Numbering.. 297
 6.1.2.1 Rules for Changing Version Numbers ... 297
 6.1.2.2 Definition of an Upwardly Compatible Change............................ 297
 6.1.2.3 Non-upwardly Compatible Changes ... 297
 6.1.3 Remote Procedure Calls ... 298
 6.1.4 Nested RPCs ... 298
 6.1.5 Execution Semantics ... 298
 6.1.6 Context Handles .. 299
 6.1.7 Threads... 300
 6.1.8 Cancels ... 302
 6.2 Binding, Addressing and Name Services .. 304
 6.2.1 Binding... 304

x X/Open CAE Specification (1994)

Contents

 6.2.2 Endpoints and the Endpoint Mapper.. 305
 6.2.2.1 Client Operation.. 306
 6.2.2.2 Server Operation... 306
 6.2.3 NSI Interface ... 306
 6.2.3.1 Common Declarations ... 307
 6.2.3.2 Protocol Towers... 308
 6.2.3.3 The server_name Object Attributes .. 308
 6.2.3.4 The group Object Attributes... 310
 6.2.3.5 The profile Object Attributes.. 311
 6.2.3.6 Encoding... 311
 6.2.3.7 Name Service Class Values... 311
 6.3 Error Handling Model ... 312

Chapter 7 RPC Service Definition... 313
 7.1 Call Representation Data Structure .. 313
 7.2 Service Primitives ... 313
 7.2.1 Invoke... 314
 7.2.2 Result.. 315
 7.2.3 Cancel... 316
 7.2.4 Error.. 317
 7.2.5 Reject .. 318

Chapter 8 Statechart Specification Language Semantics 319
 8.1 The Elements of Statecharts.. 319
 8.2 State Hierarchies ... 321
 8.3 Concurrency... 321
 8.4 Graphical Expressions ... 322
 8.4.1 Default Entrances... 322
 8.4.2 Conditional Connectors ... 322
 8.4.3 Terminal Connectors ... 322
 8.5 Semantics that Require Special Consideration..................................... 323
 8.5.1 Implicit Exits and Entrances (Scope of Transitions) 323
 8.5.2 Conflicting Transitions ... 323
 8.5.3 Execution Steps and Time.. 323
 8.5.4 Synchronisation and Race Conditions .. 324
 8.6 Summary of Language Elements... 325
 8.6.1 Event Expressions.. 325
 8.6.2 Condition Expressions.. 326
 8.6.3 Action Expressions .. 326
 8.6.4 Data Item Expressions .. 327
 8.6.4.1 Atomic Numeric Expressions .. 327
 8.6.4.2 Compound Numeric Expressions... 327
 8.6.4.3 String Expressions .. 327

Chapter 9 RPC Protocol Definitions .. 329
 9.1 Conformance ... 329
 9.2 RPC Stub to Run-time Protocol Machine Interactions........................ 330
 9.2.1 Client Protocol Machines ... 330

X/Open DCE: Remote Procedure Call xi

Contents

 9.2.2 Server Protocol Machines... 331
 9.3 Connection-oriented Protocol .. 333
 9.3.1 Client/Server.. 333
 9.3.2 Association Group... 333
 9.3.3 Association.. 334
 9.3.3.1 Association Management Policy ... 334
 9.3.3.2 Primary and Secondary Endpoint Addresses................................. 334
 9.3.4 Call.. 335
 9.3.5 Transport Service Requirements... 335
 9.4 Connection-oriented Protocol Machines ... 336
 9.4.1 CO_CLIENT_ALLOC... 336
 9.4.2 CO_CLIENT_GROUP... 336
 9.4.3 CO_CLIENT.. 337
 9.4.3.1 ASSOCIATION.. 337
 9.4.3.2 CONTROL.. 337
 9.4.3.3 CANCEL... 337
 9.4.3.4 CALL... 337
 9.4.4 CO_SERVER_GROUP.. 338
 9.4.5 CO_SERVER ... 338
 9.4.5.1 ASSOCIATION.. 338
 9.4.5.2 CONTROL.. 338
 9.4.5.3 CANCEL... 338
 9.4.5.4 WORKING... 338
 9.5 Connectionless Protocol .. 339
 9.5.1 Client/Server.. 339
 9.5.2 Activity... 339
 9.5.3 Call.. 339
 9.5.4 Maintaining Execution Context and Monitoring Liveness............. 339
 9.5.5 Serial Numbers... 340
 9.5.6 Transport Service Requirements... 340
 9.6 Connectionless Protocol Machines ... 341
 9.6.1 RPC Stub to Run Time Protocol Machine Interactions.................... 341
 9.6.2 CL_CLIENT .. 341
 9.6.2.1 CONTROL.. 341
 9.6.2.2 AUTHENTICATION ... 341
 9.6.2.3 CALLBACK.. 341
 9.6.2.4 PING.. 342
 9.6.2.5 CANCEL... 342
 9.6.2.6 DATA... 342
 9.6.3 CL_SERVER.. 342
 9.6.3.1 CONTROL.. 342
 9.6.3.2 AUTHENTICATION ... 342
 9.6.3.3 CANCEL... 342
 9.6.3.4 WORKING... 342
 9.7 Naming Conventions... 343

xii X/Open CAE Specification (1994)

Contents

Chapter 10 Connectionless RPC Protocol Machines 345
 10.1 CL_CLIENT Machine... 346
 10.1.1 CL_CLIENT Activities.. 346
 10.1.2 CL_CLIENT States... 349
 10.1.3 CL_CLIENT Events ... 354
 10.1.4 CL_CLIENT Conditions ... 358
 10.1.5 CL_CLIENT Actions ... 363
 10.1.6 CL_CLIENT Data-Items ... 367
 10.2 CL_SERVER Machine .. 377
 10.2.1 CL_SERVER Activities ... 377
 10.2.2 CL_SERVER States .. 382
 10.2.3 CL_SERVER Events... 388
 10.2.4 CL_SERVER Actions ... 392
 10.2.5 CL_SERVER Conditions... 399
 10.2.6 CL_SERVER Data-Items... 404

Chapter 11 Connection-oriented RPC Protocol Machines 417
 11.1 CO_CLIENT Machine.. 418
 11.1.1 CO_CLIENT Activities ... 418
 11.1.2 CO_CLIENT States.. 421
 11.1.3 CO_CLIENT Events .. 428
 11.1.4 CO_CLIENT Actions .. 434
 11.1.5 CO_CLIENT Conditions .. 439
 11.1.6 CO_CLIENT Data-Items .. 444
 11.2 CO_CLIENT_ALLOC Machine ... 454
 11.2.1 CO_CLIENT_ALLOC Activities .. 455
 11.2.2 CO_CLIENT_ALLOC States ... 456
 11.2.3 CO_CLIENT_ALLOC Events.. 458
 11.2.4 CO_CLIENT_ALLOC Actions.. 461
 11.2.5 CO_CLIENT_ALLOC Conditions.. 462
 11.2.6 CO_CLIENT_ALLOC Data-Items.. 463
 11.3 CO_CLIENT_GROUP Machine... 464
 11.3.1 CO_CLIENT_GROUP States... 465
 11.3.2 CO_CLIENT_GROUP Events ... 466
 11.3.3 CO_CLIENT_GROUP Data-Items ... 468
 11.4 CO_SERVER Machine ... 469
 11.4.1 CO_SERVER Activities... 470
 11.4.2 CO_SERVER States ... 472
 11.4.3 CO_SERVER Events.. 478
 11.4.4 CO_SERVER Actions .. 484
 11.4.5 CO_SERVER Conditions.. 489
 11.4.6 CO_SERVER Data-Items.. 493
 11.5 CO_SERVER_GROUP Machine .. 503
 11.5.1 CO_SERVER_GROUP States .. 504
 11.5.2 CO_SERVER_GROUP Events... 505
 11.5.3 CO_SERVER_GROUP Actions ... 507
 11.5.4 CO_SERVER_GROUP Data-Items... 507

X/Open DCE: Remote Procedure Call xiii

Contents

Chapter 12 RPC PDU Encodings.. 509
 12.1 Generic PDU Structure .. 509
 12.2 Encoding Conventions .. 510
 12.3 Alignment... 510
 12.4 Common Fields ... 511
 12.4.1 PDU Types... 511
 12.4.2 Protocol Version Numbers... 511
 12.4.3 Data Representation Format Labels... 511
 12.4.4 Reject Status Codes ... 511
 12.5 Connectionless RPC PDUs ... 512
 12.5.1 Connectionless PDU Structure ... 512
 12.5.2 Header Encoding ... 512
 12.5.2.1 Protocol Version Number.. 513
 12.5.2.2 PDU Type.. 513
 12.5.2.3 Flags Fields... 513
 12.5.2.4 Data Representation Format Label ... 514
 12.5.2.5 Serial Number.. 514
 12.5.2.6 Object Identifier... 515
 12.5.2.7 Interface Identifier .. 515
 12.5.2.8 Activity Identifier.. 515
 12.5.2.9 Server Boot Time... 515
 12.5.2.10 Interface Version ... 515
 12.5.2.11 Sequence Number... 516
 12.5.2.12 Operation Number ... 516
 12.5.2.13 Interface Hint... 516
 12.5.2.14 Activity Hint .. 516
 12.5.2.15 PDU Body Length... 516
 12.5.2.16 Fragment Number .. 516
 12.5.2.17 Authentication Protocol Identifier .. 517
 12.5.3 Connectionless PDU Definitions .. 517
 12.5.3.1 The ack PDU .. 517
 12.5.3.2 The cancel_ack PDU... 517
 12.5.3.3 The cancel PDU... 518
 12.5.3.4 The fack PDU... 518
 12.5.3.5 The fault PDU.. 520
 12.5.3.6 The nocall PDU.. 520
 12.5.3.7 The ping PDU .. 520
 12.5.3.8 The reject PDU... 520
 12.5.3.9 The request PDU... 520
 12.5.3.10 The response PDU .. 521
 12.5.3.11 The working PDU... 521
 12.6 Connection-oriented RPC PDUs ... 522
 12.6.1 Connection-oriented PDU Structure ... 522
 12.6.2 Fragmentation and Reassembly ... 522
 12.6.3 Connection-oriented PDU Data Types.. 523
 12.6.3.1 Declarations ... 523
 12.6.3.2 Connection-Oriented Protocol Versions .. 526
 12.6.3.3 The frag_length Field ... 526

xiv X/Open CAE Specification (1994)

Contents

 12.6.3.4 Context Identifiers .. 526
 12.6.3.5 The call_id Field .. 527
 12.6.3.6 The assoc_group_id Field ... 527
 12.6.3.7 The alloc_hint Field .. 527
 12.6.3.8 Authentication Data... 527
 12.6.3.9 Optional Connect Reject and Disconnect Data 527
 12.6.4 Connection-oriented PDU Definitions .. 528
 12.6.4.1 The alter_context PDU... 528
 12.6.4.2 The alter_context_resp PDU... 530
 12.6.4.3 The bind PDU .. 531
 12.6.4.4 The bind_ack PDU.. 532
 12.6.4.5 The bind_nak PDU ... 533
 12.6.4.6 The cancel PDU... 534
 12.6.4.7 The fault PDU.. 535
 12.6.4.8 The orphaned PDU... 537
 12.6.4.9 The request PDU... 538
 12.6.4.10 The response PDU .. 540
 12.6.4.11 The shutdown PDU.. 541

Chapter 13 Security... 543
 13.1 The Generic RPC Security Model.. 544
 13.1.1 Generic Operation ... 544
 13.1.2 Generic Encodings... 545
 13.1.2.1 Protection Levels... 545
 13.1.2.2 Authentication Services... 546
 13.1.2.3 Authorisation Services... 546
 13.1.3 UnderlyingSecurity Services Required .. 546
 13.2 Security Services for Connection-oriented Protocol............................ 548
 13.2.1 Client Association State Machine... 548
 13.2.2 Server Association State Machine .. 548
 13.2.3 Sequence Numbers.. 548
 13.2.4 The auth_context_id Field ... 549
 13.2.5 Integrity Protection.. 549
 13.2.6 Connection-oriented Encodings ... 550
 13.2.6.1 Common Authentication Verifier Encodings 550
 13.2.6.2 Encoding for Per-PDU Services ... 551
 13.2.6.3 Credentials Encoding... 552
 13.3 Security Services for Connectionless Protocol...................................... 555
 13.3.1 Server Receive Processing.. 555
 13.3.2 Client Receive Processing .. 555
 13.3.3 Conversation Manager Encodings... 555
 13.3.3.1 Challenge Request Data Encoding.. 555
 13.3.3.2 Response Data Encoding... 556
 13.3.4 Authentication Verifier Encodings... 556
 13.3.4.1 dce_c_authn_level_none... 557
 13.3.4.2 dce_c_authn_level_connect.. 557
 13.3.4.3 dce_c_authn_level_call.. 557
 13.3.4.4 dce_c_authn_level_pkt.. 557

X/Open DCE: Remote Procedure Call xv

Contents

 13.3.4.5 dce_c_authn_level_integrity .. 557
 13.3.4.6 dce_c_authn_level_privacy .. 557

Chapter 14 Transfer Syntax NDR... 559
 14.1 Data Representation Format Label ... 560
 14.2 NDR Primitive Types ... 561
 14.2.1 Representation Conventions ... 561
 14.2.2 Alignment of Primitive Types ... 562
 14.2.3 Booleans... 562
 14.2.4 Characters.. 562
 14.2.5 Integers and Enumerated Types ... 562
 14.2.5.1 Enumerated Types.. 563
 14.2.6 Floating-point Numbers... 564
 14.2.6.1 IEEEFormat ... 564
 14.2.6.2 VAX Format.. 565
 14.2.6.3 Cray Format ... 567
 14.2.6.4 IBM Format .. 567
 14.2.7 Uninterpreted Octets... 568
 14.3 NDR Constructed Types ... 569
 14.3.1 Representation Conventions ... 569
 14.3.2 Arrays... 569
 14.3.2.1 Uni-dimensional Fixed Arrays... 570
 14.3.2.2 Uni-dimensional Conformant Arrays .. 570
 14.3.2.3 Uni-dimensional Varying Arrays .. 570
 14.3.2.4 Uni-dimensional Conformant-varying Arrays............................... 571
 14.3.2.5 Orderingof Elements in Multi-dimensional Arrays 571
 14.3.2.6 Multi-dimensional Fixed Arrays ... 571
 14.3.2.7 Multi-dimensional Conformant Arrays... 572
 14.3.2.8 Multi-dimensional Varying Arrays... 572
 14.3.2.9 Multi-dimensional Conformant and Varying Arrays 573
 14.3.3 Strings... 574
 14.3.3.1 Varying Strings .. 574
 14.3.3.2 Conformant and Varying Strings .. 575
 14.3.4 Arrays of Strings .. 575
 14.3.5 Structures... 576
 14.3.6 Structures Containing Arrays ... 577
 14.3.6.1 Structures Containing a Conformant Array 577
 14.3.6.2 Structures Containing a Conformant and Varying Array............ 577
 14.3.7 Unions.. 578
 14.3.8 Pipes.. 579
 14.3.9 Pointers .. 579
 14.3.10 Top-level Pointers .. 580
 14.3.10.1 Top-level Full Pointers ... 580
 14.3.10.2 Top-level Reference Pointers .. 581
 14.3.11 Embedded Pointers ... 582
 14.3.11.1 EmbeddedFull Pointers .. 582
 14.3.11.2 EmbeddedReference Pointers ... 582
 14.3.11.3 Algorithm for Deferral of Referents.. 583

xvi X/Open CAE Specification (1994)

Contents

 14.4 NDR Input and Output Streams ... 584

Appendix A Universal Unique Identifier... 585
 A.1 Format ... 586
 A.2 Algorithms for Creating a UUID... 588
 A.2.1 Clock Sequence... 588
 A.2.2 System Reboot .. 588
 A.2.3 Clock Adjustment .. 589
 A.2.4 Clock Overrun.. 589
 A.2.5 UUID Generation... 589
 A.3 String Representation of UUIDs.. 591
 A.4 Comparing UUIDs.. 592

Appendix B Protocol Sequence Strings.. 593

Appendix C Name Syntax Constants ... 595

Appendix D Authentication, Authorisation and Protection-level
Arguments.. 597

 D.1 The authn_svc Argument ... 597
 D.2 The authz_svc Argument.. 597
 D.3 The protect_level Argument .. 598
 D.4 The privs Argument... 599
 D.5 The server_princ_name Argument... 599
 D.6 The auth_identity Argument.. 599
 D.7 Key Functions .. 599

Appendix E Reject Status Codes and Parameters .. 601
 E.1 Reject Status Codes .. 601
 E.2 Possible Failures.. 603
 E.2.1 comm_status Parameter... 603
 E.2.2 fault_status Parameter.. 603

Appendix F IDL to C-language Mappings... 605
 F.1 Data Type Bindings .. 605
 F.2 Syntax Mappings .. 608

Appendix G Portable Character Set ... 611

Appendix H Endpoint Mapper Well-known Ports ... 613

Appendix I Protocol Identifiers.. 615

Appendix J DCE CDS Attribute Names ... 617

X/Open DCE: Remote Procedure Call xvii

Contents

Appendix K Architected and Default Values for Protocol Machines. 619

Appendix L Protocol Tower Encoding .. 621
 L.1 Protocol Tower Contents... 622

Appendix M The dce_error_inq_text Manual Page .. 623
 dce_error_inq_text().. 624

Appendix N IDL Data Type Declarations.. 625
 N.1 Basic Type Declarations... 625
 N.2 Status Codes... 627
 N.3 RPC-specific Data Types ... 629

Appendix O Endpoint Mapper Interface Definition..................................... 631

Appendix P Conversation Manager Interface Definition 635
 P.1 Server Interface.. 635
 P.2 Client Interface .. 637

Appendix Q Remote Management Interface.. 639

 Index... 641

List of Figures

2-1 Information Required to Complete an RPC... 20
2-2 Server Binding Relationships .. 24
2-3 Decisions in Looking Up an Endpoint .. 28
2-4 Decisions for Selecting a Manager ... 29
6-1 Execution Phases of an RPC Thread.. 300
6-2 Concurrent Call Threads Executing in Shared Execution Context 301
10-1 CL_CLIENT Statechart ... 346
10-2 CL_SERVER Statechart... 377
11-1 CO_CLIENT Statechart .. 418
11-2 CO_CLIENT_ALLOC Statechart.. 454
11-3 CO_CLIENT_GROUP Statechart ... 464
11-4 CO_SERVER Statechart .. 469
11-5 CO_SERVER_GROUP Statechart... 503
14-1 NDR Format Label... 560
14-2 The Boolean Data Type... 562
14-3 Character Data Type.. 562
14-4 NDR Integer Formats.. 563
14-5 IEEE Single-precision Floating-point Format .. 565
14-6 IEEE Double-precision Floating-point Format .. 565
14-7 VAX Single-precision (F) Floating-point Format 566
14-8 VAX Double-precision (G) Floating-point Format 566
14-9 Cray Floating-point Formats ... 567
14-10 IBM Floating-point Formats .. 568

xviii X/Open CAE Specification (1994)

Contents

14-11 Uninterpreted Octet Representation ... 568
14-12 Uni-dimensional Fixed Array Representation... 570
14-13 Uni-dimensional Conformant Array Representation 570
14-14 Uni-dimensional Varying Array Representation 571
14-15 Uni-dimensional Conformant and Varying Array Representation..... 571
14-16 Multi-dimensional Fixed Array Representation 572
14-17 Multi-dimensional Conformant Array Representation......................... 572
14-18 Multi-dimensional Varying Array Representation................................. 573
14-19 Multi-dimensional Conformant and Varying Array Representation . 574
14-20 Varying String Representation.. 574
14-21 Conformant and Varying String Representation 575
14-22 Multi-dimensional Conformant and Varying Array of Strings............ 576
14-23 Structure Representation.. 576
14-24 Representation of a Structure Containing a Conformant Array.......... 577
14-25 Representation of a Structure Containing a Conformant and

Varying Array... 578
14-26 Union Representation ... 578
14-27 Pipe Representation .. 579
14-28 Top-level Full Pointer Representation... 581
14-29 Top-level Reference Pointer Representation.. 581
14-30 Embedded Full Pointer Representations .. 582
14-31 Embedded Reference Pointer Representation ... 583
14-32 NDR Input Stream... 584
14-33 NDR Output Stream ... 584

List of Tables

3-1 Client and Server Binding Handles.. 50
3-2 Rules for Returning an Object’s Type.. 180
4-1 Integer Base Types ... 243
4-2 IDL Directional Attributes ... 259
4-3 Alphabetic Listing of Productions.. 273
4-4 Constructed Identifier Classes .. 276
5-1 Transmitted Type Routines.. 288
5-2 Transferred Type Routines... 289
5-3 Floating Point Error Handling .. 292
6-1 Execution Semantics ... 299
6-2 Protocol Tower Structure ... 308
6-3 The server_name Object Attributes ... 309
6-4 RPC-specific Protocol Tower Layers.. 309
6-5 Example Protocol Tower .. 310
6-6 Service Group Object Attributes .. 310
6-7 Configuration Profile Object Attributes.. 311
7-1 Invoke Parameters ... 314
7-2 Result Parameters .. 315
7-3 Cancel Parameters ... 316
7-4 Error Parameters .. 317
7-5 Reject Parameters... 318

X/Open DCE: Remote Procedure Call xix

Contents

8-1 Events Related to Other Elements.. 325
8-2 Compound Events... 325
8-3 Conditions Related to Other Elements.. 326
8-4 Compound Conditions... 326
8-5 Actions Related to Other Elements.. 326
8-6 Compound Actions ... 327
12-1 RPC Protocol Data Units .. 509
12-2 The First Set of PDU Flags ... 514
12-3 Second Set of PDU Flags .. 514
12-4 Authentication Protocol Identifiers.. 517
14-1 NDR Format Label Values ... 560
14-2 NDR Floating Point Types ... 564
A-1 UUID Format .. 586
A-2 UUID version Field.. 586
A-3 UUID variant Field .. 587
A-4 The 2 msb of clock_seq_hi_and_reserved .. 590
A-5 Field Order and Type .. 592
B-1 RPC Protocol Sequence Strings... 593
C-1 RPC Name Syntax Defined Constants .. 595
D-1 Casts for Authorisation Information ... 599
D-2 RPC Key Acquisition for Authentication Services 600
E-1 Reject Status Codes ... 601
E-2 Failures Returned in a comm_status Parameter 603
E-3 Failures Returned in a fault_status Parameter .. 604
F-1 IDL/NDR/C Type Mappings ... 607
F-2 Recommended Boolean Constant Values... 607
G-1 Portable Character Set NDR Encodings.. 612
H-1 Endpoint Mapper Well-known Ports... 613
I-1 NDR Transfer Syntax Identifier .. 615
I-2 Registered Single Octet Protocol Identifiers .. 616
J-1 DCE CDS Attribute Names ... 617
K-1 Default Protocol Machine Values ... 619
K-2 Definition of MustRecvFragSize... 619
L-1 Floors 1 to 3 Inclusive ... 622
L-2 Floors 4 and 5 for TCP/IP Protocols .. 622
L-3 Floors 4, 5 and 6 for DECnet Protocol.. 622

xx X/Open CAE Specification (1994)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

X/Open DCE: Remote Procedure Call xxi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xxii X/Open CAE Specification (1994)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It specifies Remote Procedure Call (RPC)
services, interface, protocols, encoding rules and the Interface Definition Language (IDL).

The purpose of this document is to provide a portability guide for RPC application programs
and a conformance specification for RPC implementations.

Structure

This document is organised into four parts.

Part 1, Remote Procedure Call Introduction describes this volume in detail, covering application
portability, services and protocols, and conformance requirements. It contains material relevant
to both application programmers and implementors.

Part 2, RPC Application Programmer’s Interface specifies a portable RPC Application
Programmer’s Interface (API). It contains material relevant both to application programmers
and implementors.

Part 3, Interface Definition Language and Stubs specifies the IDL and stubs. It contains material
relevant both to application programmers and implementors.

Part 4, RPC Services and Protocols specifies RPC services and protocols. It contains material
mainly relevant to implementors.

This volume also includes a series of appendixes containing material that supplements the main
text. These contain material relevant both to application programmers and implementors.

Intended Audience

This document is written for RPC application programmers and developers of RPC
implementations.

X/Open DCE: Remote Procedure Call xxiii

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name().

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font.

In addition to these generic conventions, several chapters of this volume use conventions
specific to the topic covered, including language conventions (Chapter 4 and Chapter 5),
encoding conventions (Chapter 14), and protocol machine conventions (Chapter 8 to Chapter 11
inclusive). These conventions are specified in the relevant chapters.

xxiv X/Open CAE Specification (1994)

Trade Marks

X/OpenTM and the ‘‘X’’ device are trade marks of X/Open Company Limited.

X/Open DCE: Remote Procedure Call xxv

Referenced Documents

The following documents are referenced in this specification:

DCE Directory
X/Open Preliminary Specification, December 1993, X/Open DCE: Directory Services
(ISBN: 1-85912-012-1 P314).

DCE Security
X/Open Preliminary Specification, to be published in 1994, X/Open DCE: Authentication
and Security Services (ISBN: 1-85912-013-X P315).

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

ISO 8823
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (which is technically identical to ANS
X3.159-1989, Programming Language C).

ISO/TR 8509
ISO/TR 8509: 1987, Information Processing Systems — Open Systems Interconnection —
Service Conventions.

System/370
IBM System/370 Principles of Operation, 1974, International Business Machines
Corporation.

VAX11 Architecture
VAX11 Architecture Handbook, 1979, Digital Equipment Corporation.

The following documents were used in the development of this specification, but are not directly
referenced:

Harel, D. On Visual Formalisms. Communications of the ACM 31, 5 (May 1988), pp. 514-530.

Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8 (1987), pp. 231-274.

Harel, Pnueli, Schmidt, Sherman On the Formal Semantics of Statecharts Proceedings of the 2nd
IEEE Symposium on Logic in Computer Science (Ithaca, NY, June 22-24). IEEE Press New
York, 1987, pp. 54-64.

i-Logix Inc., The Languages of Statemate Documentation for the Statemate System, January
1991, Burlington, MA.

i-Logix Inc., The Semantics of Statecharts Documentation for the Statemate System, January
1991, Burlington, MA.

xxvi X/Open CAE Specification (1994)

X/Open CAE Specification

Part 1

Remote Procedure Call Introduction

X/Open Company Ltd.

Part 1 Remote Procedure Call Introduction 1

2 X/Open CAE Specification (1994)

Chapter 1

Introduction to the RPC Specification

This document specifies both portability and interoperability for the Remote Procedure Call
(RPC) mechanism. The specification contains material directed at two audiences:

• It provides a portability guide for application programmers.

• It provides both portability and interoperability specifications for those who are
implementing or porting RPC or who are testing an RPC implementation.

This document may be thought of as an implementation specification, covering both portability
and interoperability, that contains within it an application portability guide. The application
portability guide consists of Part 2, RPC Application Programmer’s Interface and Part 3, Interface
Definition Language and Stubs.

Although the portability specification is part of the broader implementation specification, it has
been designed to stand alone so that it may be used by application programmers without
reference to the other parts of the implementation specification.

Note: In order to make the portability specification independent, some material is repeated,
especially between Chapter 2 and Chapter 6.

Part 1 Remote Procedure Call Introduction 3

Portability Introduction to the RPC Specification

1.1 Portability
The portability specification describes the concrete syntax and semantics of the Application
Programmer’s Interface (API) to RPC. It consists of:

• an introduction to the RPC API that describes the RPC programming model and gives
general guidelines for portable usage (see Chapter 2)

• a reference section for the data types used in the RPC API (see Chapter 3)1

• a set of reference pages for the RPC run-time library routines; these specify the calling syntax
and semantics for the interfaces (see Chapter 3)

• a reference to the Interface Description Language (IDL) (see Chapter 4)

• a mapping of IDL data types to ISO C data types (see Appendix F)

• an RPC stub specification that defines stub characteristics required for portability (see
Section 5.1 on page 279).

The portability specification is narrowly focussed on providing a guide to portable usage of the
RPC API. It describes behaviour that is common to all implementations. Whenever
implementation-specific behaviour is referenced, it is clearly marked as such. Similarly, the
specification generally avoids examples or tutorial descriptions. Whenever usage guidelines are
provided, they are clearly marked as such.

All behaviour that is not specifically marked as implementation-specific or a usage note, is
considered to be required. All implementations must conform to the specified behaviour.
Programmers can rely on the specified behaviour to be portable among conforming
implementations.

1. This document specifies ISO C-language bindings for data types and interfaces.

4 X/Open CAE Specification (1994)

Introduction to the RPC Specification Services and Protocols

1.2 Services and Protocols
The implementation specification includes a set of service and protocol specifications. The
protocol specifications describe how implementations of the RPC client and server run-time
systems communicate. The service specifications describe a set of abstract services that the RPC
run-time system must implement.

The service and protocol specifications include:

• an abstract specification of the RPC model (see Chapter 6)

• an abstract specification of a set of RPC service primitives (see Chapter 7)

• abstract specifications of the RPC connectionless and connection-oriented communications
protocols. These are given as sets of statecharts and associated descriptive materials. This
includes an abstract specification of the underlying transport services required by the RPC
protocols. (The protocol specifications are contained in Chapter 8, Chapter 9, Chapter 10 and
Chapter 11.)

• byte stream specifications of the formats of RPC Protocol Data Units (PDUs) used by the
connectionless and connection-oriented protocols (see Chapter 12) and common
authentication verifier encodings (see Chapter 13)

• a specification of the Network Data Representation (NDR); this specifies a set of NDR data
types and the byte stream formats in which they are communicated between client and
server run-time environments (see Chapter 14)

• a mapping of IDL data types to NDR data types (see Appendix F)

• an RPC stub specification that defines the stub characteristics required for interoperation (see
Section 5.2 on page 292)

• a specification of information stored in and retrieved from name services (see Section 6.2 on
page 304, Appendix I and Appendix J)

• a UUID specification (see Appendix A)

• IDL data type declarations (see Appendix N)

• the endpoint mapper protocol (see Appendix O)

• the conversation manager protocol (see Appendix P)

• the remote management interface (see Appendix Q).

The aim of the service and protocol specifications is to provide a complete mapping from RPC
call semantics to the byte streams that RPC run-time clients and servers interchange using
underlying services. The RPC service primitives provide an abstract implementation of the
specified RPC call semantics and serve to map the specified semantics to the specified protocol
machines. The PDU formats give the byte streams that the protocol machines exchange using
the underlying transport services. The NDR specification, along with the mapping of IDL to
NDR data types, defines how the call data exchanged in the RPC PDUs is encoded.

Except for the byte stream specification and the stub specification, the service and protocol
specifications are abstract. They describe the behaviour that conforming implementations must
follow, but they do not prescribe any specific means for implementing this behaviour.

Implementations that conform to this specification interoperate according to the following rule:
client and server applications, conforming to the same IDL source (but not necessarily the same
ACS), correctly implement the specified RPC interface semantics for each remote procedure call
operation specified in the IDL source.

Part 1 Remote Procedure Call Introduction 5

Services and Protocols Introduction to the RPC Specification

Except when specified otherwise, IDL compiler behaviour and the stub, including the stub to
run-time interface, are implementation-dependent. Therefore, the above rule applies when stubs
are generated using the local implementation’s IDL compiler. There is no requirement that stubs
for a given language are portable among implementations.

6 X/Open CAE Specification (1994)

Introduction to the RPC Specification Conformance Requirements

1.3 Conformance Requirements
To conform to this document, implementations must meet the following requirements:

• Implementations must support the endpoint selection rules in Endpoint Selection on page
27.

• Implementations must support the manager selection rules in Interface and Manager
Selection on page 28.

• Implementations must support the search algorithm in Section 2.4.5.

• Implementations must support the API naming, syntax and semantics, as defined in Chapter
3. Implementations may extend the set of status codes documented in Chapter 3.

• Implementations must support the naming, syntax and semantics for IDL, as given in
Chapter 4.

• Implementations must support the naming, syntax, and semantics for stubs, as given in
Chapter 5.

• Implementations must support the semantics defined in Chapter 6.

• Implementations must support the NSI syntax and naming, as defined in Section 6.2 on page
304.

• Implementations must support the service semantics defined in Chapter 7.

• Implementations must follow the conformance rules specified in Chapter 9.

• Implementations must support the syntax of the PDU encodings in Chapter 12.

• Implementations must support the Authentication Verifier encodings, as defined in Chapter
13.

• Implementations must support the rules and encodings for NDR, as given in Chapter 14.

• Implementations must support the syntax, semantics and encoding for UUIDs, as defined in
Appendix A.

• Implementations must support the naming and semantics for protocol sequence strings, as
defined in Appendix B.

• Implementations must support the naming and semantics for the name_syntax arguments, as
defined in Appendix C.

• Implementations must support the naming and semantics for security parameters, as defined
in Appendix D.

• Implementations must support the naming and encodings for comm_status and fault_status,
as defined Appendix E.

• Implementations must support the mapping from IDL types to NDR types, and from NDR
types to defined ISO C types, as defined in Appendix F.

• Implementations must support the portable character set, as defined in Appendix G.

• Implementations must use the endpoint mapper ports, as defined in Appendix H for the
corresponding protocols.

• Implementations must adhere to the rules for protocol identifier assignment, as defined in
Appendix I.

Part 1 Remote Procedure Call Introduction 7

Conformance Requirements Introduction to the RPC Specification

• Implementations must adhere to the mappings for Directory Service attributes, as defined in
Appendix J.

• Implementations must provide defaults for the protocol machine values specified in
Appendix K.

• Implementations must obey the special protocol tower encoding rules specified in Appendix
L.

• Implementations must support the syntax and semantics of the dce_error_inq_text routine
specified in Appendix M.

• Implementations must adhere to the mappings for transfer syntax UUIDs, as defined in
Appendix N.

• Implementations must support the endpoint mapper semantics, as defined in Appendix O.

• Implementations must support the conversation manager semantics, as defined in Appendix
P.

• Implementations must support the remote management semantics as defined in Appendix
Q.

8 X/Open CAE Specification (1994)

X/Open CAE Specification

Part 2

RPC Application Programmer’s Interface

X/Open Company Ltd.

Part 2 RPC Application Programmer’s Interface 9

10 X/Open CAE Specification (1994)

Chapter 2

Introduction to the RPC API

This chapter provides a general description of the programming model implemented by the RPC
Application Programming Interface (API). This description includes definitions of many of the
concepts used throughout the RPC API manual pages. As such, it is a necessary prerequisite to
the understanding of the manual pages, and the manual pages assume knowledge of this
chapter, even when they do not make explicit reference to it.

The description serves three purposes:

• It provides general information that is relevant to many of the routines in the RPC API, but is
not specified in the individual manual pages.

• It provides a rationale for the set of RPC APIs included in this document.

• It provides general guidelines for the intended use of the RPC APIs.

The general information covers topics, such as binding and name service usage, that are relevant
to many of the manual pages. Typically, several routines perform tasks related to a given topic.
This introduction provides a general model within which the tasks performed by individual
routines and suites of routines can be understood. This general model also provides a rationale
for the set of routines included in this document. It describes the underlying operations required
for RPC programming and shows how the set of RPC APIs included in this document gives
access to these operations.

In showing how the RPC API routines are meant to be used, this chapter provides certain
guidelines for consistent RPC client/server interface usage. These guidelines cover such areas as
using the naming services and organising server resources. By following them, programmers
can simplify the task of maintaining and enhancing server interfaces and writing client
programs.

Part 2 RPC Application Programmer’s Interface 11

RPC Programming Model Overview Introduction to the RPC API

2.1 RPC Programming Model Overview
The RPC programming model can be viewed along two axes:

• client/server

• program/stub/run-time system.

Each view describes important aspects of the use of the RPC API.

2.1.1 Client/Server Model

The client/server view of RPC programming describes the distributed resource model
implemented by the RPC mechanism. In this view, programming tasks are divided between
servers, which provide services or make resources available to remote clients, and clients, which
seek and make use of these services or resources.

2.1.1.1 Interfaces

The central component of the client/server model is the interface. An interface is a set of
remotely callable operations offered by a server and invokable by clients. Interfaces are
implemented by managers, which are sets of server routines that implement the interface
operations. RPC offers an extensive set of facilities for defining, implementing and binding to
interfaces.

The RPC mechanism itself imposes few restrictions on the organisation of operations into
interfaces. RPC does provide a means to specify interface versions and a protocol to select a
compatible interface version at bind time (see Chapter 4 and Chapter 6). When an interface is
specified as a new version of an existing interface, the server manager code must provide the
required version compatibility. Beyond this restriction, the programmer is free to place any set
of remotely callable operations in a given interface.

2.1.1.2 Remoteness

The RPC paradigm makes remote calls an extension of the familiar local procedure call
mechanism. Specifically, the call itself is made as a local procedure call, and the underlying RPC
mechanism handles the remoteness transparently. Server interface programming is thus similar
to local procedure call programming, except that the handler of the call runs in a separate
address space and security domain.

From this point of view, a local procedure call is a special simple case of the more general call
mechanism provided by RPC. RPC semantics extend local procedure call semantics in a variety
of ways:

Reliability Network transports may offer varying degrees of reliability. The RPC
run-time system handles these transport semantics transparently, but
RPC call specifications include a specification of execution semantics that
indicates to the RPC protocols the required guarantees of success and the
permissibility of multiple executions on a possibly unreliable transport.
Server application code must be appropriate for the specified execution
semantics.

Binding RPC binding occurs at run time and is under program control. Client and
server use of the RPC binding mechanism is discussed extensively in this
chapter.

No Shared Memory Because calling and called procedures do not share the same address
space, remote procedure calls with input/output parameters use copy-in,

12 X/Open CAE Specification (1994)

Introduction to the RPC API RPC Programming Model Overview

copy-out semantics. For the same reason, RPC has no notion of ‘‘global
data structures’’ shared between the caller and callee; data must be
passed via call parameters.

Failure Modes A number of failure possibilities arise when the caller and callee are on
physically separate machines. These include remote system or server
crashes, communications failures, security problems and protocol
incompatibilities. RPC includes a mechanism to return such remote
errors to the caller.

Cancels RPC extends the local cancel mechanism by forwarding cancels that occur
during an RPC to the server handling the call, allowing the server
application code to handle the cancel. RPC adds a cancel time-out
mechanism to ensure that a caller can regain control within a specified
amount of time if a cancelled call should fail to return.

Security Executing procedures across physical machine boundaries and over a
network creates additional requirements for security. The RPC API
includes an interface to the underlying security services.

The RPC API provides programmers with the means to apply these extended semantics, but it
shields applications from the rigours of transport level send-and-receive programming. The
RPC programming paradigm gives the programmer control of the remote semantics at two
points: in the interface specification and through the RPC API.

• The interface specification, while it is principally used to specify the local calling syntax of an
interface, also allows programmers to specify the desired execution semantics, the degree to
which binding is under program control and error semantics. Interface specification is
described in Chapter 4.

• The RPC API gives applications access to a variety of run-time services and control of many
client/server interactions at run time. Its most important function is to control the process of
binding between clients and servers. Other functions include authentication, server
concurrency and server management.

2.1.1.3 Binding

A remote procedure call requires a remote binding. The calling client must bind to a server that
offers the interface it wants, and the client’s local procedure call must invoke the correct
manager operation on the bound-to server. Because the various parts of this process occur at
run time, it becomes possible to exercise nearly total programmatic control of binding. The RPC
API provides access to all aspects of the binding process.

Each binding consists a set of components that can be separately manipulated by applications,
including protocol and addressing information, interface information and object information.
This allows servers to establish many binding paths to their resources and allows clients to make
binding choices based on all of the components. These capabilities are the basis for defining a
variety of server resource models.

2.1.1.4 Name Services

Servers need to make their resources widely available, and clients need some way to find them
without knowing the details of network configuration and server installation. Hence, the RPC
mechanism supports the use of name services, where servers can advertise their bindings and
clients can find them, based on appropriate search criteria. The RPC API provides clients and
servers with a variety of routines that can be used to export and import bindings to and from
name services.

Part 2 RPC Application Programmer’s Interface 13

RPC Programming Model Overview Introduction to the RPC API

2.1.1.5 Resource Models

The client/server model views servers as exporters of services — via RPC interfaces — and
clients as importers of those services. Exported services typically take the form of access to
resources, such as computational procedures, data, communications facilities, hardware
facilities, or any other capabilities available to an application on a networked host. The RPC
mechanism does not distinguish among such resource types in any way. On the contrary, it
provides a uniform means of access — the remote procedure call — and allows the programmer
to define the underlying resource model freely.

RPC does, however, provide specific mechanisms that implicitly support different approaches to
resource modeling. These mechanisms take advantage of the flexibility of the binding process
and the name services. The RPC mechanism supports three basic resource models:

By Server In this model, clients seek to bind to a specific server instance that
provides an interface of interest.

By Service In this model, clients seek a service — as represented by an interface —
without concern for the specific server instance that provides that service
or any objects that the server manages.

By Object In this model, clients seek a binding to any server that manages a specific
object. An object may be any computational resource available to a
server.

The RPC programming mechanism does not explicitly enforce these models. Instead, they are
supported implicitly by making available a set of run-time binding and name service facilities
through the RPC API. Programmers may use these facilities according to their application
requirements. However, this document recommends that programs follow the models specified
here in order to ensure consistent use of the client/server interface.

2.1.1.6 Security Services

The RPC API provides access to a variety of security services: client-to-server and server-to-
client authentication, authorisation of access to server resources, and varying degrees of
cryptographic protection of client/server communications.

2.1.1.7 Server Implementation

The client/server view of RPC is necessarily asymmetric. The model is based on providing
services remotely via the export of RPC interfaces. Since servers are the means for
implementing remote interfaces, the model is server-centred. The RPC architecture provides
certain server facilities that make the implementation of servers more efficient. These include

Server Concurrency Implementations may buffer RPC requests at the server and
automatically provide multiple threads to handle concurrent requests,
relieving the application programmer of these tasks.

Remote Management The RPC run-time system automatically offers a set of remote server
management interfaces that can be used for such purposes as querying
and stopping servers.

14 X/Open CAE Specification (1994)

Introduction to the RPC API RPC Programming Model Overview

2.1.2 Application/Stub/Run-time System

The application/stub/run-time system view of RPC describes the division of labour between
application code and other RPC components in implementing a remote procedure call.

2.1.2.1 RPC Run Time

At the core of this model is the RPC run-time system, which is a library of routines and a set of
services that handle the network communications that underlie the RPC mechanism. In the
course of an RPC call, client-side and server-side run-time systems’ code handle binding,
establish communications over an appropriate protocol, pass call data between the client and
server, and handle communications errors.

The RPC API is the programmer’s interface to the run-time system. The run-time system makes
use of a number of services, such as the endpoint mapper, name services and security services.
The RPC API also provides an interface to these services for carrying out RPC-specific
operations. Portable usage of the RPC API is fully specified in this section of this document.

2.1.2.2 Stubs

The stub is application-specific code, but it is not directly generated by the application writer
and therefore appears as a separate layer from the programmer’s point of view. The function of
the stub is to provide transparency to the programmer-written application code. On the client
side, the stub handles the interface between the client’s local procedure call and the run-time
system, marshaling and unmarshaling data, invoking the RPC run-time protocol, and if
requested, carrying out some of the binding steps. On the server side, the stub provides a
similar interface between the run-time system and the local manager procedures that are
executed by the server.

RPC transparency to the application programmer is provided by the interface specification
mechanism. The programmer specifies interfaces using an Interface Definition Language (IDL),
and the IDL compiler generates stubs automatically from the specification. Thus, the actual
operations performed by the stub are largely invisible to the programmer, although they form
part of the application-specific program code.

This chapter does not cover the interface specification mechanism itself; this is documented in
Chapter 4. What is covered here are the assumptions that the RPC programming model makes
about stubs, such as well-known stub names and stub memory management.

2.1.2.3 Application Code

RPC application code falls into two categories:

• remote procedure calls and manager code

• optional calls to the RPC API, mainly to set up the run-time system state required by remote
procedure calls.

In the first category are the procedures written by the programmer to implement the client and
server operations of the remote procedure call. On the client side, these are simply local calls to
the stub interfaces for the remote procedures. On the server side, these are a set of manager
routines that implement the operations of the interface. In most applications, manager routines
are presumably a major part of the server code. Recall that, aside from requiring managers to
conform to the specified execution semantics and version behaviour, the RPC mechanism
imposes no specific constraints on manager implementations.

Part 2 RPC Application Programmer’s Interface 15

RPC Programming Model Overview Introduction to the RPC API

The programmer-written application code interacts with the RPC run-time system principally
through the stub. This makes run-time operations largely transparent to the application code.
Nevertheless, in order to control binding, security and other aspects of the RPC mechanism, the
application often needs direct access to run-time operations. The RPC API provides applications
with such access to the RPC run-time system and related services.

16 X/Open CAE Specification (1994)

Introduction to the RPC API API Operations

2.2 API Operations
The RPC API provides access to an extensive set of run-time operations. Section 2.11 on page 42
provides a detailed taxonomy of APIs according to the operations performed. This section offers
an overview, based on a somewhat broader set of categories.

• binding-related operations

• name service operations

• endpoint operations

• security operations

• stub memory management operations

• management operations

• UUID operations.

Subsequent sections of this chapter cover many of these groups of operations in detail.

2.2.1 Binding-related Operations

Binding-related operations establish a relationship between a client and server that makes
possible a remote procedure call. These operations may be roughly divided into two categories:

• operations to establish client/server communications using an appropriate protocol

• operations that establish internal call routing information for the server.

Operations in the first category include the creation of communications endpoints by the server
for the set of protocols over which it wishes to receive remote procedure calls. Servers typically
export information about the bindings thus created to a name service and an endpoint map.
Clients typically import such binding information from a name service and an endpoint map
(see Section 2.2.2 and Section 2.2.3).

Operations in the second category establish a set of mappings that the server can use to route
calls internally to the appropriate manager routine. This routing is based on the interface and
version, operation and any object requested by the call.

2.2.2 Name Service Operations

The RPC name service API includes an extensive set of operations for exporting and importing
binding information to and from name services. These operations make use of a set of RPC-
specific name service entry attributes to structure the exported binding information so that it can
easily be found and interpreted by clients.

2.2.3 Endpoint Operations

Servers listen for remote procedure call requests over one or more protocol-specific endpoints.
Typically, such endpoints are allocated dynamically when a server begins to listen, and their
lifetime is only a single server instantiation. RPC provides an endpoint mapper mechanism that
allows such volatile endpoint information to be maintained separately from the more stable
components of a binding. Typically, servers export stable binding information to a name service
and register their volatile endpoints with the local endpoint mapper. The endpoint mapper then
resolves endpoints for calls made on bindings that do not contain them.

Endpoint operations are used by servers to register their endpoints with the endpoint mapper.

Part 2 RPC Application Programmer’s Interface 17

API Operations Introduction to the RPC API

2.2.4 Security Operations

These operations establish the authentication, authorisation services and protection levels used
by remote procedure calls.

2.2.5 Stub Memory Management Operations

These operations are used by applications to manage stub memory. They are typically used by
RPC applications that pass pointer data.

2.2.6 Management Operations

Management operations include a variety of operations with the potential to affect applications
other than the one making the management call. Servers automatically export a set of remote
management functions.

2.2.7 UUID Operations

UUIDs (Universal Unique Identifiers) are used frequently by the RPC mechanism for a variety of
purposes. The UUID operations enable applications to manipulate UUIDs.

18 X/Open CAE Specification (1994)

Introduction to the RPC API Binding

2.3 Binding
Binding refers to the establishment of a relationship between a client and a server that permits
the client to make a remote procedure call to the server. In this document, the term ‘‘binding’’
usually refers specifically to a protocol relationship between a client and either the server host or
a specific endpoint on the server host, and ‘‘binding information’’ means the set of protocol and
addressing information required to establish such a binding. But, for a remote procedure call,
such a binding occurs in a context that involves other important elements, paralleling the notion
of a binding in a local procedure call. In order for an RPC to occur, a relationship must be
established that ties a specific procedure call on the client side with the manager code that it
invokes on the server side. This requires both the binding information itself and a number of
additional elements (see Figure 2-1 on page 20). The complete list is as follows:

1. a protocol sequence that identifies the RPC and underlying transport protocols

2. an RPC protocol version identifier

3. a transfer syntax identifier

4. a server host network address

5. an endpoint of a server instance on the host

6. an object UUID that can optionally be used for selection among servers and/or manager
routines

7. an interface UUID that identifies the interface to which the called routine belongs

8. an interface version number that defines compatibility between interface versions

9. an operation number that identifies a specific operation within the interface.

Part 2 RPC Application Programmer’s Interface 19

Binding Introduction to the RPC API

Protocol Sequence

Protocol Version

Transfer Syntax

Host Address

Endpoint

Object UUID

Operation Number

Interface UUID

Interface Version

Partial
Binding Full

Binding May Be Referred to
by Binding Handle

Binding Information

Other Information

Interface Identifier

Figure 2-1 Information Required to Complete an RPC

Note: The discussion in this chapter is intentionally vague about how any of this information
is communicated between client and server. The underlying RPC protocol packages
the required information for transmission. However, API usage is protocol-
independent, and this chapter provides a protocol-independent description of RPC.
Hence, this chapter typically refers to the binding information ‘‘contained’’ in a call
without specifying how such information is actually transmitted or received. This is
left to the RPC protocol specifications in Part 4, RPC Services and Protocols.

The binding information itself covers the first five elements of the list — the protocol and
address information required for RPC communications to occur between a client and server.

Figure 2-1 also shows the object UUID as part of the binding information. This is explained in
Section 2.3.1 on page 21.

In RPC terminology, such a binding can be partial or full. A partial binding is one that contains
the first four elements of the list, but lacks an endpoint. A full binding contains an endpoint as
well. The distinction is that a partial binding is sufficient to establish communications between a
client and a server host, whereas a full binding allows communications to a specific endpoint on
the server host.

20 X/Open CAE Specification (1994)

Introduction to the RPC API Binding

2.3.1 Binding Handles

The binding information required to make remote procedure calls is maintained by the client
and server run-time systems on behalf of applications. The run-time system provides
applications with opaque binding handles to refer to locally maintained binding information.
Applications use binding handles to manipulate bindings via calls to the RPC API.

It is important to understand that binding handles are only valid in the context of the local client
or server instance that created them. They are not used directly to communicate binding
information between servers and clients. Typically, servers advertise binding information by
exporting it to name service entries. When a client imports binding information from a name
service, it receives a binding handle from the client run-time system that refers to the local copy
of the imported binding information.

Note: On the server side, such a binding handle refers to the first five elements shown in
Figure 2-1 on page 20. On the client side, such a binding handle also refers to an object
UUID associated with the binding information. For this reason, the figure includes the
object UUID with the binding information even though it is not part of the protocol and
address information required to establish communications between the client and
server. The role of the object UUID is described in Interface and Manager Selection on
page 28.

2.3.1.1 Client and Server Binding Handles

Binding information may refer either to a server or a client. Most of the time, binding
information refers to servers, since it is servers to which clients need to bind in order to make
remote procedure calls. When a binding refers to a server, a binding handle for it is called a
server binding handle. Server binding handles are used both by clients and servers in the course of
the binding process.

In some cases, servers need binding information for clients that call them. A binding handle that
refers to such binding information is called a client binding handle. A small number of RPC APIs
take client binding handles as arguments.

2.3.1.2 Obtaining Binding Handles

Applications obtain server binding handles by calling any of several RPC API routines. (See
Section 3.1 on page 49 for a list of routines that return server binding handles.)

A server obtains a client binding handle as the first argument passed by the run-time system to a
server manager routine.

2.3.2 String Bindings

A string binding is a string representation of binding information, including an optional object
UUID. String bindings provide binding information in human-readable form. Applications can
use RPC API calls to request a string binding from the run-time system or convert a string
binding into a binding that the runtime system can use to make a remote procedure call. String
binding format is specified in Section 3.1 on page 49.

Part 2 RPC Application Programmer’s Interface 21

Binding Introduction to the RPC API

2.3.3 Binding Steps

In order to complete an RPC call, all of the elements listed in Figure 2-1 on page 20 must be
present. RPC divides the process of assembling these elements into several steps and organises
the assembled information in a way that provides maximum flexibility to the binding process.
To understand this, consider the opposite possibility: a binding mechanism that seeks to imitate
a local procedure call’s static binding to a local library routine. In this case, all the elements
would be preassembled into a well-known binding to which the calling program would bind in
an all-or-nothing fashion.

RPC is close to the other dynamic extreme. It purposely avoids creating static links among all
the elements so that a final routing — from the client procedure call to the server manager
routine invoked — can be dynamically determined at the time of the RPC. From the
programmer’s point of view, one of the principal differences between a local procedure call and
a remote procedure call is that the binding process — the way all these components are linked
together — occurs at run time and can be carried out, optionally, under application program
control.

This serves several purposes:

• It increases the location transparency of applications. Because clients do not need to know all
the binding information before a call is actually made, applications can run successfully on
systems with widely different configurations.

• It increases the maintainability of server installations because there are few a priori
restrictions on the locations of server resources.

• It increases the probability of success in the face of partial failures because applications can
look for bindings to servers in different locations and choose among a variety of RPC and
network protocols.

• It makes possible a variety of server resource models by allowing servers to organise and
advertise binding information in a variety of ways.

The binding process consists of a series of steps taken by the client and server to create, make
available and assemble all the necessary information, followed by the actual RPC, which creates
the final binding and routing using the elements established by the previous steps. To break the
process down in more detail:

• The server takes a series of steps that establish binding-related state for the server side of the
call.

• The server optionally exports binding information to a name service.

• The client takes a series of steps that establish binding-related state for the client side of the
call. Binding information used in this process may be imported from a name service.

• The client makes a call, which is able to invoke the correct operation in the server by making
use of the binding-related state established on the client and server sides.

Each of the components listed in Figure 2-1 on page 20 is involved at some stage of this process.
Some components are involved at more than one stage and may be used in more than one way.
The following sections consider each stage and component in some detail.

22 X/Open CAE Specification (1994)

Introduction to the RPC API Binding

2.3.3.1 Server Binding Steps

The server takes a number of steps to establish binding state in the server side run-time system,
the name service and the endpoint mapper. The server’s basic task is to acquire a set of
endpoints from the run time and set up a series of relationships among binding elements that
will then be used to construct the final routing at call time.

Figure 2-2 on page 24 shows the set of relationships that a server must establish to receive
remote procedure calls. As the figure indicates, these are maintained in several places:

• by the server run-time system

• in the stub and application code

• by the endpoint mapper

• by a name service.

foo Manager A

Operation 0

Operation 4

Operation 3

Operation 2

Operation 1

foo Manager B

Operation 0

Operation 4

Operation 3

Operation 2

Operation 1

Code for Interface foo

EPV A

EPV B

1. Define the EPV for each manager.

Maintained by Server Runtime

Binding
Information

Binding
Information

Binding
Handle

Endpoints

4. Get the bindings.

2. Register the Object UUID/Type UUID
 associations.

Object UUID

UUID 1 UUID A

UUID 2 UUID A

UUID 3 UUID B

UUID 4 UUID B

UUID 5 UUID B

Type UUID

3. Register the IF ID/Type UUID/EPV
 associations.

foo's IF ID UUID A

foo's IF ID UUID B

Binding
Handle

Binding
Handle

EPV A

EPV B

Stub and Application Code

Go to Step 5

Binding
Information

Part 2 RPC Application Programmer’s Interface 23

Binding Introduction to the RPC API

Partial Binding
Information

foo's IF ID

Object UUID 1

Partial Binding
Information

foo's IF ID

Partial Binding
Information

foo's IF ID

6. Export the binding information to a name
 service.

Name Service

Full Binding
Information

foo's IF ID

Object UUID 1

5. Export the endpoint information.

Endpoint Map

Full Binding
Information

Object UUID 4

Full Binding
Information

Object UUID 2

Full Binding
Information

Object UUID 5

Full Binding
Information

Object UUID 3

Object UUID 2

Object UUID 3

Object UUID 4

Object UUID 5

foo's IF ID foo's IF ID

foo's IF IDfoo's IF ID

Figure 2-2 Server Binding Relationships

The server takes several steps (some of them optional) to establish the necessary relationships,
as indicated in Figure 2-2. The steps are as follows:

1. The server application or stub code defines a manager Entry Point Vector (EPV) for each
manager that the server implements. Recall that a manager is a set of routines that
implements the operations of an interface. Recall also that servers may implement more
than one manager for an interface; for example, to provide for different versions or object
types. Each EPV is a vector of pointers to the operations of the manager. When an RPC
request arrives, the operation number is used to select an element from one of the manager

24 X/Open CAE Specification (1994)

Introduction to the RPC API Binding

EPVs.

2. The server registers a set of object UUID/type UUID associations with the RPC run-time
system.

3. The server registers interface identifier/type UUID/EPV associations with the RPC run-
time system. Together with the previous step, this establishes the mappings that permit
the run-time system to select the appropriate manager, based on the interface ID and any
object UUID contained in a call.

4. The server application tells the run-time system what protocol sequences to use, and the
run-time system establishes a set of endpoints for the protocol sequences requested. The
server may ask the run-time system for its bindings, and the run time will return a set of
binding handles that refer to the binding information for these endpoints.

5. The server may register binding information, consisting of a set of interface
identifier/binding information/object UUID tuples, with the endpoint mapper. For each
interface, the registered data consists of a cross product of the bindings and object UUIDs
that the server wants to associate with that interface. When a call is received with a partial
binding (that is, one lacking an endpoint) the endpoint mapper is able to use this
information to select an endpoint that is capable of handling the call.

6. The server may export binding information to one or more name service entries. The
information exported here looks quite similar to the information registered in the endpoint
map in the previous step, with one important difference. The binding information
exported to the name service generally lacks an endpoint, consisting of protocol and host
address information only. Therefore the name service contains only the most persistent
part of the binding information while the endpoint map contains the volatile endpoint
portion.

(The format is also different. See Section 2.4 on page 31 for information about the format of
server entries.)

Note that not all of these steps are required. Servers may construct their own bindings, by using
string bindings, rather than request them from the run-time system as described in step 4.
Servers may also avoid exporting binding information to a name service and endpoint map as
described in steps 5 and 6. In such a case, clients must then construct bindings from string
bindings obtained by some other means.

Having completed the required steps, the server has established a set of relationships that allows
the server run-time system to construct a complete binding, with routing to a specific server
operation, for a call that contains the following information:

• full or partial binding information

• an interface identifier

• an object UUID, which may be nil

• an operation number.

The algorithms used are described in some detail in Section 2.4.5 on page 34. That discussion
will show how the relationships established make possible a large number of paths to the
interface and manager that are ultimately selected.

Note that the server run-time enironment itself maintains only a very limited set of
relationships: interface identifier/type UUID/manager EPV and object UUIDs/type UUIDs. It is
especially worth noting that the run-time system maintains no relationships between the
protocol-address bindings it has created and any of the other information. The server merely

Part 2 RPC Application Programmer’s Interface 25

Binding Introduction to the RPC API

advertises the relationships it wants to export in a name service and registers them in the
endpoint map.

When the exported information is used by clients to find the server, client calls arriving at the
server endpoints should contain interface identifier/object UUID pairs that the server can, in
fact, service, although the RPC mechanism itself can provide no guarantee of this. This means
that name service operations, while they are not, strictly speaking, a required part of an RPC call,
usually play an important role in constructing bindings. Section 2.6 on page 38 shows how this
makes the name service a key element in the organisation of server resources.

The indirect mapping from object UUID to type UUID to EPV (and hence to the manager called)
also gives the server great flexibility in organising its resources based on objects UUIDs. This is
explained in Section 2.6 on page 38.

2.3.3.2 Client Binding Steps

The client binding steps are considerably simpler than those taken by the server. The basic task
of the client is to find a suitable binding and use it to make a call, as described in the following
steps.

Note: The following steps outline the explicit binding method. Client application code can
avoid explicitly having to carry out step 1 by using the automatic binding method. In this
case, the stub code takes care of importing suitable bindings. In step 2, clients can
avoid having to supply an explicit binding handle for each call by choosing either the
automatic or the implicit binding method. Binding methods are described in Section
2.3.3 on page 22 and Chapter 4.

1. Clients get suitable bindings by importing them from a name service. (Clients may also
construct suitable bindings from binding information otherwise known to them, but here
we describe the more general mechanism.)

To make a call, the client needs a compatible binding: that is, one that offers the interface
and version desired, uses a mutually supported protocol sequence, and if requested, is
associated with a specific object UUID.

Clients find compatible bindings by making calls to RPC API routines that search the name
service. Recall that a name service entry binding attribute stores a set of associations
between interface IDs and binding information. The client needs to find an element that
specifies the desired interface and an acceptable protocol sequence and import the binding
information from that element.

Typically, the client specifies the interface desired, and the run-time system takes
responsibility for finding bindings with protocol sequences that it can use. The client may
also further select a specific protocol sequence.

The client’s selection of a binding may also depend on an object UUID. Recall that each
name service entry may also store a set of object UUIDs. If the client requires a specific
object UUID, it imports bindings only from name service entries that store that object
UUID.

For each binding that the client imports, the run-time system provides a server binding
handle that refers to the binding information maintained by the client run-time system.
This differs somewhat from the binding information referred to by a server binding handle
on the server side. Recall that on the server, a server binding handle refers to a
combination of protocol sequence and server address information. On the client side, a
server binding handle may additionally refer to an object UUID, if the client has selected its
bindings by object UUID.

26 X/Open CAE Specification (1994)

Introduction to the RPC API Binding

2. Once the client has found a compatible binding, it makes a call using the binding handle
for that binding. Depending on the binding method chosen, the client application code
may supply the binding handle explicitly or it may leave this to the stub code (see Section
2.3.3 on page 22 and Chapter 4). When the call is made, the client run-time system has
available to it the binding information and any object UUID referred to by the binding
handle. Also available in the stub code are the interface identifier of the interface on which
the call was made, and the operation number of the routine being called. Recall that the
last three items of this tuple of information — the object UUID/interface
identifier/operation number — are precisely what the server needs to route the call to a
specific manager operation.

2.3.3.3 Call Routing Algorithms

Once the server and client have taken all the necessary steps to set up server and client side
relationships, the call mechanism can use them to construct a complete binding and call routing
when the call is made. This section specifies the algorithms used. In following these algorithms,
it may be useful to refer to Figure 2-2 on page 24 to see how each of the relationships described
there is used.

Endpoint Selection

When the client makes a call with a binding that lacks an endpoint, the endpoint is acquired
from the endpoint mapper on the target host. The endpoint mapper finds a suitable endpoint by
searching the local endpoint map for a binding that provides the requested interface UUID, and
if requested, object UUID. The flowchart in Figure 2-3 on page 28 shows the algorithm.

Part 2 RPC Application Programmer’s Interface 27

Binding Introduction to the RPC API

Yes

No

No

Yes

No

No Yes

Insert endpoint
into

server binding
information

Endpoint
lookup

fails

Yes

Non-nil
object UUID

and interface UUID
registered
together

?

Call
asking for

non-nil
Object UUID

?

Interface
UUID

registered
(with nil object

UUID)
?

Other
mapping

information
compatible

?

Figure 2-3 Decisions in Looking Up an Endpoint

What is important to note in this algorithm is that the interface and protocol information must
match to find an endpoint, but an object UUID match may not be required. A server can provide
a default UUID match by registering the nil UUID. Calls with a nil or unmatched object UUID
follow the default path.

The endpoint map permits multiple endpoints to be registered with identical interface, protocol
and object UUID information. Such endpoints are assumed to be interchangeable, and the
endpoint mapper selects among them using an implementation-dependent algorithm.

Interface and Manager Selection

Having selected an endpoint, a call can be routed to one of the endpoints being used by a
compatible server instance. The server can unambiguously select the correct interface and
operation by using the interface identifier and operation number contained in the call. A call’s
interface identifier matches an interface identifier registered by the server when the interface
UUIDs and major version numbers are equal and the call’s minor version number is less than or
equal to the minor version number registered by the server.

28 X/Open CAE Specification (1994)

Introduction to the RPC API Binding

Recall, however, that the RPC mechanism makes it possible for a server to implement multiple
managers for an interface. Hence it may be necessary to select the correct manager. Manager
selection is based on the object UUID contained in the call. The selection mechanism depends on
two of the relationships established by the server: the object UUID/type UUID mapping and the
interface ID/type UUID/manager UUID mapping. The flowchart in Figure 2-4 shows the
selection algorithm.

Legend:

= The default decision path.

Yes

No Yes

No No

Yes

Dispatch call
to

appropriate
non-nil type

manager

Reject Call

Dispatch call
to

nil type
manager

Yes

No
Non-nil

type UUID
set for
object

?

Call
asking for

non-nil
Object UUID

?

Manager
registered for

nil
type UUID

?

Manager
registered with
same non-nil
type UUID

?

Figure 2-4 Decisions for Selecting a Manager

Here the server provides a default path by registering a default manager for the nil type UUID.
Calls containing the nil object UUID, or any UUID for which the server has not set another type
UUID, will be directed to the default manager.

Part 2 RPC Application Programmer’s Interface 29

Binding Introduction to the RPC API

Dispatching via the Manager EPV

Once the manager is selected, the call is dispatched via the selected manager EPV. Recall that a
manager EPV is a vector of pointers to manager routines, one for each operation of the interface.
The operation number is used to select the appropriate routine.

The actual call — via the manager EPV — to the server manager code is made by the server stub.
Up to this point, the binding discussion has deliberately avoided questions of implementation.
The run-time system maintains a set of relationships logically required by the binding
algorithms, but the way in which these are implemented is entirely outside the purview of this
document. The case of the manager EPV is different, however. The manager EPV is an
interface-specific data structure that must be declared by server code. The stub normally
declares a default manager EPV, but when there is more than one manager for an interface, the
application code must declare further manager EPVs. Section 3.1 on page 49 shows how to
construct the appropriate declaration.

2.3.4 Binding Methods

Client applications can exercise varying degrees of control over the binding process outlined in
Section 2.3.3.2 on page 26.

• Using the explicit binding method, the client specifies a binding handle as an explicit
parameter of each RPC. With this method, the client may choose a specific binding as often
as once per call. The client carries out step 1, as described in Section 2.3.3.2 on page 26, as
often as necessary to create the bindings it requires.

• Using implicit binding, the client specifies a binding handle globally for an interface, and the
client stub automatically supplies the global binding for each call made on the interface.
Using this method, the client needs to carry out step 1 only once per interface.

• Using automatic binding, the client allows the stub to import suitable bindings for it
automatically. Using this method, the client does not carry out step 1, and does not supply a
binding handle when making a call.

The automatic and implicit binding methods are interface wide and thus mutually exclusive.
The explicit binding method may be specified per call and takes precedence over implicit or
automatic binding specified for an interface.

Clients applications choose a binding method for an interface by specifying an ACS binding
attribute, as documented in Chapter 4.

30 X/Open CAE Specification (1994)

Introduction to the RPC API Name Service Interface

2.4 Name Service Interface
The RPC API provides an extensive name service interface that applications use to export and
import binding information. In general, name services can support much broader usage, but the
RPC API is designed to support the RPC binding mechanism, rather than as a generalised name
service interface. The following sections describe those aspects of name services that are
relevant to the name service interface and binding.

The name service interface is designed to be independent of the underlying name service.
Hence, it is referred to as the Name Service-independent (NSI) interface. As far as possible, these
sections describe the name service interface without reference to any specific underlying name
service. However, applications using the name service interface need to pass name service-
specific names to the interface and therefore must be aware of the details of naming for the
underlying services. These issues are discussed in Section 2.4.2 on page 32.

2.4.1 Name Service Model

The name service interface is designed to allow servers to export binding information, and
clients to find it, in an efficient manner. The interface permits servers to organise their binding
information in a variety of ways. These support the server resource models described in Section
2.6 on page 38.

The name service interface makes two general assumptions about the underlying name service:

• The name service maintains a namespace database, the entries of which are accessible via
names with some name service-specific syntax.

• The name service leaf entries can support a set of RPC-specific attributes that the name
service interface uses when it exports, searches for and imports binding information.

The name service interface is used to store associations between bindings, interfaces and objects
in name service entries. For each interface offered by a server, the server exports a set of
protocol towers to the name service. A protocol tower combines binding information (not
including an object UUID) for a single binding with an interface identifier. The set of protocol
towers exported for an interface thus represents available bindings to the server for that
interface. Servers can also export sets of object UUIDs associated with arbitrary resources they
offer. The binding information exported by servers may be organised in a number of name
service entries. The API makes use of several entry attributes, as described in Section 2.4.3 on
page 32, to store binding-related information.

Clients make name service API calls to search for suitable bindings, specifying the interface and,
possibly, any object UUID they are interested in, as well as a starting point for the search. The
name service search operations search name service entries and return bindings that are
compatible with the requirements of the client.

A client search of the namespace beginning at a given entry follows a path through name service
entries determined by the algorithm given in Section 2.4.5 on page 34. The name service
interface permits applications to define prioritised paths through the namespace, including
default paths. Default paths make it possible to minimise the amount of knowledge about the
namespace required by a client to begin searching for bindings.

Part 2 RPC Application Programmer’s Interface 31

Name Service Interface Introduction to the RPC API

2.4.2 Name Syntax Tags

The name service interface maintains its name service independence by using name syntax tags.
Each interface that takes an entry name argument also takes an entry name syntax tag argument
that indicates which name service syntax is to be used to interpret the name. Supported values
for this argument are specified in Appendix C.

RPC ISO C implementations provide an RPC_DEFAULT_ENTRY_SYNTAX environment
variable that specifies a default entry name syntax tag.

2.4.3 Name Service Attributes

The name service interface defines four RPC-specific name service attributes. These are as
follows:

Binding Attribute The binding attribute stores a set of protocol towers. An entry with the
binding attribute is known as a server entry.

Group Attribute The group attribute stores a set of entry names of the members of a single
group. An entry with the group attribute is known as a group entry.

Profile Attribute The profile attribute stores a set of profile elements. An entry with the
profile attribute is known as a profile entry.

Object Attribute The object attribute stores a set of object UUIDs.

While the name service interface does not impose any explicit restrictions on the use of these
entries (there are no enforced schema), the name service model is designed to support
applications that structure their name service entries according to the following recommended
rules:

• Applications should create distinct binding, group and profile entries. While any name
service entry can contain any combination of the four name service entry attributes,
applications should not place binding, group and profile attributes in the same entry. The
object attribute should appear only in server and group entries.

• Each server entry must contain information about only one server instance.

• Each group entry should contain information about only one interface and its versions, or
one object, or one set of interchangeable server instances.

The following sections describe the contents of the entry types in detail.

2.4.3.1 Server Entries

Server entries contain bindings for a single server. Server entries may also contain an object
attribute that specifies a set of object UUIDs associated with the server.

The binding attribute in a server entry stores a set of protocol towers. Recall that a protocol
tower consists of an interface identifier along with binding information. Typically, the binding
information lacks an endpoint so that the information represents a partial binding.

The information stored by the binding attribute does not include object UUIDs. Instead, when a
server wishes to associate object UUIDs with the bindings stored in a server entry, it exports
them to an object attribute in that entry. As described in Interface and Manager Selection on
page 28, object UUIDs may be used to map calls to object-specific type managers, but servers
may also use object UUIDs to identify any arbitrary server resource. When clients import
bindings, they can specify object UUIDs so as to import bindings only for servers that provide a
required resource. This usage of object UUIDs plays an important role in the server resource
models described in Section 2.6 on page 38.

32 X/Open CAE Specification (1994)

Introduction to the RPC API Name Service Interface

2.4.3.2 Group Entries

A group entry contains names of one or more server entries, other groups or both. A group
provides a way to organise the server entries of different servers that offer a common RPC
interface or object. Since a group can contain group names, groups can be nested. Each server
entry or group named in a group is a member of the group. A group’s members should offer one
or more RPC interfaces, objects or both in common.

2.4.3.3 Profiles

A profile is an entry that contains a prioritised set of profile elements. A profile element is a
database record that corresponds to a single RPC interface and that refers to a server entry,
group or profile. Each profile element contains the following information:

• Interface Identifier

This field is the search key for the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

• Member Name

The entry name of one of the following kinds of name service entries:

— a server entry for a server offering the requested RPC interface

— a group corresponding to the requested RPC interface

— a profile.

• Priority Value

The priority value is used by NSI operations to determine the order in which elements are
searched. The search algorithm described in Section 2.4.5 on page 34 specifies how these
values are used. Priority values range from 0, which is the highest priority, to 7, which is the
lowest.

• Annotation String

The annotation string is textual information used to identify the profile. It is not used by NSI
search operations but can provide valuable information to namespace and server
administrators.

Additionally, a profile can contain at most one default profile element. A default profile element is
the element that a name service search operation uses when a search using the other elements of
a profile finds no compatible binding information. A default profile is a profile referenced by a
default profile element. Default profiles are typically used as an administrative device to
optimise clients’ searches for compatible bindings.

2.4.4 Binding Searches

Routines to extract information from a name service are present in the API in suites of three.
Each suite includes:

• a begin routine

• a next routine

• a done routine.

In general, applications use these suites as follows:

Part 2 RPC Application Programmer’s Interface 33

Name Service Interface Introduction to the RPC API

1. The application obtains a name service handle by calling the begin routine. RPC Name
Service routines use name service handles to refer to search state information maintained
by the run-time system. The data type declaration for these handles is described in Section
3.1 on page 49.

2. The application calls the next routine one or more times using the handle obtained in step
1. Each call returns another element, or set of elements, along the path being searched.

3. The application calls the done routine using the handle obtained in step 1 to terminate the
search.

The begin routine returns a handle used by a subsequent series of search operations. The handle
refers to information maintained by the run-time system about the search, including search
context information — such as matching criteria — and information about the current state of
the search. Each call to the begin routine returns a handle that maintains the context for a distinct
series of subsequent search operations.

The next routine returns elements, or sets of elements, one by one along the path being searched.
The application calls this routine one or more times with a handle obtained from the begin
routine. Each call returns another element or a status code that indicates that no more elements
remain. Calls to the next routine using the same handle form part of one series of search
operations along a search path. Calls to the next routine using different handles pertain to
distinct and independent searches.

The done routine frees the search context referred to by the handle and invalidates the handle.

2.4.5 Search Algorithm

The name service search operations traverse a path through one or more entries in the name
service database when searching for compatible binding information. The path taken by any
name service search, beginning at a given entry, depends on the organisation of binding
information using the various name service entry attributes. This section describes the
algorithm used by name service searches to determine what steps to take at each traversed
entry.

In each name service entry, searches ignore non-RPC attributes and process the name service
entry attributes in the following order:

1. the binding attribute (and object attribute, if present)

2. the group attribute

3. the profile attribute.

If a search path includes a group attribute, the search path can encompass every entry named as
a group member. If a search path includes a profile attribute, the search path can encompass
every entry named as the member of a profile element that contains the target interface
identifier.

The following pseudocode presents the algorithm for retrieving bindings from a namespace.
This describes the order in which bindings are returned by the routines
rpc_ns_binding_import_done () and rpc_ns_binding_lookup_next ().

In the pseudocode, each entryName, group member and profile element represent names that
may be found in the namespace. Associated with each of these entries in the namespace may be
any of the eight possible combinations of the binding, group and/or profile attributes.

The order in which bindings are returned is significant and is indicated in the algorithm. This
algorithm only indicates the order of search. Local buffering constraints may cause the search to

34 X/Open CAE Specification (1994)

Introduction to the RPC API Name Service Interface

be interrupted and resumed.

Procedure GetBindings (someName) {
/* "someName" represents the name of an entry in the namespace. */

/* The following procedure recursively searches for bindings */
Procedure Search(entryName)

{
Check entryName for binding attribute;
If (binding attribute found)

{
Retrieve bindings from binding attribute;
Randomise the bindings obtained from this attribute;
Add these bindings to the bottom of the global list of bindings;

}

Check entryName for group attribute;
If (group attribute found)

{
Retrieve members from group attribute and save in a list;
Randomise the members in this list;
Do

{
Select the first member and remove from the list;
/* */
/* Cycle checking requires knowledge of other */
/* names referenced within the scope of a call */
/* to GetBindings. */
/* */
Check for a cycle;
If (not a cycle)

{
If (member selected exists)

{
Search (member selected);

}
}

}
Until (list of members is empty);

}

Check entryName for profile attribute;
If (profile attribute found)

{
Retrieve elements from profile attribute and save in a list;
Sort profile elements in list by priority, highest first;
Randomise the profile elements within each priority;
Do

{
Select the first profile element and remove from the list;
/* */
/* Cycle checking requires knowledge of other */
/* names referenced within the scope of a call */
/* to GetBindings. */
/* */
Check for a cycle;
If (not a cycle)

{
If (element selected exists)

Part 2 RPC Application Programmer’s Interface 35

Name Service Interface Introduction to the RPC API

{
Search (element selected);

}
}

}
Until (list of profile elements is empty);

}
}

/* This is the body of the main routine starting the search */

Initialize a global ordered list of bindings to empty;
Search (someName);
return ordered list of bindings;

}

2.4.6 Name Service Caching

Name service interface operations may cache name service data to avoid unnecessary lookups in
the name service database. Whether caching occurs is implementation-dependent, but it is
expected that most implementations will use caching. For implementations that cache, this
document specifies the semantics of caching to be governed by an expiration age as follows.
Cached name service data is given an expiration age when it is cached. Name service interface
operations use the cached copy when it has not outlived its expiration age. When a name
service interface operation refers to cached data that has outlived its expiration age, the data is
looked up in the name service database and the cache is updated.

The RPC run-time system sets the expiration age to a default value. Applications can specify
another value either globally for the application or for a specific name service handle. The global
value applies, by default, to all name service operations performed by the application. A
handle-specific value applies only to operations performed using a specific name service handle.

When an application changes its global expiration age, or even the expiration age for a single
handle, the effects may not be entirely confined to the application itself. Frequent updates of
name service cache data may affect the performance of other clients of the name service and
applications sharing the same cache. For this reason, operations that affect expiration age are
considered to be management operations.

A non-caching implementation may be considered as a degenerate case of a caching
implementation that behaves as if every cache item had outlived its expiration age.

36 X/Open CAE Specification (1994)

Introduction to the RPC API Server Model

2.5 Server Model
The RPC model is server-centred in the sense that RPC provides many facilities to support
varied and powerful server implementations, often with relatively little programming effort.
These include:

• support for multiple interfaces, versions, objects and managers, as described in Section 2.3 on
page 19

• automatic server concurrency and request buffering

• support for remote management.

2.5.1 Server Concurrency and Request Buffering

The RPC design assumes that servers export resources that may be widely available and
possibly in high demand. The RPC model therefore provides for automatic concurrent service
and buffering of RPC requests.

RPC provides server concurrency without requiring application code to spawn additional
threads or processes explicitly. When beginning to listen for a call, the server application
requests a number of call threads, and the RPC run-time system automatically provides the
requested threads, up to an implementation-defined limit. Applications that request more than
one call thread must, however, implement manager routines in a thread-safe manner.

Implementations may also allow additional requests that cannot be executed concurrently to be
queued for subsequent execution. Otherwise they are rejected. Applications may make buffer
size requests when registering a protocol sequence, although the actual buffer size provided is
implementation-dependent.

2.5.2 Management Interface

Servers automatically implement, in addition to the interfaces specified by the programmer, a set
of remote management interfaces that can be used for such operations as making remote
inquiries to and stopping servers. These are accessible, both locally and remotely, via
management RPC routines.

Part 2 RPC Application Programmer’s Interface 37

Server Resource Models Introduction to the RPC API

2.6 Server Resource Models
The RPC API gives programs a high degree of control of the process by which bindings are
constructed, component by component. This allows programs to specify the precise service
required by any given instance of a remote procedure call. At the same time, the name service
interface permits applications to structure binding information stored by a name service in a
variety of ways. Together, these capabilities are the basis for a variety of strategies for organising
server resources, based on the way the components of a binding are made available by a server.

The RPC API does not require server resources to be organised in any specific way; it simply
provides facilities that permit a variety of forms of organisation. The resource models outlined
here are only conventions. However, this document recommends following these conventions.
Servers provide resources that may be widely available, and they make use of a common
resource — the name services — to advertise their bindings. Organising server resources
according to well-defined conventions makes it easier to construct clients that can find the
resources they need.

This document recommends three basic server resource models:

• the server-oriented model

• the service-oriented model

• the object-oriented model.

These models are not mutually exclusive.

2.6.1 The Server-Oriented Model

In the server-oriented model, it is the server that is of interest to clients looking for bindings. In
the simplest case, each server exports its bindings to one server entry and clients can go directly
to a server entry to find bindings. Server instances may be interchangeable if they are running on
the same host and offer the same interfaces and objects. Entries for interchangeable server
instances may be organised as a group, and clients may begin their binding searches at the group
entry.

2.6.2 The Service-Oriented Model

In the service-oriented model, clients are interested in some service, as defined by an interface
(and its versions). The interface may be exported by more than one server, and server entries for
servers that export a given interface may be organised in the same group. However, client
applications seeking services normally do not have knowledge of the local namespace that will
lead them directly to the required group entry. Typically, such clients use profiles to find the
local instantiations of services they want.

2.6.3 The Object-Oriented Model

In the object-oriented model, a server associates some resource that it offers with an object
UUID. Several servers may offer the same interface but different objects. Each server then
exports the object UUIDs it offers to one or more separate server entries.

In order to make object UUIDs available to clients seeking a specific object, servers offering an
object typically export object UUIDs to a group entry for that object. The group entry name is
thus effectively associated with the object. Clients seeking a specific object can begin by
importing an object UUID from the group entry for the object. The client then imports bindings
for the object and interface it wants, beginning its search with the object entry.

38 X/Open CAE Specification (1994)

Introduction to the RPC API Server Resource Models

Servers that export object UUIDs may or may not explicitly map these to type managers. In the
simplest case, the server only registers an interface with a nil type UUID, causing all calls on the
interface to be handled by the default manager. In this case, the association between object UUID
and resource exists only in the namespace, and the server must assume that a client interested in
a given object has, in fact, imported its binding correctly. On the other hand, servers may use
object/type mappings to dispatch calls precisely according to object UUID. (See Section 2.3.3 on
page 22 for the details of the mappings and selection algorithm.)

2.7 Security
The RPC API provides a small number of interfaces that applications can use to set the
authentication and authorisation services and the protection levels used by remote procedure
calls. Servers that want to use authenticated RPC register a set of server principal
name/authentication service pairs with the run-time system. To make an authenticated call, a client
associates security information with a binding on which it is going to call, including a server
principal name and authentication, authorisation and protection-level information.

Once the required authentication state is set, authentication and protection are carried out
transparently by the RPC run-time system, using the specified services. If the server principal
name and authentication service specified by the client do not match a pair registered by the
server, the call fails. A server can specify a non-default authentication key retrieval function, but
is not otherwise required (or allowed) to implement any of the authentication mechanism.

If the authentication requested is successful, the server manager routine can retrieve the caller’s
authentication, authorisation and protection-level information from the run-time system. Since
the server may have registered more than one principal name/authentication service pair, the
application code may still want to make an authentication decision at this point.

The server manager code also makes authorisation decisions based on the authorisation
information it retrieves from the run-time system. The server is free to use this authorisation
information to make whatever authorisation decisions are appropriate for the application.

The RPC security-related API is designed to be independent of any specific authentication and
authorisation services. Servers and clients specify the required services via parameters to the
authentication-related calls. The run-time system carries out authentication using the requested
authentication service, passes authorisation service-specific authorisation information with the
call, and provides protection that corresponds (in a service specific way) to the requested
protection level. Supported values for the authorisation, authentication and protection-level
parameters are specified in Appendix D.

Part 2 RPC Application Programmer’s Interface 39

Error Handling Introduction to the RPC API

2.8 Error Handling
The RPC API provides a consistent error handling mechanism for all routines. Each routine
includes a status output argument, which is used to return error status codes. These codes may
be passed to the dce_error_inq_text() routine to extract error message text from a message
catalogue. (See dce_error_inq_text() on page 624.)

RPC calls return protocol and run-time error status codes through fault_status and
comm_status parameters, as described in Chapter 4. These status codes are consistent with the
status codes returned from the RPC API and may be passed to dce_error_inq_text() to obtain
error message text.

The status codes documented in this document must be supported by all implementations.
Implementations may support additional status codes, but these are not required.

2.9 Cancel Notification
RPC provides a remote cancel notification mechanism that can forward asynchronous cancel
notifications to servers. When a client thread receives a cancel notification during an RPC, the
run-time environment forwards the notification to the server. When the server run-time system
receives the forwarded notification, it attempts to notify the server application thread that is
handling the call. This can result in one of three outcomes for the RPC call on the client side:

1. If the notification is delivered to and handled by the server application thread, the RPC
returns normally to the client.

2. If the server run-time system is unable to deliver the notification to the server application
thread (for example, because the server application is blocking notifications), the
notification is returned to the client run-time system. The RPC returns normally to the
client, and the client run-time system attempts to deliver the notification to the client
application thread. The client application code may then handle the notification.

3. If the notification is delivered to the server application thread, but the server application
code fails to handle it, the RPC returns to the client with a fault status.

Client applications may want to avoid waiting an indeterminate amount of time before a
cancelled call returns. The RPC mechanism therefore allows client applications to specify a
cancel time-out period. If a cancel occurs during an RPC, and the cancel time-out period expires
before the call returns, the call returns to the client with a fault status. Such a call is said to be
orphaned at the server. An orphaned call may continue to execute in the server, but it cannot
return to the client.

40 X/Open CAE Specification (1994)

Introduction to the RPC API Stubs

2.10 Stubs
While stubs are generally transparent to the application code, applications may need to be aware
of certain stub characteristics:

• IDL to stub data type mappings

• manager EPVs

• interface handles

• stub memory management.

This version of this document specifies C-language stub bindings only.

2.10.1 IDL to Stub Data Type Mappings

Stubs generated from the IDL specification of an interface contain language-specific bindings for
the interface operations. Client calls to remote procedures, and the server operations that
implement these procedures, must conform to the bindings defined by the stubs. Therefore,
applications must be aware of the mappings from the IDL data types that appear in an interface
specification to the data types that appear in the stub declarations.

The C-language mappings are specified in Appendix F. As specified there, stubs use defined
types rather than primitive C-language types in declarations. Applications should use these
defined types to ensure that their type declarations are consistent with those of the stubs, even
when the application is ported to a different platform.

2.10.2 Manager EPVs

Stubs may contain a default manager EPV as described in Section 3.1 on page 49 Applications
that declare additional nondefault manager EPVs must avoid the default name.

2.10.3 Interface Handles

Each stub declares an interface handle, which is a reference to interface specific information that
is required by certain RPC APIs. (See Section 3.1 on page 49 for an explanation of how
applications can access the declared interface handle.)

2.10.4 Stub Memory Management

RPC attempts to extend local procedure call parameter memory management semantics to a
situation in which the calling and called procedure no longer share the same memory space. In
effect, parameter memory has to be allocated twice, once on the client side, once on the server
side. Stubs do as much of the extra allocation work as possible so that the complexities of
parameter allocation are transparent to applications. In some cases, however, applications may
have to manage parameter memory in a way that differs from the usual local procedure call
semantics. This typically occurs in applications that pass pointer parameters that change value
during the course of the call. Detailed rules for stub memory management by applications are
given in Chapter 5 and Section 5.1.1.1 on page 280.

Part 2 RPC Application Programmer’s Interface 41

RPC API Routine Taxonomy Introduction to the RPC API

2.11 RPC API Routine Taxonomy
The following sections summarise the RPC API routines, classifying them according to the kinds
of functions they perform.

Note: Implementations of the RPC API must be synchronous cancel-safe (in the context of
POSIX threads). Implementations of the RPC API need not be asynchronous cancel-
safe. Multi-threaded implementations must be thread-safe.

2.11.1 Binding Operations

The routines in this group manipulate binding information. Most of these routines use binding
handle parameters to refer to the underlying binding information. The string binding routines
provide a way to manipulate binding information directly in string format.

A number of routines from the Object Operations and the Authentication and Authorisation
groups also manipulate the information referenced by binding handles.

rpc_binding_copy () Returns a binding handle that references a new copy of
binding information.

rpc_binding_free() Releases a binding handle and referenced binding
information resources.

rpc_binding_from_string_binding () Returns a binding handle from a string representation of a
binding handle.

rpc_binding_reset() Resets a server binding so the host remains specified, but
the server instance on that host is unspecified.

rpc_binding_server_from_client () Converts a client binding handle to a server binding handle.

rpc_binding_to_string_binding () Returns a string representation of a binding handle.

rpc_binding_vector_free () Frees the memory used to store a vector of binding handles
and the referenced binding information.

rpc_server_inq_bindings() Returns binding handles for RPC communications.

rpc_string_binding_compose () Combines the components of a string binding into a string
binding.

rpc_string_binding_parse () Returns, as separate strings, the components of a string
binding.

2.11.2 Interface Operations

The routines in this group manipulate interface information. Many of these routines take
interface handle arguments. These handles are declared by stubs to reference the stubs’ interface
specifications. The routine rpc_server_register_if() is used to establish a server’s mapping of
interface identifiers, type UUIDs and manager EPVs. The routine rpc_if_inq_id () can be used to
return the interface identifier (interface UUID and version numbers) from an interface
specification.

rpc_if_id_vector_free () Frees the memory used to store a vector and the interface
identifier structures it contains.

rpc_if_inq_id () Returns the interface identifier for an interface specification.

rpc_server_inq_if() Returns the manager entry point vector registered for an
interface.

42 X/Open CAE Specification (1994)

Introduction to the RPC API RPC API Routine Taxonomy

rpc_server_register_if() Registers an interface with the RPC run-time system.

rpc_server_unregister_if() Unregisters an interface from the RPC run-time system.

2.11.3 Protocol Sequence Operations

The routines in this group deal with protocol sequences. The various server_use* routines are
used by servers to tell the run-time system which protocol sequences to use to receive remote
procedure calls. After calling one of these routines, the server calls rpc_server_inq_bindings() to
get binding handles for all the protocol sequences on which it is listening for calls.

rpc_network_inq_protseqs() Returns all protocol sequences supported by both the RPC
run-time system and the operating system.

rpc_network_is_protseq_valid () Tells whether the specified protocol sequence is valid and
supported by both the RPC run-time system and the
operating system.

rpc_protseq_vector_free() Frees the memory used by a vector and its protocol
sequences.

rpc_server_use_all_protseqs() Tells the RPC run-time system to use all supported protocol
sequences for receiving remote procedure calls.

rpc_server_use_all_protseqs() Tells the RPC run-time system to use all the protocol
sequences and endpoints specified in the interface
specification for receiving remote procedure calls.

rpc_server_use_protseq() Tells the RPC run-time system to use the specified protocol
sequence for receiving remote procedure calls.

rpc_server_use_protseq_ep() Tells the RPC run-time system to use the specified protocol
sequence combined with the specified endpoint for
receiving remote procedure calls.

rpc_server_use_protseq_if() Tells the RPC run-time system to use the specified protocol
sequence combined with the endpoints in the specified
interface specification for receiving remote procedure calls.

2.11.4 Local Endpoint Operations

The routines in this group manipulate information in an application host’s local endpoint map.
These include the routines that servers typically use to register and unregister their binding
information in the local endpoint map. A set of endpoint management routines is also available
for more general manipulation of local and remote endpoint maps.

rpc_ep_register() Adds to, or replaces, server address information in the local
endpoint map.

rpc_ep_register_no_replace() Adds to server address information in the local endpoint
map.

rpc_ep_resolve_binding () Resolves a partially bound server binding handle into a
fully bound server binding handle.

rpc_ep_unregister() Removes server address information from the local
endpoint map.

Part 2 RPC Application Programmer’s Interface 43

RPC API Routine Taxonomy Introduction to the RPC API

2.11.5 Object Operations

The routines in this group manipulate object related information. Servers use
rpc_object_set_type() to establish their object UUID/type UUID mappings. Clients typically
specify the object UUID they wish to associate with a binding when they import bindings from a
name service. However, clients can use rpc_binding_set_object () to associate a different object
UUID with a binding. Servers can use rpc_object_set_inq_fn () to establish private object
UUID/type UUID mappings.

rpc_object_inq_type () Returns the type of an object.

rpc_object_set_inq_fn () Registers an object inquiry function.

rpc_object_set_type() Assigns the type of an object.

rpc_binding_inq_object () Returns the object UUID from a binding handle.

rpc_binding_set_object () Sets the object UUID value into a server binding handle.

2.11.6 Name Service Interface Operations

The routines of this group constitute most of the RPC name service independent interface (NSI).
A group of name service management routines is also available. The NSI routines are divided
into several subcategories according to groups of functions.

2.11.6.1 NSI Binding Operations

Applications use the routines in this subgroup to the export and import bindings to and from
name service server entries. These include two suites of begin/next/done routines that
applications can use to import bindings.

rpc_ns_binding_export () Exports server binding information to a name service entry.

rpc_ns_binding_import_begin () Creates an import context for importing bindings from a
name service.

rpc_ns_binding_import_done () Deletes a name service import context.

rpc_ns_binding_import_done () Returns a binding handle for a compatible server from a
name service.

rpc_ns_binding_inq_entry_name() Returns the name of an entry in the name service database
from which the binding information referenced by a server
binding handle came.

rpc_ns_binding_lookup_begin () Creates a lookup context for importing bindings from a
name service.

rpc_ns_binding_lookup_done () Deletes a name service lookup context.

rpc_ns_binding_lookup_next () Returns a vector of binding handles for compatible bindings
from a name service.

rpc_ns_binding_select() Returns a binding handle from a vector of compatible server
binding handles.

rpc_ns_binding_unexport() Removes binding information from an entry in a name
service database.

44 X/Open CAE Specification (1994)

Introduction to the RPC API RPC API Routine Taxonomy

2.11.6.2 NSI Entry Operations

Applications use the routines in this group to return information about name service entries of
various types.

rpc_ns_entry_expand_name() Expands the name of a name service entry.

rpc_ns_entry_object_inq_begin() Creates an inquiry context for viewing the objects stored in
an entry in a name service database.

rpc_ns_entry_object_inq_done() Deletes a name service object inquiry context.

rpc_ns_entry_object_inq_next() Returns an object stored in an entry in a name service
database.

2.11.6.3 NSI Group Operations

Applications use the routines in this group to manipulate name service group entries.

rpc_ns_group_delete() Deletes a group attribute.

rpc_ns_group_mbr_add() Adds an entry name to a group; if necessary, creates the
entry.

rpc_ns_group_mbr_inq_begin() Creates an inquiry context for viewing group members.

rpc_ns_group_mbr_inq_done() Deletes the inquiry context for a group.

rpc_ns_group_mbr_inq_next() Returns a member name from a group.

rpc_ns_group_mbr_remove() Removes an entry name from a group.

2.11.6.4 NSI Profile Operations

Applications use the routines in this group to manipulate name service profile entries.

rpc_ns_profile_delete() Deletes a profile attribute.

rpc_ns_profile_elt_add () Adds an element to a profile; if necessary, creates the entry.

rpc_ns_profile_elt_inq_begin() Creates an inquiry context for viewing the elements in a
profile.

rpc_ns_profile_elt_inq_done () Deletes the inquiry context for a profile.

rpc_ns_profile_elt_inq_next() Returns an element from a profile.

rpc_ns_profile_elt_remove() Removes an element from a profile.

2.11.7 Authentication Operations

Applications use the routines in this group to manipulate the authentication, authorisation and
protection-level information used by authenticated remote procedure calls.

rpc_binding_inq_auth_client () Returns authentication information referenced by a client
binding handle.

rpc_binding_inq_auth_info () Returns authentication information referenced by a server
binding handle.

rpc_binding_set_auth_info () Sets authentication information referenced by a server
binding handle.

Part 2 RPC Application Programmer’s Interface 45

RPC API Routine Taxonomy Introduction to the RPC API

rpc_server_register_auth_info () Registers authentication information with the RPC run-time
system.

2.11.8 The Server Listen Operation

This routine performs the final step in server initialisation, causing the server to begin to listen
for remote procedure calls.

rpc_server_listen() Tells the RPC run-time system to listen for remote
procedure calls.

2.11.9 The String Free Operation

Applications use this routine to free the string memory allocated by RPC API routines that
return strings.

rpc_string_free() Frees a character string allocated by the run-time system.

2.11.10 UUID Operations

The routines in this group manipulate UUIDs.

uuid_compare Compares two UUIDs and determines their order.

uuid_create Creates a new UUID.

uuid_create_nil Creates a nil UUID.

uuid_equal Determines if two UUIDs are equal.

uuid_from_string Converts a string UUID to binary representation.

uuid_hash Creates a hash value for a UUID.

uuid_is_nil Determines if a UUID is nil.

uuid_to_string Converts a UUID from binary representation to a string
representation.

2.11.11 Stub Memory Management

The routines in this group enable applications to participate in stub memory management.

rpc_sm_allocate () Allocates memory within the RPC stub memory
management scheme.

rpc_sm_client_free() Frees memory allocated by the current memory allocation
and freeing mechanism used by the client stubs.

rpc_sm_destroy_client_context () Reclaims the client memory resources for a context handle,
and sets the context handle to NULL.

rpc_sm_disable_allocate () Releases resources and allocated memory within the RPC
stub memory management scheme.

rpc_sm_enable_allocate () Enables the stub memory management environment.

rpc_sm_free() Frees memory allocated by the rpc_sm_allocate () routine.

rpc_sm_get_thread_handle () Gets a thread handle for the stub memory management
environment.

46 X/Open CAE Specification (1994)

Introduction to the RPC API RPC API Routine Taxonomy

rpc_sm_set_client_alloc_free () Sets the memory allocation and freeing mechanism used by
the client stubs.

rpc_sm_set_thread_handle () Sets a thread handle for the stub memory management
environment.

rpc_sm_swap_client_alloc_free () Exchanges the current memory allocation and freeing
mechanism used by the client stubs with one supplied by
the client.

2.11.12 Endpoint Management Operations

The routines in this group provide a more general interface for manipulating endpoint maps
than the one provided by the Local Endpoint Operations group. Routines in this group allow the
examination of endpoint map elements one at a time and permit operations both on the
application host’s local endpoint map and on remote endpoint maps. These are considered
management operations because of their potential to affect applications other than the one
making the management call.

rpc_mgmt_ep_elt_inq_begin() Creates an inquiry context for viewing the elements in a
local or remote endpoint map.

rpc_mgmt_ep_elt_inq_done() Deletes the inquiry context for viewing the elements in a
local or remote endpoint map.

rpc_mgmt_ep_elt_inq_next() Returns one element at a time from a local or remote
endpoint map.

rpc_mgmt_ep_unregister() Removes server address information from a local or remote
endpoint map.

2.11.13 Name Service Management Operations

The routines in this group carry out operations typically done by name service management
applications or only infrequently done by most applications. These are considered management
operations because of their potential to affect applications other than the one making the
management call.

rpc_ns_mgmt_binding_unexport() Removes multiple binding handles, or object UUIDs, from
an entry in a name service database.

rpc_ns_mgmt_entry_create() Creates an entry in a name service database.

rpc_ns_mgmt_entry_delete() Deletes an entry from a name service database.

rpc_ns_mgmt_entry_inq_if_ids() Returns the list of interfaces exported to an entry in a name
service database.

rpc_ns_mgmt_handle_set_exp_age () Sets a handle’s expiration age for cached copies of name
service data.

rpc_ns_mgmt_inq_exp_age() Returns an application’s global expiration age for cached
copies of name service data.

rpc_ns_mgmt_set_exp_age() Modifies the application’s global expiration age for cached
copies of name service data.

Part 2 RPC Application Programmer’s Interface 47

RPC API Routine Taxonomy Introduction to the RPC API

2.11.14 Local Management Services

The routines in this group provide a set of miscellaneous local operations that servers and clients
can use to manage their RPC interactions.

rpc_mgmt_inq_com_timeout() Returns the communications time-out value referenced by a
binding handle.

rpc_mgmt_set_authorization_fn () Establishes an authorisation function for processing remote
calls to a server’s management routines.

rpc_mgmt_set_cancel_timeout() Sets the lower bound on the time to wait before timing out
after forwarding a cancel.

rpc_mgmt_set_com_timeout() Sets the communications time-out value referenced by a
binding handle.

rpc_mgmt_set_server_stack_size() Specifies the stack size for each server thread.

rpc_mgmt_stats_vector_free() Frees a statistics vector.

rpc_mgmt_inq_dflt_protect_level () Returns the default protection level for an authentication
service.

2.11.15 Local/Remote Management Services

Applications can use the routines in this group to query and stop servers remotely. Servers can
also use these operations to query and stop themselves.

rpc_mgmt_inq_if_ids () Returns a vector of interface identifiers of the interfaces a
server offers.

rpc_mgmt_inq_server_princ_name() Returns a server’s principal name.

rpc_mgmt_inq_stats() Returns RPC run-time statistics.

rpc_mgmt_is_server_listening() Tells whether a server is listening for remote procedure
calls.

rpc_mgmt_stop_server_listening() Tells a server to stop listening for remote procedure calls.

2.11.16 Error Messages

The dce_error_inq_text() routine provides a locale-independent way to get error message text for
a status code returned by an RPC API routine. Because this routine is not RPC-specific, it is
documented in Appendix M rather than being included with the RPC API manual pages.

48 X/Open CAE Specification (1994)

Chapter 3

RPC API Manual Pages

3.1 RPC Data Types
The descriptions of the data types used by RPC API routines include C-language bindings,
where appropriate.

The data type declarations given here fall into three categories:

• The declarations make use of a set of primitive unsigned integer data types. The C-language
bindings for these types are implementation-dependent. Only the ranges of these types are
given here.

• Certain data types are intended to be opaque to applications. The C-language bindings of
opaque types are not given here.

• The remaining data types are defined explicitly here with C-language bindings that make use
of the unsigned integer types, opaque types and other defined types.

Applications that refer to the data types described here must include the C header file
<dce/rpc.h>.

3.1.1 Unsigned Integer Types

Some of RPC API function declarations and the remaining definitions given here make use of a
set of unsigned integer data types. Each type holds an unsigned integer within a specified range,
as shown in the following table.

Type Declaration Range
unsigned8 0 to 28−1
unsigned16 0 to 216−1
unsigned32 0 to 232−1

The C-language bindings for these types are implementation-dependent.

3.1.2 Signed Integer Type

The rpc_mgmt_set_cancel_timeout() routine uses the signed32 data type. This is an integer in the
range −231 to 231−1.

3.1.3 Unsigned Character String

RPC treats all characters in strings as unsigned characters. The C-language binding of the
unsigned character string type is implementation-dependent. The unsigned character data type
must be able to encode the characters of the portable character set, as specified in Appendix G.
Routines that require character string arguments specify the data type unsigned_char_t.

Part 2 RPC Application Programmer’s Interface 49

RPC Data Types RPC API Manual Pages

3.1.4 Binding Handle

A binding handle is an opaque data type that applications use to reference binding information
maintained by the RPC run-time system. Depending on the binding information that it
references, a binding handle is considered a server binding handle or a client binding handle.

A server binding handle references binding information for a server. Server binding handles
appear as arguments to many RPC API routines, and they are used both by clients and servers to
manipulate the bindings required for remote procedure calls.

A client binding handle references binding information for a client that has made an RPC to a
server. A client binding handle may be provided to the server application as the first argument
to the call. (See Chapter 4 for further information.) Servers can use the routine
rpc_binding_server_from_client () to convert a client binding handle to a server binding handle
that can be used to make a remote procedure call to the calling client.

As described in Chapter 2, a binding handle refers to several components of binding
information. When this binding information lacks an endpoint, the binding handle is said to be
partially bound. When the binding information includes an endpoint, the binding handle is said to
be fully bound. Both fully and partially bound binding handles can be used to make remote
procedure calls.

RPC API routines requiring a binding handle as an argument specify the data type
rpc_binding_handle_t. Binding handle arguments are passed by value.

The following table lists RPC API routines that operate on binding handles, specifying the type
of binding handle required by each routine.

Routine Input Argument Output Argument
rpc_binding_copy () Server Server
rpc_binding_free() Server None
rpc_binding_from_string_binding () None Server
rpc_binding_inq_auth_client () Client None
rpc_binding_inq_auth_info () Server None
rpc_binding_inq_object () Server or client None
rpc_binding_reset() Server None
rpc_binding_server_from_client() Client Server
rpc_binding_set_auth_info () Server None
rpc_binding_set_object () Server None
rpc_binding_to_string_binding () Server or client None
rpc_binding_vector_free() Server None
rpc_ns_binding_export () Server None
rpc_ns_binding_import_done () None Server
rpc_ns_binding_inq_entry_name () Server None
rpc_ns_binding_lookup_next () None Server
rpc_ns_binding_select() Server Server
rpc_server_inq_bindings() None Server

Table 3-1 Client and Server Binding Handles

50 X/Open CAE Specification (1994)

RPC API Manual Pages RPC Data Types

An application can share a single binding handle across multiple threads of execution. The
application must provide concurrency control for operations that read or modify a shared
binding handle. The related routines are:

rpc_binding_free()
rpc_binding_reset()
rpc_binding_set_auth_info ()
rpc_binding_set_object ()
rpc_ep_resolve_binding ()
rpc_mgmt_set_com_timeout()

3.1.5 Binding Vector

The binding vector data structure contains a list of binding handles over which a server
application can receive remote procedure calls.

The C-language declaration is:

typedef struct {
unsigned32 count;
rpc_binding_handle_t binding_h[1];
} rpc_binding_vector_t;

(The [1] subscript is a placeholder in the binding vector declaration. Applications use the count
member to find the actual size of a returned binding vector.)

The RPC run-time system creates binding handles when a server application registers protocol
sequences. To obtain a binding vector, a server application calls the rpc_server_inq_bindings()
routine. A client application obtains a binding vector of compatible servers from the name
service database by calling the rpc_ns_binding_lookup_next () routine. In both cases, the RPC run-
time system allocates memory for the binding vector. An application calls the
rpc_binding_vector_free () routine to free the binding vector.

To remove an individual binding handle from the vector, the application sets its value in the
vector to NULL. When setting a vector element to NULL the application must:

• free the individual binding

• not change the value of count.

Calling the rpc_binding_free() routine allows an application both to free the unwanted binding
handle and to set the vector entry to NULL.

The following routines require a binding vector argument:

rpc_binding_vector_free ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_unregister()
rpc_ns_binding_export ()
rpc_ns_binding_lookup_next ()
rpc_ns_binding_select()
rpc_server_inq_bindings()

Part 2 RPC Application Programmer’s Interface 51

RPC Data Types RPC API Manual Pages

3.1.6 Boolean Type

Routines that require a Boolean-valued argument or return a Boolean value specify the data type
boolean32. RPC implementations define the Boolean constants TRUE and FALSE.

3.1.7 Endpoint Map Inquiry Handle

An endpoint map inquiry handle is an opaque data type that references inquiry state
information used by a series of endpoint inquiry operations. The endpoint inquiry handle data
type is rpc_ep_inq_handle_t. Applications obtain an endpoint map inquiry handle by calling
rpc_mgmt_ep_elt_inq_begin() and use the handle for one or more calls to
rpc_mgmt_ep_elt_inq_next(). Applications call rpc_mgmt_ep_elt_inq_done() to free an endpoint
map handle.

3.1.8 Interface Handle

Each stub declares an interface handle that can be used by application code to reference
interface-related data maintained by the stub. The interface handle data type is rpc_if_handle_t.
Applications refer to a stub-declared interface handle using a well-known name constructed as
follows:

For the client:

if-name_v major-version_minor-version_c_ifspec

For the server:

if-name_v major-version_minor-version_s_ifspec

where:

• if-name is the interface identifier specified in the IDL file.

• major-version is the interface’s major-version number specified in the IDL file.

• minor-version is the interface’s minor-version number specified in the IDL file.

Implementations must support a maximum if-name length of at least 17 characters.

The following routines specify an interface handle argument:

rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_resolve_binding ()
rpc_ep_unregister()
rpc_if_inq_id ()
rpc_ns_binding_export ()
rpc_ns_binding_import_begin ()
rpc_ns_binding_lookup_begin ()
rpc_ns_binding_unexport()
rpc_server_inq_if()
rpc_server_register_if()
rpc_server_unregister_if()
rpc_server_use_all_protseqs()
rpc_server_use_protseq_if()

52 X/Open CAE Specification (1994)

RPC API Manual Pages RPC Data Types

3.1.9 Interface Identifier

An interface identifier (interface ID) data structure contains the interface UUID and major-
version and minor-version numbers of an interface. The C-language declaration is:

typedef struct {
uuid_t uuid;
unsigned16 vers_major;
unsigned16 vers_minor;
} rpc_if_id_t;

Applications can obtain an interface identifier by calling rpc_if_inq_id () with an interface handle.
The following routines also require interface identifier arguments:

rpc_mgmt_ep_elt_inq_begin()
rpc_mgmt_ep_elt_inq_next()
rpc_mgmt_ep_unregister()
rpc_ns_mgmt_binding_unexport()
rpc_ns_profile_elt_add ()
rpc_ns_profile_elt_inq_begin()
rpc_ns_profile_elt_inq_next()
rpc_ns_profile_elt_remove()

3.1.10 Interface Identifier Vector

The interface identifier (ID) vector data structure holds a list of interface identifiers.

The C-language declaration is:

typedef struct {
unsigned32 count;
rpc_if_id_t *if_id[1];
} rpc_if_id_vector_t;

(The [1] subscript is a placeholder in the interface ID vector declaration. Applications use the
count member to find the actual size of a returned vector.)

To obtain a vector of the interface IDs registered by a server with the RPC run-time system, an
application calls the rpc_mgmt_inq_if_ids () routine. To obtain a vector of the interface IDs
exported by a server to a name service database, an application calls the
rpc_ns_mgmt_entry_inq_if_ids() routine.

The RPC run-time system allocates memory for the interface ID vector. The application calls the
rpc_if_id_vector_free () routine to free the interface ID vector.

3.1.11 Manager Entry Point Vector

The server stub declares a default manager entry point vector (EPV), which it uses to call the
operations that implement an interface. A manager EPV consists of a vector of pointers to the
operations of the interface. To declare the default manager EPV, the stub defines an interface-
specific manager EPV data type with the following type name:

<if-name>_v<major-version>_<minor-version>_epv_t

The data type is defined as a C struct whose elements are pointers to the manager routines for
the interface, with the same names and in the same order in which they appear in the IDL
interface specification.

The stub declares the default manager EPV with the name NIDL_manager_epv.

Part 2 RPC Application Programmer’s Interface 53

RPC Data Types RPC API Manual Pages

Applications can use the stub-declared manager EPV data type to declare non-default manager
EPVs. Applications initialise non-default manager EPVs with a vector of addresses of alternate
manager routines. Applications that declare non-default manager EPVs must avoid the default
name.

See rpc_server_register_if() on page 193 for further information on non-default manager EPVs.

3.1.12 Name Service Handle

RPC API routines that obtain information from a name service use opaque name service handles
to refer to search state information maintained by the run-time system. Applications obtain a
name service handle by calling one of the name service begin routines and use the handle for one
or more calls to the corresponding next routine. Applications free a name service handle by
calling one of the name service done routines. For more information on name service handles and
operations, refer to Chapter 2.

The name service handle data type is rpc_ns_handle_t.

The following routines require a name service handle argument:

rpc_ns_binding_import_begin ()
rpc_ns_binding_import_done ()
rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_begin ()
rpc_ns_binding_lookup_next ()
rpc_ns_binding_lookup_done ()
rpc_ns_entry_object_inq_begin()
rpc_ns_entry_object_inq_next()
rpc_ns_entry_object_inq_done()
rpc_ns_group_mbr_inq_begin()
rpc_ns_group_mbr_inq_next()
rpc_ns_group_mbr_inq_done()
rpc_ns_profile_elt_inq_begin()
rpc_ns_profile_elt_inq_next()
rpc_ns_profile_elt_inq_done ()
rpc_ns_mgmt_handle_set_exp_age ()

3.1.13 Protocol Sequence String

A protocol sequence string is a character string that identifies a protocol sequence. Protocol
sequences are used to establish a relationship between a client and server. Valid protocol
sequence strings are listed in Appendix B. RPC applications should use only these strings.

Routines that require a protocol sequence string argument specify the data type
unsigned_char_t.

Not all valid protocol sequences are supported by all implementations. An application can use a
specific protocol sequence only if the implementation supports that protocol.

A server chooses to accept remote procedure calls over some or all of the supported protocol
sequences. The following routines allow server applications to register protocol sequences with
the run-time system:

54 X/Open CAE Specification (1994)

RPC API Manual Pages RPC Data Types

rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if()

Applications can use protocol sequence strings to construct string bindings using the
rpc_string_binding_compose () routine.

3.1.14 Protocol Sequence Vector

The protocol sequence vector data structure contains a list of protocol sequence strings. The
protocol sequence vector contains a count member followed by an array of pointers to protocol
sequence strings.

The C-language declaration is:

typedef struct {
unsigned32 count;
unsigned_char_t *protseq[1];
} rpc_protseq_vector_t;

(The [1] subscript is a placeholder in the protocol sequence vector declaration. Applications use
the count member to find the actual size of a returned binding vector.)

To obtain a protocol sequence vector, an application calls the rpc_network_inq_protseqs() routine.
The RPC run-time system allocates memory for the protocol sequence vector. The application
calls the rpc_protseq_vector_free() routine to free the protocol sequence vector.

3.1.15 Statistics Vector

A statistics vector is used to store statistics from the RPC run-time system for a server instance.
The statistics vector contains a count member followed by an array of statistics.

The C-language declaration is:

typedef struct {
unsigned32 count;
unsigned32 stats[1];
} rpc_stats_vector_t, *rpc_stats_vector_p_t;

(The [1] subscript is a placeholder in the statistics vector declaration. Applications use the count
member to find the actual size of a returned binding vector.)

The X/Open DCE specifies four statistics that are returned in a statistics vector. The following
constants are used to index the statistics array to extract specific statistics:

rpc_c_stats_calls_in The number of remote procedure calls received by the server.

rpc_c_stats_calls_out The number of remote procedure calls initiated by the server.

rpc_c_stats_pkts_in The number of RPC PDUs received by the server.

rpc_c_stats_pkts_out The number of RPC PDUs sent by the server.

To obtain run-time statistics, an application calls the rpc_mgmt_inq_stats() routine. The RPC
run-time system allocates memory for the statistics vector. The application calls the
rpc_mgmt_stats_vector_free() routine to free the statistics vector.

Part 2 RPC Application Programmer’s Interface 55

RPC Data Types RPC API Manual Pages

3.1.16 String Binding

A string binding contains the character representation of a binding handle.

The two formats of a string binding are shown below. The four italicised fields represent the
object UUID, RPC protocol sequence, network address and endpoint and network options of the
binding. A delimiter character such as an @ (at sign) or a : (colon) separates each field. A string
binding does not contain any white space.

object-uuid @ rpc-protocol-sequence :
network-address [endpoint , option ...

or

object-uuid @ rpc-protocol-sequence :
network-address [endpoint = endpoint , option ...

object-uuid This field specifies an object UUID.

This field is optional. If it is not provided the RPC run-time system
assumes a nil type UUID.

@ This symbol is the delimiter character for the object UUID field. If an
object UUID is specified, it must be followed by this symbol.

rpc-protocol-sequence This field specifies a protocol sequence. Valid protocol sequence strings
are listed in Appendix B.

This field is required.

: This symbol is the delimiter character for the RPC protocol sequence
field.

network-address This field specifies the address (address) of a host on a network (network)
that receives remote procedure calls made with this string binding. The
format and content of the network address depends on the value of rpc-
protocol-sequence. For the internet protocols, the format for the network
address is an optional # (number sign) character followed by four integers
separated by periods.

The network address field is optional. If an application does not supply
this field, the string binding refers to the local host.

[This symbol is the delimiter character specifying that one endpoint and
zero or more options follow. If the string binding contains at least an
endpoint, this symbol is required.

endpoint This field specifies an endpoint of a specific server instance. Optionally
the keyword endpoint= can precede the endpoint specifier.

The format and content of the endpoint depends on the specified protocol
sequence. For the internet protocols, the format of the endpoint field is a
single integer.

The endpoint field is optional.

, This symbol is the delimiter character specifying that option data follows.
If an option follows, this delimiter is required.

56 X/Open CAE Specification (1994)

RPC API Manual Pages RPC Data Types

option This field specifies any options. Each option is specified as option
name=option value.

The format and content of the option depends on the specified protocol
sequence.

The option field is optional.

] This symbol is the delimiter character specifying that one endpoint and
zero or more options precede. If the string binding contains at least an
endpoint, this symbol is required.

The \ (backslash) character is treated as an escape character for all string binding fields. It can be
used to include one of the string delimiters in the value of a field.

3.1.17 String UUID

A string UUID contains the character representation of a UUID. A string UUID consists of
multiple fields of hexadecimal characters. Dashes separate the fields and each field has a fixed
length, as follows:

xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

For a detailed specification of string UUIDs, see Appendix A.

The following routines require a string UUID argument:

rpc_string_binding_compose ()
rpc_string_binding_parse ()
uuid_from_string()
uuid_to_string ()

3.1.18 UUIDs

Universal Unique Identifiers (UUIDs) are opaque data structures that are widely used by the
RPC mechanism. The RPC API provides a series of routines to manipulate UUIDs. Routines that
take a UUID argument declare the data type as uuid_t. (See Appendix A for a detailed
specification of UUIDs.)

3.1.19 UUID Vector

The UUID vector data structure contains a list of UUIDs. The UUID vector contains a count
member, followed by an array of pointers to UUIDs.

The C-language declaration is:

typedef struct
{

unsigned32 count;
uuid_t *uuid[1];

} uuid_vector_t;

The [1] subscript is a placeholder in the UUID vector declaration. Applications use the count
member to find the actual size of a returned binding vector.

Part 2 RPC Application Programmer’s Interface 57

RPC Data Types RPC API Manual Pages

An application constructs a UUID vector to contain object UUIDs to be exported or unexported
from the name service database. The following routines require a UUID vector argument:

rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_unregister()
rpc_ns_binding_export ()
rpc_ns_binding_unexport()
rpc_ns_mgmt_binding_unexport()

58 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_copy()

NAME
rpc_binding_copy — returns a copy of a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_copy(
rpc_binding_handle_t source_binding,
rpc_binding_handle_t *destination_binding,
unsigned32 *status);

ARGUMENTS

Input

source_binding Specifies the server binding handle whose referenced binding information
will be copied.

Output

destination_binding Returns the server binding handle that refers to the copied binding
information.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully or, if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_copy () routine copies the server binding information referenced by the binding
handle specified in the source_binding argument. This routine returns a new server binding
handle for the copied binding information. The new server binding handle is returned in the
destination_binding argument.

After calling this routine, operations performed on the source_binding binding handle do not
affect the binding information referenced by the destination_binding binding handle. Similarly,
operations performed on the destination_binding binding handle do not affect the binding
information referenced by the source_binding binding handle.

Note: To release the memory used by the destination_binding binding handle and its
referenced binding information, the application calls the rpc_binding_free() routine.

RETURN VALUE
None.

SEE ALSO
rpc_binding_free().

Part 2 RPC Application Programmer’s Interface 59

rpc_binding_free() RPC API Manual Pages

NAME
rpc_binding_free — releases binding handle resources

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_free(
rpc_binding_handle_t *binding,
unsigned32 *status);

ARGUMENTS

Input/Output

binding Specifies the server binding handle to free.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_free() routine frees the memory used by a server binding handle and its
referenced binding information when the binding handle was created by one of the following
routines:

rpc_binding_copy ()
rpc_binding_from_string_binding ()
rpc_ns_binding_import_done ()
rpc_ns_binding_select()
rpc_server_inq_bindings()
rpc_ns_binding_lookup_next ()

When the operation succeeds, binding returns the value NULL.

RETURN VALUE
None.

SEE ALSO
rpc_binding_copy ()
rpc_binding_from_string_binding ()
rpc_ns_binding_import_done ()
rpc_binding_vector_free ()
rpc_ns_binding_lookup_next ()
rpc_ns_binding_select()
rpc_server_inq_bindings().

60 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_from_string_binding()

NAME
rpc_binding_from_string_binding — returns a binding handle from a string representation of a
binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_from_string_binding(
unsigned_char_t *string_binding,
rpc_binding_handle_t *binding,
unsigned32 *status);

ARGUMENTS

Input

string_binding Specifies a string representation of a binding handle.

Output

binding Returns the server binding handle.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

DESCRIPTION
The rpc_binding_from_string_binding () routine creates a server binding handle from a string
representation of a binding handle.

When the string_binding argument contains an object UUID, the returned binding contains the
UUID that is specified. Otherwise, the returned binding contains a nil UUID.

When the string_binding argument contains an endpoint field, the returned binding is a fully
bound server binding handle with a well-known endpoint. Otherwise, the returned binding is a
partially bound binding handle.

When the string_binding argument contains a host address field, the returned binding contains
the host address that is specified. Otherwise, the returned binding refers to the local host.

RETURN VALUE
None.

SEE ALSO
rpc_binding_copy ()
rpc_binding_free()
rpc_binding_to_string_binding ()
rpc_string_binding_compose ().

Part 2 RPC Application Programmer’s Interface 61

rpc_binding_inq_auth_client() RPC API Manual Pages

NAME
rpc_binding_inq_auth_client — returns authentication, authorisation and protection information
from a client binding handle

SYNOPSIS
#include <dce/rpc.h>
#include <dce/id_base.h>

void rpc_binding_inq_auth_client(
rpc_binding_handle_t binding,
rpc_authz_handle_t *privs,
unsigned_char_t **server_princ_name,
unsigned32 *protect_level,
unsigned32 *authn_svc,
unsigned32 *authz_svc,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies the client binding handle from which to return information.

Input/Output

server_princ_name Returns the server principal name referenced by binding. The content of
the returned name and its syntax depend on the value of authn_svc. (See
Appendix D for authentication service-specific syntax.)

Specifying NULL prevents the routine from returning this argument.

Unless NULL is specified, the application should call the rpc_string_free()
routine to free the storage used by this argument.

protect_level Returns the protection level referenced by binding. (See Appendix D for
possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

authn_svc Returns the authentication service referenced by binding. (See Appendix
D for possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

authz_svc Returns the authorisation service referenced by binding. (See Appendix D
for possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

Output

privs Returns a handle to the authorisation or privilege information referenced
by binding.

The server must cast this handle to a data type that depends on authz_svc.
(See Appendix D for information about the data types appropriate to each
authorisation service.)

The lifetime of the data referenced by this argument is one invocation of a
server manager routine. If an application wants to preserve any of the

62 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_inq_auth_client()

returned data beyond this lifetime, it must copy the data into
application-allocated memory.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_binding_has_no_auth
Binding has no authentication information.

DESCRIPTION
The rpc_binding_inq_auth_client () routine returns authentication, authorisation and privilege
information referenced by the client binding handle, binding. Servers obtain client binding
handles as the first argument of a remote procedure call. (See Section 3.1 on page 49 and Chapter
2 for more detailed information on how client binding handles are created and obtained.) The
client binding handle references authentication, authorisation and privilege information for the
client that made the remote procedure call.

A client establishes this information by calling rpc_binding_set_auth_info (), which associates a set
of authentication, authorisation and privilege information with a server binding handle. When
the client makes an RPC call on this server binding handle, the client binding handle received by
the server references the same authentication, authorisation and privilege information.

No server memory is allocated for the data referenced by privs. The lifetime of this data is the
current invocation of the manager routine that was called with the binding argument. An
application that wishes to preserve any privileges information beyond this invocation must copy
the information into server memory.

RETURN VALUE
None.

SEE ALSO
rpc_binding_inq_auth_info ()
rpc_binding_set_auth_info ()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 63

rpc_binding_inq_auth_info() RPC API Manual Pages

NAME
rpc_binding_inq_auth_info — returns authentication, authorisation and protection information
from a server binding handle

SYNOPSIS
#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc_binding_inq_auth_info(
rpc_binding_handle_t binding,
unsigned_char_t **server_princ_name,
unsigned32 *protect_level,
unsigned32 *authn_svc,
rpc_auth_identity_handle_t *auth_identity,
unsigned32 *authz_svc,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies the server binding handle from which to return information.

Input/Output

server_princ_name Returns the server principal name referenced by binding. The content of
the returned name and its syntax depend on the value of authn_svc. (See
Appendix D for authentication service-specific syntax.)

Specifying NULL prevents the routine from returning this argument.

Unless NULL is specified, the application should call the rpc_string_free()
routine to free the storage used by this argument.

protect_level Returns the protection level referenced by binding. (See Appendix D for
possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

authn_svc Returns the authentication service referenced by binding. (See Appendix
D for possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

auth_identity Returns a handle to a data structure that contains the client’s
authentication and authorisation credentials. This argument must be cast
as appropriate for the authentication and authorisation services specified
by authn_svc and authz_svc. (See Appendix D for information about the
appropriate data types appropriate to each service.)

Specifying NULL prevents the routine from returning this argument.

authz_svc Returns the authorisation service referenced by binding. (See Appendix D
for possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

64 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_inq_auth_info()

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_binding_has_no_auth
Binding has no authentication information.

DESCRIPTION
The rpc_binding_inq_auth_info () routine returns authentication, authorisation and protection-
level information referenced by the server binding handle, binding. Client applications use this
routine to discover whether the protection level they have requested is supported by the RPC
run-time implementation.

A client application associates authentication, authorisation and protection-level information
with a server binding handle by calling rpc_binding_set_auth_info (). The value of protect_level
returned by rpc_binding_inq_auth_info () may be higher than the level requested in the previous
call to rpc_binding_set_auth_info (). When an application requests a protection level that is not
supported, the RPC run-time system attempts to upgrade the protection level to the next highest
supported level. When it succeeds, the binding will be given a higher protection level than the
one requested. Client applications may compare the requested protection level with the value
returned by rpc_binding_inq_auth_info () to discover whether the requested protection level is
actually supported by the run-time system.

The auth_identity argument points to the authentication and authorisation identity information
associated with binding. rpc_binding_inq_auth_info () allocates no memory for this information,
and references to auth_identity may not be valid after any subsequent call to
rpc_binding_set_auth_info () with the same binding argument. In any case, the lifetime of
auth_identity is no longer than the lifetime of binding.

Any of the data returned by rpc_binding_inq_auth_info () may be stale after a subsequent call to
rpc_binding_set_auth_info () with the same binding argument.

The rpc_binding_inq_auth_info () routine allocates memory for the returned server_princ_name
argument. The caller is responsible for calling the rpc_string_free() routine for the returned
argument string.

RETURN VALUE
None.

SEE ALSO
rpc_binding_set_auth_info ()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 65

rpc_binding_inq_object() RPC API Manual Pages

NAME
rpc_binding_inq_object — returns the object UUID from a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_inq_object(
rpc_binding_handle_t binding,
uuid_t *object_uuid,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a client or server binding handle.

Output

object_uuid Returns the object UUID found in the binding argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_inq_object () routine obtains the object UUID associated with a binding handle.
If no object UUID is associated with the binding handle, this routine returns a nil UUID.

RETURN VALUE
None.

SEE ALSO
rpc_binding_set_object ().

66 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_reset()

NAME
rpc_binding_reset — resets a binding handle to a partially bound binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_reset(
rpc_binding_handle_t binding,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies the server binding handle to reset.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_reset() routine removes the endpoint portion of the server address referenced by
the binding handle, binding. The result is a partially bound server binding handle.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace().

Part 2 RPC Application Programmer’s Interface 67

rpc_binding_server_from_client() RPC API Manual Pages

NAME
rpc_binding_server_from_client — converts a client binding handle to a server binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_server_from_client(
rpc_binding_handle_t client_binding,
rpc_binding_handle_t *server_binding,
unsigned32 *status);

ARGUMENTS

Input

client_binding Specifies the client binding handle to convert to a server binding handle.

Output

server_binding Returns a server binding handle.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_server_from_client () routine converts a client binding handle into a partially
bound server binding handle.

An application obtains a client binding handle as an argument passed to a server manager
routine from the RPC run-time system during a remote procedure call. When an RPC arrives at a
server, the RPC run-time system creates a client binding handle that contains binding
information about the calling client host. The run-time system passes the client binding handle
to the server manager routine as the first argument. The argument type is
rpc_binding_handle_t.

The server binding handle returned from rpc_binding_server_from_client () references binding
information that is constructed as follows:

• It contains a network address for the calling client’s host but lacks an endpoint. The returned
binding handle is thus partially bound.

• It contains the same object UUID used by the calling client. This may be the nil UUID. (See
rpc_binding_set_object () on page 72, rpc_ns_binding_import_begin () on page 118,
rpc_ns_binding_lookup_begin () on page 126 and rpc_binding_from_string_binding () on page 61
to see how a client specifies an object UUID for a call.)

• It contains no authentication information.

RETURN VALUE
None.

68 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_server_from_client()

SEE ALSO
rpc_binding_free()
rpc_binding_set_object
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_import_begin ()
rpc_ns_binding_lookup_begin ()
rpc_binding_from_string_binding ().

Part 2 RPC Application Programmer’s Interface 69

rpc_binding_set_auth_info() RPC API Manual Pages

NAME
rpc_binding_set_auth_info — sets authentication, authorisation and protection-level
information for a binding handle

SYNOPSIS
#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc_binding_set_auth_info(
rpc_binding_handle_t binding,
unsigned_char_t *server_princ_name,
unsigned32 protect_level,
unsigned32 authn_svc,
rpc_auth_identity_handle_t auth_identity,
unsigned32 authz_svc,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies the server binding handle for which to set the authentication,
authorisation and protection-level information.

server_princ_name Specifies a principal name for the server referenced by binding. The
content and syntax of this name depend on the value of authn_svc. (See
Appendix D for authentication service-specific syntax.)

Note: An application can call the rpc_mgmt_inq_server_princ_name()
routine to obtain the principal name of a server that is registered
for the required authentication service. (See
rpc_mgmt_inq_server_princ_name() on page 98 for details.)

protect_level Specifies the protection level for remote procedure calls made using
binding. The protection level determines the degree to which
authenticated communications between the client and the server are
protected. (See Appendix D for possible values of this argument.)

authn_svc Specifies the authentication service to use for calls made on binding. (See
Appendix D for possible values of this argument.)

auth_identity Specifies a handle for a data structure that contains the client’s
authentication and authorisation credentials. The data type of this
structure depends on the values of authn_svc and authz_svc. (See
Appendix D for information on the service-specific data types.)

Specify NULL to use the default security login context for the current
address space. The default is the context in effect at the time of the call to
rpc_binding_set_auth_info (). For information on how the default security
login context is established, you can refer to the DCE: Security Services
specification when it becomes available.

authz_svc Specifies the authorisation service to be used for calls made on binding.
(See Appendix D for possible values of this argument.)

70 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_set_auth_info()

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_authn_authz_mismatch
The requested authorisation service is not supported
by the requested authentication service.

rpc_s_unsupported_protect_level
The requested protection level is not supported and
could not be upgraded to a higher supported level.

rpc_s_proto_unsupp_by_auth
RPC protocol is not supported by the requested
authentication protocol

rpc_s_no_princ_name
No principal name is registered.

rpc_s_not_authorized
Not authorised for operation.

DESCRIPTION
The rpc_binding_set_auth_info () routine sets authentication, authorisation and protection-level
information for the server binding handle, binding. A client application that wants to make
authenticated remote procedure calls first calls this routine. Any RPC calls subsequently made
on binding will be authenticated according to the information set by this call. If a client
application has not called rpc_binding_set_auth_info () for a binding, remote procedure calls made
on that binding are unauthenticated.

Note that the value of protect_level actually set for binding depends on the protection levels
supported by the implementation. The value set may be higher than the level requested. When
an application requests a protection level that is not supported, the RPC run-time system
attempts to upgrade the protection level to the next highest supported level. When it succeeds,
the binding will be given a higher protection level than the one requested. Appendix D gives the
canonical ordering of protect_level values from lowest to highest. Applications can call the
routine rpc_binding_inq_auth_info () to discover the protection level actually set.

To find the authentication, authorisation and protection-level information set for a binding
handle, applications call rpc_binding_inq_auth_info ().

RETURN VALUE
None.

SEE ALSO
rpc_binding_inq_auth_info ()
rpc_mgmt_inq_server_princ_name().

Part 2 RPC Application Programmer’s Interface 71

rpc_binding_set_object() RPC API Manual Pages

NAME
rpc_binding_set_object — sets the object UUID value in a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_set_object(
rpc_binding_handle_t binding,
uuid_t *object_uuid,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies the server binding into which argument object_uuid is set.

object_uuid Specifies the UUID of the object serviced by the server specified in the
binding argument.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_set_object () routine associates an object UUID with a server binding handle. This
operation replaces the previously associated object UUID with the UUID in the object_uuid
argument.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_binding_inq_object ().

72 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_to_string_binding()

NAME
rpc_binding_to_string_binding — returns a string representation of a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_to_string_binding(
rpc_binding_handle_t binding,
unsigned_char_t **string_binding,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a client or server binding handle to convert to a string
representation of a binding handle.

Output

string_binding Returns a pointer to the string representation of the binding handle
specified in the binding argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_to_string_binding () routine converts a client or server binding handle to its
string representation.

The RPC run-time system allocates memory for the string returned in the string_binding
argument. The application calls the rpc_string_free() routine to deallocate that memory.

When the binding handle in the binding argument contains a nil object UUID, the object UUID
field is not included in the returned string.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_string_binding_parse ()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 73

rpc_binding_vector_free() RPC API Manual Pages

NAME
rpc_binding_vector_free — frees the memory used to store a vector of binding handles

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding_vector_free(
rpc_binding_vector_t **binding_vector,
unsigned32 *status);

ARGUMENTS

Input/Output

binding_vector Specifies the address of a pointer to a vector of server binding handles.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_binding_vector_free () routine frees the memory used to store a vector of server binding
handles when the vector was created using either the rpc_server_inq_bindings() routine or
rpc_ns_binding_lookup_next () routine. The freed memory includes both the binding handles and
the vector itself.

The rpc_binding_free() routine may be used to free individual elements of the vector. When an
element has been freed with this routine, the NULL element entry replaces it; the
rpc_binding_vector_free () routine ignores such an entry.

When the rpc_binding_vector_free () routine succeeds, the binding_vector pointer is set to NULL.

RETURN VALUE
None.

SEE ALSO
rpc_binding_free()
rpc_server_inq_bindings()
rpc_ns_binding_lookup_next ().

74 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_register()

NAME
rpc_ep_register — adds to, or replaces, server address information in the local endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_ep_register(
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned_char_t *annotation,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies an interface specification to register with the local endpoint
map.

binding_vec Specifies a vector of server binding handles over which the server can
receive remote procedure calls.

object_uuid_vec Specifies a vector of object UUIDs that the server offers. The server
application constructs this vector.

The application supplies the value NULL to indicate that there are no
object UUIDs to register. In this case, each cross-product element added
to the local endpoint map contains the nil UUID. (See DESCRIPTION for
further discussion of cross-product elements.)

annotation Defines a character string comment applied to each cross-product
element added to the local endpoint map. The string can be up to 64
characters long, including the null terminating character. Strings longer
than 64 characters are truncated. The application supplies the value
NULL or the string "" to indicate an empty annotation string.

When replacing elements, the annotation string supplied, including an
empty annotation string, replaces any existing annotation string.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

DESCRIPTION
The rpc_ep_register() routine adds elements to, or replaces elements in, the local host’s endpoint
map.

Each element added to the local endpoint map logically contains the following:

• interface ID, consisting of an interface UUID and versions (major and minor)

Part 2 RPC Application Programmer’s Interface 75

rpc_ep_register() RPC API Manual Pages

• binding information

• object UUID, which may be the nil UUID

• annotation, which may be an empty string.

When an existing map element matches a supplied element, this routine replaces the map
element’s endpoint with the endpoint from the supplied element’s binding information. When
there is no such match, a new map element is added.

For a match between an existing and supplied element to occur, the interface UUIDs, object
UUIDs and binding information (except for the endpoint) from both elements must be equal.
Matching rules for interface version numbers are specified in the following table.

Existing Element Relationship Supplied Element Routine’s Action
Ignores minor version number
relationship and adds a new endpoint
map element. The existing element
remains unchanged.

Major version number Not equal to Major version number

Acts according to the minor version
number relationship.

Major version number Equal to Major version number

Replaces the endpoint of the existing
element based on the supplied
information.

Minor version number Equal to Minor version number

Replaces the existing element based
on the supplied information.

Minor version number Less than Minor version number

Ignores the supplied information. The
existing element remains unchanged.

Minor version number Greater than Minor version number

A server uses this routine when only a single instance of the server will run on the server’s host;
that is, when no more than one server instance will offer the same interface UUID, object UUID
and protocol sequence. Servers use rpc_ep_register_no_replace() when multiple instances of the
server may run on the server’s host.

Note: Servers should call rpc_ep_unregister() to unregister endpoints before they stop
running. If a server stops running without calling rpc_ep_unregister(), applications may
waste time trying to communicate with the non-existent server. Since rpc_ep_register()
replaces existing compatible local endpoint map elements, it will remove obsolete
compatible elements left by servers that have crashed without unregistering their
endpoints. However, server applications that stop normally should unregister their
endpoints. They should not rely on new instantiations to clean up obsolete endpoints

A server application calls this routine to register endpoints that have been specified by calling
any of the following routines:

rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()

Note: When the server also exports binding information to the name service database, the
server calls this routine with the same if_handle, binding_vec, and object_uuid_vec
arguments that the server uses when calling the rpc_ns_binding_export () routine.

The rpc_ep_register() routine creates elements to add to the local endpoint map as a cross-
product of the if_handle, binding_vec and object_uuid_vec arguments.

When the object_uuid_vec argument is NULL, the cross-product of if_handle, binding_vec and the
nil UUID is created.

76 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_register()

The annotation string is also included in each cross-product element. The string is used by
applications for informational purposes only. The RPC run-time system does not use it to
determine which server instance a client communicates with, or for enumerating endpoint map
elements.

The following example shows the cross-product created when if_handle has the value ifhand,
binding_vec has the values b1, b2, b3, and object_uuid_vec has the values u1, u2, u3, u4. The cross-
product contains 12 elements, as follows:

(ifhand,b1,u1) (ifhand,b1,u2) (ifhand,b1,u3) (ifhand,b1,u4)
(ifhand,b2,u1) (ifhand,b2,u2) (ifhand,b2,u3) (ifhand,b2,u4)
(ifhand,b3,u1) (ifhand,b3,u2) (ifhand,b3,u3) (ifhand,b3,u4)

Each cross-product element also contains the annotation string.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register_no_replace()
rpc_ep_resolve_binding ()
rpc_ep_unregister()
rpc_mgmt_ep_unregister()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

Part 2 RPC Application Programmer’s Interface 77

rpc_ep_register_no_replace() RPC API Manual Pages

NAME
rpc_ep_register_no_replace — adds to server address information in the local endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_ep_register_no_replace(
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned_char_t *annotation,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies an interface specification to register with the local endpoint
map.

binding_vec Specifies a vector of binding handles over which the server can receive
remote procedure calls.

object_uuid_vec Specifies a vector of object UUIDs that the server offers.

The application supplies the value NULL to indicate there are no object
UUIDs to register. In this case, each cross-product element contains the
nil UUID.

annotation Defines a character string comment applied to each cross-product
element added to the local endpoint map. The string can be up to 64
characters long, including the null-terminating character. If the
application specifies an empty string (""), each cross-product element will
contain an empty string.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform requested operation.

DESCRIPTION
The rpc_ep_register_no_replace() routine adds elements to the local host’s endpoint map. The
routine does not replace existing elements. Otherwise, this routine is identical to routine
rpc_ep_register(). A server application uses this routine, instead of routine rpc_ep_register(),
when multiple instances of the server run on the same host. Servers should use this routine if, at
any time, more than one server instance offers the same interface UUID, object UUID, and
protocol sequence.

Note: Servers should call rpc_ep_unregister() before they stop running to remove their
endpoints from the local endpoint map. When obsolete elements are left in the
endpoint map, clients may waste time trying to communicate with non-existent
servers. Obsolete elements, left by servers that have stopped without calling

78 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_register_no_replace()

rpc_ep_unregister(), are periodically removed from the local endpoint map. However,
during the time between these removals, the obsolete elements increase the chance that
a client will attempt to communicate with a non-existent server.

A server program calls this routine to register endpoints that were specified by calling any of the
following routines:

rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()

Note: If the server also exports to the name service database, the server calls this routine with
the same if_handle, binding_vec and object_uuid_vec arguments as the server uses when
calling the rpc_ns_binding_export () routine.

The rpc_ep_register routine creates elements to add to the local endpoint map as a cross-product
of the if_handle, binding_vec and object_uuid_vec arguments.

When the object_uuid_vec argument is NULL, the cross-product of if_handle, binding_vec and the
nil type UUID is created.

The annotation string is also included in each cross-product element. The string is used by
applications for informational purposes only. The RPC run-time system does not use it to
determine which server instance a client communicates with, or for enumerating endpoint map
elements.

rpc_ep_register() on page 75 contains an example of a cross-product.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_resolve_binding ()
rpc_ep_unregister()
rpc_mgmt_ep_unregister()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

Part 2 RPC Application Programmer’s Interface 79

rpc_ep_resolve_binding() RPC API Manual Pages

NAME
rpc_ep_resolve_binding — resolves a partially bound server binding handle into a fully bound
server binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_ep_resolve_binding(
rpc_binding_handle_t binding,
rpc_if_handle_t if_handle,
unsigned32 *status);

ARGUMENTS

Input/Output

binding Specifies a partially bound server binding handle to resolve into a fully
bound server binding handle.

if_handle Contains a stub-generated data structure that specifies the interface of
interest.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

ept_s_not_registered
No entries found.

DESCRIPTION
An application calls the rpc_ep_resolve_binding () routine to resolve a partially bound server
binding handle into a fully bound server binding handle.

To resolve a binding, rpc_ep_resolve_binding () obtains an endpoint for a compatible server
instance from the endpoint map of the host specified by binding. In selecting an endpoint,
rpc_ep_resolve_binding () uses the interface UUID associated with if_handle and the object UUID
associated with binding. The object UUID may be the nil UUID. The endpoint matching
algorithm is described in rpc_ep_register() on page 75.

The resolved binding returned by rpc_ep_resolve_binding () depends on whether the specified
binding handle is partially bound or fully bound. When the application specifies a partially
bound handle, the routine produces the following results:

• If no compatible server instances are registered in the endpoint map, the routine returns the
ept_s_not_registered status code.

• If one compatible server instance is registered in the local endpoint map, the routine returns
a fully bound binding handle in binding and the rpc_s_ok status code.

• If more than one compatible server instance is registered in the local endpoint map, the
routine arbitrarily selects one. It then returns the corresponding fully bound binding handle
in binding and the rpc_s_ok status code.

When the application specifies a fully bound binding handle, the routine returns the specified
binding handle in binding and the rpc_s_ok status code.

80 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_resolve_binding()

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_mgmt_ep_elt_inq_begin()
rpc_mgmt_ep_elt_inq_done()
rpc_mgmt_ep_elt_inq_next()
rpc_binding_from_string_binding ()
rpc_binding_reset().

Part 2 RPC Application Programmer’s Interface 81

rpc_ep_unregister() RPC API Manual Pages

NAME
rpc_ep_unregister — removes server address information from the endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_ep_unregister(
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies an interface specification to remove (that is, unregister) from the
endpoint map.

binding_vec Specifies a vector of binding handles to remove.

object_uuid_vec Specifies a vector of object UUIDs to remove. The server application
constructs this vector. When the value NULL is supplied, the routine
constructs the cross-product of if_handle and binding_vec with the nil
object UUID.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform requested operation.

DESCRIPTION
An application calls rpc_ep_unregister() to remove endpoint map elements that it has previously
registered.

Note: The application calls the rpc_server_inq_bindings() routine to obtain the required
binding_vec argument. To remove selected endpoints, the application can remove
individual elements from argument binding_vec before calling this routine.

This routine creates a cross-product from the if_handle, binding_vec and object_uuid_vec
arguments, and removes each element that matches the cross-product from the local endpoint
map. rpc_ep_register() on page 75 discusses the construction of the cross-product.

Matches to elements in the endpoint map are exact. In particular, cross-product elements
containing the nil object UUID only match elements in the endpoint map that contain the nil
object UUID. Therefore, specifying NULL for the uuid_vec argument results in removing only
elements with the nil object UUID from the endpoint map.

Note: Servers should call rpc_ep_unregister() to unregister their endpoints before they stop
running. If they fail to do so, clients may find the obsolete endpoints and waste time
trying to communicate with the non-existent servers.

82 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_unregister()

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_mgmt_ep_unregister()
rpc_ns_binding_unexport()
rpc_server_inq_bindings().

Part 2 RPC Application Programmer’s Interface 83

rpc_if_id_vector_free() RPC API Manual Pages

NAME
rpc_if_id_vector_free — frees a vector and the interface identifier structures it contains

SYNOPSIS
#include <dce/rpc.h>

void rpc_if_id_vector_free(
rpc_if_id_vector_t **if_id_vector,
unsigned32 *status);

ARGUMENTS

Input/Output

if_id_vector Specifies the address of a pointer to a vector of interface information. On
success this argument is set to NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_if_id_vector_free () routine frees the memory used to store a vector of interface identifiers
when they have been obtained by calling either rpc_ns_mgmt_entry_inq_if_ids() or
rpc_mgmt_inq_if_ids (). This freed memory includes memory used by the interface identifiers and
the vector itself.

RETURN VALUE
None.

SEE ALSO
rpc_if_inq_id ()
rpc_mgmt_inq_if_ids ()
rpc_ns_mgmt_entry_inq_if_ids().

84 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_if_inq_id()

NAME
rpc_if_inq_id — returns the interface identifier for an interface specification

SYNOPSIS
#include <dce/rpc.h>

void rpc_if_inq_id(
rpc_if_handle_t if_handle,
rpc_if_id_t *if_id,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies the interface specification to inquire about.

Output

if_id Pointer to the returned interface identifier. The application provides
memory for the returned data.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
Applications call the rpc_if_inq_id () routine to obtain the interface identifier from the provided
interface specification. Section 3.1 on page 49 specifies how applications can construct the name
of a stub-declared interface handle.

RETURN VALUE
None.

SEE ALSO
rpc_if_id_vector_free ()
rpc_mgmt_inq_if_ids ()
rpc_ns_mgmt_entry_inq_if_ids().

Part 2 RPC Application Programmer’s Interface 85

rpc_mgmt_ep_elt_inq_begin() RPC API Manual Pages

NAME
rpc_mgmt_ep_elt_inq_begin — creates an inquiry context for viewing the elements in an
endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_begin(
rpc_binding_handle_t ep_binding,
unsigned32 inquiry_type,
rpc_if_id_t *if_id,
unsigned32 vers_option,
uuid_t *object_uuid,
rpc_ep_inq_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input

ep_binding Specifies the host whose endpoint map elements will be viewed.

To view elements from the local host, the application specifies NULL.

To view endpoint map elements from another host, the application
specifies a server binding handle for that host. The object UUID
associated with this argument must be a nil UUID. When a non-nil UUID
is specified, the routine fails with the status code ept_s_cant_perform_op.

inquiry_type An integer value that indicates the type of inquiry to perform on the
endpoint map. The following list presents the valid inquiry types:

Value Description

rpc_c_ep_all_elts
Returns every element from the endpoint map.

The if_id, vers_option and object_uuid arguments are
ignored.

rpc_c_ep_match_by_if
Searches the endpoint map for those elements that
contain the interface identifier specified by the if_id and
vers_option values.

The object_uuid argument is ignored.

rpc_c_ep_match_by_obj
Searches the endpoint map for those elements that
contain the object UUID specified by the object_uuid
argument.

The if_id and vers_option arguments are ignored.

rpc_c_ep_match_by_both
Searches the endpoint map for those elements that
contain the interface identifier and object UUID
specified by the if_id, vers_option and object_uuid
arguments.

86 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_elt_inq_begin()

if_id Specifies the interface identifier of the endpoint map elements to be
returned by the rpc_mgmt_ep_elt_inq_next routine.

This argument is meaningful only when inquiry_type is one of
rpc_c_ep_match_by_if or rpc_c_ep_match_by_both. Otherwise, the
argument is ignored.

vers_option Specifies how the rpc_mgmt_ep_elt_inq_next() routine uses the if_id
argument.

This argument is meaningful only when inquiry_type is one of
rpc_c_ep_match_by_if or rpc_c_ep_match_by_both. Otherwise, this
argument is ignored.

The following list presents the valid values for this argument.

Value Description

rpc_c_vers_all
Returns endpoint map elements that offer the specified
interface UUID, regardless of the version numbers.

rpc_c_vers_compatible
Returns endpoint map elements that offer the same
major version of the specified interface UUID and a
minor version greater than or equal to the minor
version of the specified interface UUID.

rpc_c_vers_exact
Returns endpoint map elements that offer the specified
version of the specified interface UUID.

rpc_c_vers_major_only
Returns endpoint map elements that offer the same
major version of the specified interface UUID (ignores
the minor version).

rpc_c_vers_upto
Returns endpoint map elements that offer a version of
the specified interface UUID less than or equal to the
specified major and minor version.

object_uuid Specifies the object UUID that the rpc_mgmt_ep_elt_inq_next() routine
looks for in endpoint map elements.

This argument is meaningful only when inquiry_type is one of
rpc_c_ep_match_by_obj or rpc_c_ep_match_by_both. Otherwise, this
argument is ignored.

Output

inquiry_context Returns an inquiry context for use with the rpc_mgmt_ep_elt_inq_next()
and rpc_mgmt_ep_elt_inq_done() routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

Part 2 RPC Application Programmer’s Interface 87

rpc_mgmt_ep_elt_inq_begin() RPC API Manual Pages

rpc_s_ok Success.

DESCRIPTION
The rpc_mgmt_ep_elt_inq_begin() routine creates an inquiry context for viewing server address
information stored in the endpoint map.

Using the inquiry_type and vers_option arguments, an application specifies which of the following
endpoint map elements are to be returned from calls to the rpc_mgmt_ep_elt_inq_next() routine:

• all elements

• those elements with the specified interface identifier

• those elements with the specified object UUID

• those elements with both the specified interface identifier and object UUID.

Before calling the rpc_mgmt_ep_elt_inq_next() routine, the application must first call this routine
to create an inquiry context.

After viewing the endpoint map elements, the application calls the rpc_mgmt_ep_elt_inq_done()
routine to delete the inquiry context.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_unregister()
rpc_mgmt_ep_elt_inq_done()
rpc_mgmt_ep_elt_inq_next()
rpc_mgmt_ep_unregister().

88 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_elt_inq_done()

NAME
rpc_mgmt_ep_elt_inq_done — deletes the inquiry context for viewing the elements in an
endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_done(
rpc_ep_inq_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input/Output

inquiry_context Specifies the inquiry context to delete.

Returns the value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_mgmt_ep_elt_inq_done() routine deletes an inquiry context created by the
rpc_mgmt_ep_elt_inq_begin() routine.

An application calls this routine after viewing local endpoint map elements using the
rpc_mgmt_ep_elt_inq_next() routine.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ep_elt_inq_begin()
rpc_mgmt_ep_elt_inq_next().

Part 2 RPC Application Programmer’s Interface 89

rpc_mgmt_ep_elt_inq_next() RPC API Manual Pages

NAME
rpc_mgmt_ep_elt_inq_next — returns one element from an endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_next(
rpc_ep_inq_handle_t inquiry_context,
rpc_if_id_t *if_id,
rpc_binding_handle_t *binding,
uuid_t *object_uuid,
unsigned_char_t **annotation,
unsigned32 *status);

ARGUMENTS

Input

inquiry_context Specifies an inquiry context. This inquiry context is returned from the
rpc_mgmt_ep_elt_inq_begin routine.

Output

if_id Returns the interface identifier of the endpoint map element.

binding Returns the binding handle from the endpoint map element.

Specify NULL to prevent the routine from returning this argument.

object_uuid Returns the object UUID from the endpoint map element.

Specify NULL to prevent the routine from returning this argument.

annotation Returns the annotation string for the endpoint map element. When there
is no annotation string in the endpoint map element, the empty string ("")
is returned.

Specify NULL to prevent the routine from returning this argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

rpc_s_no_more_elements
No more elements.

rpc_s_com_failure
Communications failure.

DESCRIPTION
The rpc_mgmt_ep_elt_inq_next() routine returns one element from the endpoint map. Elements
selected depend on the inquiry context. The selection criteria are determined by the inquiry_type
argument of the rpc_mgmt_ep_elt_inq_begin() call that returned inquiry_context.
rpc_mgmt_ep_elt_inq_begin() on page 86 describes inquiry types.

90 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_elt_inq_next()

An application can view all the selected endpoint map elements by repeatedly calling the
rpc_mgmt_ep_elt_inq_next() routine. When all the elements have been viewed, this routine
returns an rpc_s_no_more_elements status. The returned elements are unordered.

When the respective arguments are non-NULL, the RPC run-time system allocates memory for
the returned binding and the annotation string on each call to this routine. The application is
responsible for calling the rpc_binding_free() routine for each returned binding and the
rpc_string_free() routine for each returned annotation string.

After viewing the endpoint map’s elements, the application must call the
rpc_mgmt_ep_elt_inq_done() routine to delete the inquiry context.

RETURN VALUE
None.

SEE ALSO
rpc_binding_free()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_mgmt_ep_elt_inq_begin()
rpc_mgmt_ep_elt_inq_done()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 91

rpc_mgmt_ep_unregister() RPC API Manual Pages

NAME
rpc_mgmt_ep_unregister — removes server address information from an endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_ep_unregister(
rpc_binding_handle_t ep_binding,
rpc_if_id_t *if_id,
rpc_binding_handle_t binding,
uuid_t *object_uuid,
unsigned32 *status);

ARGUMENTS

Input

ep_binding Specifies the host whose endpoint map elements are to be unregistered.
To remove elements from the same host as the calling application, the
application specifies NULL.

To remove endpoint map elements from another host, the application
specifies a server binding handle for any server residing on that host.

Note: The application can specify the same binding handle it is using
to make other remote procedure calls.

if_id Specifies the interface identifier to remove from the endpoint map.

binding Specifies the binding handle to remove.

object_uuid Specifies an optional object UUID to remove.

The value NULL indicates there is no object UUID to remove.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

rpc_s_comm_failure
Communications failure.

ept_s_not_registered
No entries found.

DESCRIPTION
The rpc_mgmt_ep_unregister() routine unregisters an element from an endpoint map. A
management program calls this routine to remove addresses of servers that are no longer
available, or to remove addresses of servers that support objects that are no longer offered.

The ep_binding argument must be a full binding. The object UUID associated with the ep_binding
argument must be a nil UUID. Specifying a non-nil UUID causes the routine to fail with the
status code ept_s_cant_perform_op. Other than the host information and object UUID, all

92 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_unregister()

information in this argument is ignored.

Note: Use this routine cautiously. Removing elements from the local endpoint map may
make servers unavailable to client applications that do not already have a fully bound
binding handle to the server.

An application calls the rpc_mgmt_ep_elt_inq_next() routine to view local endpoint map
elements. The application can then remove the elements using the rpc_mgmt_ep_unregister()
routine.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_unexport()
rpc_mgmt_ep_elt_inq_begin()
rpc_mgmt_ep_elt_inq_done()
rpc_mgmt_ep_elt_inq_next().

Part 2 RPC Application Programmer’s Interface 93

rpc_mgmt_inq_com_timeout() RPC API Manual Pages

NAME
rpc_mgmt_inq_com_timeout — returns the communications timeout value for a server binding
handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_inq_com_timeout(
rpc_binding_handle_t binding,
unsigned32 *timeout,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a server binding handle.

Output

timeout Returns the communications timeout value from the binding argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_mgmt_inq_com_timeout() routine returns the communications timeout value in a server
binding handle.

rpc_mgmt_set_com_timeout() on page 107 explains the timeout values in the returned timeout.

To change the timeout value, a client calls the rpc_mgmt_set_com_timeout() routine.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_set_com_timeout().

94 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_inq_dflt_protect_level()

NAME
rpc_mgmt_inq_dflt_protect_level — returns the default protection level for an authentication
service

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_inq_dflt_protect_level(
unsigned32 authn_svc,
unsigned32 *protect_level,
unsigned32 *status);

ARGUMENTS

Input

authn_svc Specifies the authentication service for which to return the default
protection level. (See Appendix D for values of this argument.)

Output

protect_level Returns the default protection level for the specified authentication
service. The protection level determines the degree to which
authenticated communications between the client and the server are
protected. (See Appendix D for values of this argument.)

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unknown_auth_service
Unknown authentication service.

DESCRIPTION
The rpc_mgmt_inq_dflt_protect_level () routine returns the default protection level for the
specified authentication service. The protect_level value returned is the same as the value implied
when the application calls the rpc_binding_set_auth_info () or rpc_server_register_auth_info ()
routines with the same authn_svc value and the protect_level value of
rpc_c_protect_level_default.

RETURN VALUE
None.

SEE ALSO
rpc_binding_inq_auth_client ()
rpc_binding_set_auth_info ()
rpc_server_register_auth_info ().

Part 2 RPC Application Programmer’s Interface 95

rpc_mgmt_inq_if_ids() RPC API Manual Pages

NAME
rpc_mgmt_inq_if_ids — returns a vector of interface identifiers of interfaces a server offers

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_inq_if_ids(
rpc_binding_handle_t binding,
rpc_if_id_vector_t **if_id_vector,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a binding handle. To receive interface identifiers from a remote
application, the calling application specifies a server binding handle for
that application. To receive interface information about itself, the
application specifies NULL.

If the binding handle supplied refers to partially bound binding
information and the binding information contains a nil object UUID, then
this routine returns the rpc_s_binding_incomplete status code. To avoid
this situation, the application can obtain a fully bound server binding
handle by calling the rpc_ep_resolve_binding () routine.

Output

if_id_vector Returns the address of an interface identifier vector.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_no_interfaces
No interfaces registered.

rpc_s_mgmt_op_disallowed
Not authorised for operation.

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set_authorization_fn () on page 104.

DESCRIPTION
An application calls the rpc_mgmt_inq_if_ids () routine to obtain a vector of interface identifiers
listing the interfaces registered by a server with the RPC run-time system.

If a server has not registered any interfaces with the run-time system, this routine returns a
rpc_s_no_interfaces status code and an if_id_vector argument value of NULL.

96 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_inq_if_ids()

The binding handle supplied in the binding argument must refer to binding information that is
fully bound or contains a non-nil object UUID. If the binding handle supplied refers to partially
bound binding information that contains a nil object UUID, the routine returns the
rpc_s_binding_incomplete status code.

The RPC run-time system allocates memory for the interface identifier vector. The application
calls the rpc_if_id_vector_free () routine to release the memory used by this vector.

By default, the RPC run-time system allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorisation function using the
rpc_mgmt_set_authorization_fn () routine.

RETURN VALUE
None.

SEE ALSO
rpc_ep_resolve_binding ()
rpc_if_id_vector_free ()
rpc_mgmt_set_authorization_fn ()
rpc_server_register_if().

Part 2 RPC Application Programmer’s Interface 97

rpc_mgmt_inq_server_princ_name() RPC API Manual Pages

NAME
rpc_mgmt_inq_server_princ_name — returns a server’s principal name

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_inq_server_princ_name(
rpc_binding_handle_t binding,
unsigned32 authn_svc,
unsigned_char_t **server_princ_name,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a server binding handle for the server from which
server_princ_name is returned. A server application can supply the value
NULL to return its own principal name.

If the binding handle supplied refers to partially bound binding
information and the binding information contains a nil object UUID, this
routine fails with the rpc_s_binding_incomplete status code. Applications
can avoid this situation by calling the rpc_ep_resolve_binding () routine to
obtain a fully bound server binding handle.

authn_svc Specifies the authentication service for which a principal name is
returned. (See Appendix D for possible values of this argument.)

Output

server_princ_name Returns a principal name. This name is registered for the authentication
service in the authn_svc argument by the server referenced in binding. If
the server registered multiple principal names, only one of them is
returned.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_no_princ_name
No principal name registered.

rpc_s_not_authorized
Not authorised for operation.

rpc_s_unknown_authn_service
Unknown authentication service.

98 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_inq_server_princ_name()

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set_authorization_fn () on page 104.

DESCRIPTION
An application calls routine rpc_mgmt_inq_server_princ_name() to obtain the principal name of a
server that is registered for a specified authentication service.

The RPC run-time system allocates memory for the string returned in the server_princ_name
argument. The application should call the rpc_string_free() routine to deallocate that memory.

By default, the RPC run-time system allows all clients to call this routine remotely. To establish
non-default authorisation for this or other management calls, a server application supplies an
authorisation function by calling the rpc_mgmt_set_authorization_fn () routine.

RETURN VALUE
None.

SEE ALSO
rpc_binding_inq_object ()
rpc_binding_set_auth_info ()
rpc_ep_resolve_binding ()
rpc_mgmt_set_authorization_fn ()
rpc_server_register_auth_info ()
rpc_string_free()
uuid_is_nil ().

Part 2 RPC Application Programmer’s Interface 99

rpc_mgmt_inq_stats() RPC API Manual Pages

NAME
rpc_mgmt_inq_stats — returns RPC run-time statistics

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_inq_stats(
rpc_binding_handle_t binding,
rpc_stats_vector_t **statistics,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a server binding handle. To receive statistics about a remote
application, the calling application specifies a server binding handle for
that application. To receive statistics itself, the application specifies
NULL. To avoid this situation, applications can obtain a fully bound
server binding handle by calling routine rpc_ep_resolve_binding ().

Output

statistics Returns the statistics vector for the server specified by the binding
argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_mgmt_op_disallowed
Not authorised for operation.

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set_authorization_fn () on page 104.

DESCRIPTION
The rpc_mgmt_inq_stats() routine returns statistics from the RPC run-time system about a
specified server. The statistics returned refer to all calls on the server by all clients.

The elements of a statistics vector are described in Section 3.1 on page 49.

The binding handle supplied in the binding argument must refer to binding information that is
fully bound or contains a non-nil object UUID. If the binding handle supplied refers to partially
bound binding information that contains a nil object UUID, the routine returns the
rpc_s_binding_incomplete status code.

The RPC run-time system allocates memory for the statistics vector. The application calls the
rpc_mgmt_stats_vector_free() routine to release the memory that the statistics vector used.

100 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_inq_stats()

By default, the RPC run-time system allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorisation function using the
rpc_mgmt_set_authorization_fn () routine.

RETURN VALUE
None.

SEE ALSO
rpc_ep_resolve_binding ()
rpc_mgmt_set_authorization_fn ()
rpc_mgmt_stats_vector_free().

Part 2 RPC Application Programmer’s Interface 101

rpc_mgmt_is_server_listening() RPC API Manual Pages

NAME
rpc_mgmt_is_server_listening — tells whether a server is listening for remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

boolean32 rpc_mgmt_is_server_listening(
rpc_binding_handle_t binding,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a server binding handle. To determine if a remote server is
listening for remote procedure calls, the application specifies a server
binding handle for that server. To determine if the application itself is
listening for remote procedure calls, the application specifies NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_comm_failure
Communications failure.

rpc_s_mgmt_op_disallowed
Not authorised for operation.

rpc_s_binding_incomplete
Binding lacks both an object UUID and an endpoint.

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set_authorization_fn () on page 104.

DESCRIPTION
The rpc_mgmt_is_server_listening() routine determines whether the server specified in the binding
argument is listening for remote procedure calls.

This routine returns a value of TRUE if the server has called the rpc_server_listen() routine.

RETURN VALUE
Returns one of the Boolean values TRUE or FALSE.

The following table gives the interpretation of each possible combination of return value and
status value.

102 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_is_server_listening()

Value Returned Status Code Explanation
The specified server is listening for remote
procedure calls.

TRUE rpc_s_ok

rpc_s_ok or
rpc_s_comm_failure

The specified server is not listening for remote
procedure calls, or the server could not be
reached.

FALSE

Not authorised for operation.FALSE rpc_s_mgmt_op_disallowed

SEE ALSO
rpc_server_listen()
rpc_mgmt_set_authorization_fn ()
rpc_ep_resolve_binding ().

Part 2 RPC Application Programmer’s Interface 103

rpc_mgmt_set_authorization_fn() RPC API Manual Pages

NAME
rpc_mgmt_set_authorization_fn — establishes an authorisation function for processing remote
calls to a server’s management routines

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_set_authorization_fn(
rpc_mgmt_authorization_fn_t authorization_fn,
unsigned32 *status);

ARGUMENTS

Input

authorization_fn Specifies an authorisation function. The RPC server run-time system
automatically calls this function whenever the server run-time system
receives a client request to execute one of the remote management
routines. The server must implement this function.

Applications specify NULL to unregister a previously registered
authorisation function. After such a call, default authorisations are used.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
Server applications call rpc_mgmt_set_authorization_fn () to establish an authorisation function
that controls access to the server’s remote management routines. (See Chapter 2 for an
explanation of how remote management routines are implemented in servers.)

When a server has not called rpc_mgmt_set_authorization_fn (), or calls with a NULL value for
authorization_fn, the server run-time system uses the default authorisations shown in the
following table.

Remote Routine Default Authorisation
rpc_mgmt_inq_if_ids () Enabled
rpc_mgmt_inq_server_princ_name() Enabled
rpc_mgmt_inq_stats () Enabled
rpc_mgmt_is_server_listening() Enabled
rpc_mgmt_stop_server_listening() Disabled

In the table, ‘‘Enabled’’ indicates that all clients are allowed to execute the remote routine, and
‘‘Disabled’’ indicates that all clients are prevented from executing the remote routine.

A server calls rpc_mgmt_set_authorization_fn () to establish non-default authorisations.

The following C definition for rpc_mgmt_authorization_fn_t () shows the prototype for the
authorisation function that the server must implement:

104 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_set_authorization_fn()

typedef boolean32 (*rpc_mgmt_authorization_fn_t)
(
rpc_binding_handle_t client_binding, /* in */
unsigned32 requested_mgmt_operation, /* in */
unsigned32 *status /* out */

);

When a client requests one of the server’s remote management functions, the server run-time
system calls the authorisation function with two arguments: client_binding and
requested_mgmt_operation. The authorisation function uses these arguments to determine
whether the calling client is allowed to execute the requested management routine.

The requested_mgmt_operation value depends on the remote management routine requested, as
shown in the following table.

Called Remote Routine requested_mgmt_operation Value
rpc_mgmt_inq_if_ids () rpc_c_mgmt_inq_if_ids
rpc_mgmt_inq_server_princ_name() rpc_c_mgmt_inq_princ_name
rpc_mgmt_inq_stats () rpc_c_mgmt_inq_stats
rpc_mgmt_is_server_listening() rpc_c_mgmt_is_server_listen
rpc_mgmt_stop_server_listening() rpc_c_mgmt_stop_server_listen

The authorisation function must handle all of these values.

The authorisation function returns a Boolean value to indicate whether the calling client is
allowed access to the requested management function. If the authorisation function returns
TRUE, the management routine is allowed to execute. If the authorisation function returns
FALSE, the management routine does not execute. In the latter case, the management routine
returns a status value to the client that depends on the status value returned by the authorisation
function:

• If the status value returned by the authorisation function is either 0 (zero) or rpc_s_ok, then
the status value rpc_s_mgmt_op_disallowed is returned to the client by the remote
management routine.

• If the authorisation function returns any other status value, that status value is returned to the
client by the remote management routine.

The server must implement the authorisation function in a thread-safe manner.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ep_unregister()
rpc_mgmt_inq_if_ids ()
rpc_mgmt_inq_server_princ_name()
rpc_mgmt_inq_stats()
rpc_mgmt_is_server_listening()
rpc_mgmt_stop_server_listening().

Part 2 RPC Application Programmer’s Interface 105

rpc_mgmt_set_cancel_timeout() RPC API Manual Pages

NAME
rpc_mgmt_set_cancel_timeout — sets the lower bound on the time to wait before timing out
after forwarding a cancel

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_set_cancel_timeout(
signed32 seconds,
unsigned32 *status);

ARGUMENTS

Input

seconds An integer specifying the number of seconds to wait for a server to
acknowledge a cancel. To specify that a client waits an infinite amount of
time, supply the value rpc_c_cancel_infinite_timeout.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_mgmt_set_cancel_timeout() routine resets the amount of time the RPC run-time system
waits for a server to acknowledge a cancel before orphaning the call.

The application specifies either to wait forever or to wait a length of time specified in seconds. If
the value of seconds is 0 (zero), the remote procedure call is immediately orphaned when the RPC
run time detects and forwards a pending cancel; control returns immediately to the client
application. The default value is rpc_c_cancel_infinite_timeout, which specifies waiting forever
for the call to complete.

The value for the cancel timeout applies to all remote procedure calls made in the current thread.
A multi-threaded client that wishes to change the timeout value must call this routine in each
thread of execution.

RETURN VALUE
None.

106 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_set_com_timeout()

NAME
rpc_mgmt_set_com_timeout — sets the communication timeout value in a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_set_com_timeout(
rpc_binding_handle_t binding,
unsigned32 timeout,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies the server binding handle whose timeout value is set.

timeout Specifies a communications timeout value.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_mgmt_set_com_timeout() routine resets the communications timeout value in a server
binding handle. The timeout argument specifies the relative amount of time to spend trying to
communicate with the server. Depending on the protocol sequence for the specified binding
handle, the timeout argument acts only as advice to the RPC run-time system.

After the initial relationship is established, subsequent communications for the binding handle
can revert to not less than the default timeouts for the protocol service. This means that after
setting a short initial timeout for establishing a connection, calls in progress are not timed out
any sooner than the default.

The timeout value can be any of the following:

rpc_c_binding_min_timeout
Attempts to communicate for the minimum amount of time for the
network protocol being used. This value favours response time over
correctness in determining whether the server is running.

rpc_c_binding_default_timeout
Attempts to communicate for an average amount of time for the network
protocol being used. This value gives equal consideration to response
time and correctness in determining whether a server is running. This is
the default value.

rpc_c_binding_max_timeout
Attempts to communicate for the longest finite amount of time for the
network protocol being used. This value favours correctness in
determining whether a server is running over response time.

rpc_c_binding_infinite_timeout
Attempts to communicate forever.

Part 2 RPC Application Programmer’s Interface 107

rpc_mgmt_set_com_timeout() RPC API Manual Pages

Note that these values represent relative, rather than absolute, values.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_inq_com_timeout().

108 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_set_server_stack_size()

NAME
rpc_mgmt_set_server_stack_size — specifies the stack size for server call threads

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_set_server_stack_size(
unsigned32 thread_stack_size,
unsigned32 *status);

ARGUMENTS

Input

thread_stack_size Specifies the stack size, in bytes, for call threads created when the server
calls rpc_server_listen(). Select this value based on the stack requirements
of the remote procedures offered by the server.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_not_supported
Not supported.

DESCRIPTION
The rpc_mgmt_set_server_stack_size() routine specifies the thread stack size to use when the RPC
run-time system creates call threads for executing remote procedure calls. Call threads are
created when the server applications calls rpc_server_listen(). The max_calls_exec argument to the
rpc_server_listen() routine specifies the number of call threads created.

The server must call this routine before calling the rpc_server_listen() routine. If a server does not
call this routine, the default per-thread stack size from the underlying threads package is used.

The thread stack size set by rpc_mgmt_set_server_stack_size() applies only to call threads created
when the server subsequently calls rpc_server_listen().

Some thread packages do not support the specification or modification of thread stack sizes.

RETURN VALUE
None.

SEE ALSO
rpc_server_listen().

Part 2 RPC Application Programmer’s Interface 109

rpc_mgmt_stats_vector_free() RPC API Manual Pages

NAME
rpc_mgmt_stats_vector_free — frees a statistics vector

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_stats_vector_free(
rpc_stats_vector_t **stats_vector,
unsigned32 *status);

ARGUMENTS

Input/Output

stats_vector Specifies a statistics vector. On successful return, stats_vector contains the
value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
An application calls the rpc_mgmt_stats_vector_free() routine to release the memory used to store
a vector of statistics obtained with a call to rpc_mgmt_inq_stats().

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_inq_stats().

110 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_stop_server_listening()

NAME
rpc_mgmt_stop_server_listening — tells a server to stop listening for remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

void rpc_mgmt_stop_server_listening(
rpc_binding_handle_t binding,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a server binding handle for the server that is to stop listening for
remote procedure calls. Specifying NULL causes the application itself to
stop listening.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_comm_failure
Communications failure.

rpc_s_not_authorized
Not authorised for operation.

rpc_s_unknown_if
Server does not support this interface.

rpc_s_binding_incomplete
Binding lacks both an object UUID and an endpoint.

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set_authorization_fn () on page 104.

DESCRIPTION
The rpc_mgmt_stop_server_listening() routine directs a server to stop listening for remote
procedure calls.

On receipt of such a request, the RPC run-time system stops accepting new remote procedure
calls.

RETURN VALUE
None.

SEE ALSO
rpc_server_listen()
rpc_mgmt_set_authorization_fn ()
rpc_ep_resolve_binding ().

Part 2 RPC Application Programmer’s Interface 111

rpc_network_inq_protseqs() RPC API Manual Pages

NAME
rpc_network_inq_protseqs — returns all protocol sequences supported both by the local
implementation of the RPC run-time system and the operating system

SYNOPSIS
#include <dce/rpc.h>

void rpc_network_inq_protseqs(
rpc_protseq_vector_t **protseq_vector,
unsigned32 *status);

ARGUMENTS

Output

protseq_vector Returns the address of a protocol sequence vector.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success. One or more protocol sequences are supported
by the local implementation of the RPC run-time
system and the operating system.

rpc_s_no_protseqs
No supported protocol sequences.

DESCRIPTION
The rpc_network_inq_protseqs() routine obtains a vector containing the protocol sequences
supported by the RPC run-time system and the operating system. A protocol sequence is
supported when the RPC run-time system and the operating system implement the protocol
stack specified by the protocol sequence.

In order to offer its services remotely, a server must accept remote procedure calls over one or
more of the supported protocol sequences. When there are no supported protocol sequences,
this routine returns the rpc_s_no_protseqs status code and the value NULL in the returned
protseq_vector.

The application is responsible for calling the rpc_protseq_vector_free() routine to release the
memory used by the returned protocol sequence vector.

RETURN VALUE
None.

SEE ALSO
rpc_protseq_vector_free().

112 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_network_is_protseq_valid()

NAME
rpc_network_is_protseq_valid — tells whether the specified protocol sequence is valid and/or is
supported by the local implementation of the RPC run-time system and the operating system

SYNOPSIS
#include <dce/rpc.h>

boolean32 rpc_network_is_protseq_valid(
unsigned_char_t *protseq,
unsigned32 *status);

ARGUMENTS

Input

protseq Specifies a protocol sequence. Appendix B lists valid protocol sequence
identifiers that may be used for this argument.

The rpc_network_is_protseq_valid () routine determines whether this
argument contains a valid and/or supported protocol sequence.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success. The protocol sequence is valid and supported
by the local implementation of the RPC run-time
system and the operating system.

rpc_s_invalid_protseq
Invalid protocol sequence.

rpc_s_protseq_not_supported
The protocol sequence is valid but not supported by
the local implementation of the RPC run-time system
and/or the operating system.

DESCRIPTION
The rpc_network_is_protseq_valid () routine determines whether a specified protocol sequence is
both valid and supported and thus available for making remote procedure calls.

• A protocol sequence is valid if it is one of the protocol sequence strings recognised by the
implementation. Information about valid protocol sequence strings is given in Appendix B.

• A protocol sequence is supported if the local RPC run-time system and the operating system
implement the protocol stack specified by the protocol sequence.

An application can obtain the set of valid and supported protocol sequences by calling the
rpc_network_inq_protseqs() routine.

RETURN VALUE
The rpc_network_is_protseq_valid () routine returns the following values:

TRUE The protocol sequence specified in the protseq argument is valid and
supported by the RPC run-time system and the operating system. The
routine also returns the status code rpc_s_ok in the status argument.

Part 2 RPC Application Programmer’s Interface 113

rpc_network_is_protseq_valid() RPC API Manual Pages

FALSE The protocol sequence specified in the protseq argument is not valid or not
supported. The routine also returns a status code not equal to rpc_s_ok.

SEE ALSO
rpc_network_inq_protseqs()
rpc_string_binding_parse ().

114 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_export()

NAME
rpc_ns_binding_export — establishes a name service database entry with binding handles
and/or object UUIDs for a server

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_export(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. See
Appendix C for the possible values of this argument.

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry to which binding handles and/or object UUIDs are
exported. The entry name syntax is identified by the argument
entry_name_syntax.

if_handle Identifies the interface to export. Specifying the value NULL indicates
that there are no binding handles to export, and the binding_vec argument
is ignored.

binding_vec Specifies a vector of server bindings to export. The application specifies
the value NULL for this argument when there are no binding handles to
export.

object_uuid_vec Identifies a vector of object UUIDs offered by the application. The
application constructs this vector. NULL indicates that there are no object
UUIDs to export.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Part 2 RPC Application Programmer’s Interface 115

rpc_ns_binding_export() RPC API Manual Pages

DESCRIPTION
The rpc_ns_binding_export () routine allows a server application to make bindings to an interface
it offers available in a name service. A server application can also use this routine to make
available the object UUIDs of application resources.

To export an interface, the server application calls rpc_ns_binding_export () with an interface and
server binding handles that reference bindings a client can use to access the server.

A server can export interfaces and objects in a single call to this routine, or it can export them
separately.

If the entry in the name service database specified by the entry_name argument does not exist,
the rpc_ns_binding_export () routine tries to create it. In this case a server must have the correct
permissions to create the entry.

Before calling the rpc_ns_binding_export () routine to export interfaces (but not to export object
UUIDs), a server must do the following:

• Register one or more protocol sequences with the local RPC run-time system by calling the
one of the following routines:

rpc_server_use_protseq()
rpc_server_use_protseq_if()
rpc_server_use_protseq_ep()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()

• Obtain a list of server bindings by calling the rpc_server_inq_bindings() routine.

The application uses the vector returned from the rpc_server_inq_bindings() routine to supply
the binding_vec argument for rpc_ns_binding_export (). To prevent a binding from being
exported, the application can set the selected vector element to the value NULL.

In addition to calling rpc_ns_binding_export (), a server that calls either of the routines
rpc_server_use_all_protseqs() or rpc_server_use_protseq() must also register with the local endpoint
map by calling the rpc_ep_register() or rpc_ep_register_no_replace() routines.

If a server exports an interface to the same entry in the name service database more than once,
the second and subsequent calls to this routine add the binding information and object UUIDs
only if they differ from the ones in the server entry. Existing data is not removed from the entry.

Permissions Required

The application needs both read permission and write permission to the target name service
entry. If the entry does not exist, the application also needs insert permission to the parent
directory.

RETURN VALUE
None.

116 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_export()

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_unexport()
rpc_ns_mgmt_binding_unexport()
rpc_ns_mgmt_entry_create()
rpc_server_inq_bindings()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

Part 2 RPC Application Programmer’s Interface 117

rpc_ns_binding_import_begin() RPC API Manual Pages

NAME
rpc_ns_binding_import_begin — creates an import context for an interface and an object in the
name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_import_begin(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
uuid_t *obj_uuid,
rpc_ns_handle_t *import_context,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. See
Appendix C for the possible values of this argument.

The value rpc_c_ns_syntax_default specifies the syntax given by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry where the search for compatible binding handles
begins. The entry name syntax is identified by the argument
entry_name_syntax.

To use the entry name found in the RPC_DEFAULT_ENTRY environment
variable, the application supplies NULL or an empty string ("") for this
argument. When the default entry name is used, the RPC run-time system
uses the default name syntax specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

if_handle Specifies the interface to import.

If the interface specification has not been exported or is of no concern to
the caller, the application specifies NULL for this argument. In this case
the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and, depending on the value of argument
obj_uuid, contain the specified object UUID.

obj_uuid Specifies an object UUID.

If the application specifies a nil UUID for this argument, and the
compatible server exported object UUIDs, bindings returned by
subsequent calls to rpc_ns_binding_import_done () contain one of the
exported object UUIDs. If the server did not export any object UUIDs, the
returned binding handles contain a nil object UUID.

If the application specifies a non-nil UUID for this argument, subsequent
calls to rpc_ns_binding_import_done () return bindings that contain the
specified non-nil object UUID.

118 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_import_begin()

Output

import_context Returns a name service handle for use with the
rpc_ns_binding_import_done () and rpc_ns_binding_import_done () routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_binding_import_begin () routine creates an import context for importing compatible
server bindings. Compatible bindings are those that offer the interface and object UUIDS
specified by the if_handle and obj_uuid arguments.

The application must call this routine to create an import context before calling the
rpc_ns_binding_import_done () routine.

After importing bindings, the the application calls the rpc_ns_binding_import_done () routine to
delete the import context.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_import_done ()
rpc_ns_binding_import_done ()
rpc_ns_mgmt_handle_set_exp_age ().

Part 2 RPC Application Programmer’s Interface 119

rpc_ns_binding_import_done() RPC API Manual Pages

NAME
rpc_ns_binding_import_done — deletes the import context for searching the name service
database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_import_done(
rpc_ns_handle_t *import_context,
unsigned32 *status);

ARGUMENTS

Input/Output

import_context Specifies the name service handle to delete. (A name service handle is
created by calling the rpc_ns_binding_import_begin () routine.)

On success, returns the value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_binding_import_done () routine deletes an import context created by calling the
rpc_ns_binding_import_begin () routine. This deletion does not affect any previously imported
bindings.

Note: Typically, a client calls this routine after completing remote procedure calls to a server
using a binding handle returned from the rpc_ns_binding_import_done () routine. A
client program calls this routine for each created import context, regardless of the
status returned from the rpc_ns_binding_import_done () routine, or the success in making
remote procedure calls.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_import_begin ()
rpc_ns_binding_import_done ().

120 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_import_next()

NAME
rpc_ns_binding_import_done — returns a binding handle of a compatible server (if found) from
the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_import_next(
rpc_ns_handle_t import_context,
rpc_binding_handle_t *binding,
unsigned32 *status);

ARGUMENTS

Input

import_context Specifies a name service handle. Applications obtain this handle by
calling rpc_ns_binding_import_begin ().

Output

binding Returns a compatible server binding handle.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_bindings
No more bindings.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_binding_import_done () routine returns one compatible, exported server binding
handle. Compatible binding handles are specified by the import_context argument that the
application obtains by calling rpc_ns_binding_import_begin (). (See rpc_ns_binding_import_begin ()
on page 118 for further information on the selection of compatible binding handles.)

Note: A similar routine is rpc_ns_binding_lookup_next (), which returns a vector of compatible
server binding handles for one or more servers.

Part 2 RPC Application Programmer’s Interface 121

rpc_ns_binding_import_next() RPC API Manual Pages

On successive calls, this routine returns a series of compatible bindings, one at a time. Successive
invocations eventually return all such bindings from all relevant entries. When there are no
further compatible bindings, the routine returns a status code of rpc_s_no_more_bindings and
the value NULL in the binding argument.

The rpc_ns_binding_import_done () routine obeys the binding search rules specified in Chapter 2
and Section 2.4 on page 31. The order in which bindings are returned to the application depends
on the search rules in the following way: when the search encounters a binding attribute
containing compatible bindings, successive calls to rpc_ns_binding_import_done () return all
compatible bindings from that attribute in random order.

Notes: Bindings are returned from each binding attribute in random order in order to provide
load balancing among bindings.

Implementations may buffer bindings from each binding attribute in an
implementation-dependent sized buffer. If the number of compatible bindings from a
binding attribute exceeds the buffer size, bindings are returned from the buffer in
random order until the buffer is exhausted. Then the buffer is refilled from the same
binding attribute. This process is repeated until all the bindings from the binding
attribute have been returned. In this case, returned bindings are randomised within a
buffer, but not among buffers.

Because of this randomisation, the order in which bindings are returned can be different for each
new search beginning with a call to rpc_ns_binding_import_done (). This means that the order in
which bindings are returned to an application can be different each time the application is run.

The returned compatible binding contains an object UUID. Its value depends on the value of the
obj_uuid argument to the rpc_ns_binding_import_begin () call that returned import_context:

• When obj_uuid contains a non-nil object UUID, the returned binding contains that object
UUID.

• When obj_uuid contains a nil object UUID, the object UUID returned in the binding depends
on how the servers exported object UUIDs to namespace entries. For a given namespace
entry in the traversal path:

— When servers did not export any object UUIDs to the given entry, the returned binding
contains a nil object UUID.

— When servers exported one object UUID to the given entry, the returned binding contains
that object UUID.

— When servers exported multiple object UUIDs to the given entry, the returned binding
contains one of the object UUIDs. rpc_ns_binding_import_done () selects the returned
object UUID in an unspecified way.

The client application can use the returned compatible binding handle to make a remote
procedure calls to the server.

Note: If the client fails to communicate with the server, it can call
rpc_ns_binding_import_done () again.

Each time the client calls the rpc_ns_binding_import_done () routine, the routine returns another
server binding handle. Different binding handles can refer to different protocol sequences from
the same server.

If the same compatible binding is encountered more than once in a search,
rpc_ns_binding_import_done () may choose not to return every instance of the binding. The
rpc_ns_binding_import_done () routine allocates memory for the returned binding argument.

122 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_import_next()

When a client application finishes with the binding handle, it must call the rpc_binding_free()
routine to deallocate the memory. Each call to the rpc_ns_binding_import_done () routine requires
a corresponding call to the rpc_binding_free() routine.

The application calls the rpc_ns_binding_import_done () routine when it has finished using the
import context. This deletes the import context.

Permissions Required

The application needs read permission to the starting name service entry and to any object entry
in the resulting traversal path.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_import_begin ()
rpc_ns_binding_import_done ()
rpc_ns_binding_inq_entry_name()
rpc_ns_binding_lookup_begin ()
rpc_ns_binding_lookup_done ()
rpc_ns_binding_lookup_next ()
rpc_ns_binding_select()
rpc_ns_binding_export ()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 123

rpc_ns_binding_inq_entry_name() RPC API Manual Pages

NAME
rpc_ns_binding_inq_entry_name — returns the name of the name service database entry that
contains a given binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_inq_entry_name(
rpc_binding_handle_t binding,
unsigned32 entry_name_syntax,
unsigned_char_t **entry_name,
unsigned32 *status);

ARGUMENTS

Input

binding Specifies a server binding handle whose entry name in the name service
database is returned.

entry_name_syntax An integer value that specifies the syntax of the returned entry_name. (See
Appendix C for information about values of this argument.)

To use the syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, the application provides the value
rpc_c_ns_syntax_default.

Output

entry_name Returns the name of the entry in the name service database in which
binding was found. The returned name conforms to the specified syntax.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_no_entry_name
No entry name for binding.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_binding_inq_entry_name() routine returns the name of the name service database
entry that contains a binding handle for a compatible server.

The RPC run-time system allocates memory for the string returned in entry_name. The
application calls the rpc_string_free() routine to deallocate this memory.

The binding argument must come from a call to one of the rpc_ns_binding_import_done (),
rpc_ns_binding_lookup_next() or rpc_ns_binding_select() routines.

When the binding handle specified in the binding argument is not from an entry in the name
service database, this routine returns the rpc_s_no_entry_name status code.

124 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_inq_entry_name()

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_next ()
rpc_ns_binding_select()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 125

rpc_ns_binding_lookup_begin() RPC API Manual Pages

NAME
rpc_ns_binding_lookup_begin — creates a lookup context for an interface and an object in the
name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_lookup_begin(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
uuid_t *object_uuid,
unsigned32 binding_max_count,
rpc_ns_handle_t *lookup_context,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax given by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry where the search for compatible binding handles
begins. The entry name syntax is identified by the argument
entry_name_syntax.

To use the entry name found in the RPC_DEFAULT_ENTRY environment
variable, the application supplies NULL or an empty string ("") for this
argument. When the default entry name is used, the RPC run-time system
uses the default name syntax specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

if_handle Specifies the interface to import.

If the interface specification has not been exported or is of no concern to
the caller, the application specifies NULL for this argument. In this case
the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and, depending on the value of argument
obj_uuid, contain the specified object UUID.

obj_uuid Specifies an object UUID.

If the application specifies a nil UUID for this argument, and the
compatible server exported object UUIDs, binding handles returned by
subsequent calls to rpc_ns_binding_lookup_next () contain one of the
exported object UUIDs. If the server did not export any object UUIDs, the
returned binding handles contain a nil object UUID.

If the application specifies a non-nil UUID for this argument, subsequent
calls to rpc_ns_binding_lookup_next () return binding handles that contain
the specified non-nil object UUID.

126 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_lookup_begin()

binding_max_count Sets the maximum number of bindings to return in the binding_vector
argument of the rpc_ns_binding_lookup_next () routine.

To use the default count, specify rpc_c_binding_max_count.

Output

lookup_context Returns the name service handle for use with the
rpc_ns_binding_lookup_next () and rpc_ns_binding_lookup_done()
routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_binding_lookup_begin () routine creates a lookup context for locating compatible
server binding handles for servers. Compatible binding handles are those that offer the interface
and object UUIDS specified by the if_handle and obj_uuid arguments.

The application must call this routine to create a lookup context before calling the
rpc_ns_binding_lookup_next () routine.

After looking up binding handles, the the application calls the rpc_ns_binding_lookup_done ()
routine to delete the import context.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_lookup_next ()
rpc_ns_binding_lookup_done ()
rpc_ns_mgmt_handle_set_exp_age ().

Part 2 RPC Application Programmer’s Interface 127

rpc_ns_binding_lookup_done() RPC API Manual Pages

NAME
rpc_ns_binding_lookup_done — deletes the lookup context for searching the name service
database (used by client applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_lookup_done(
rpc_ns_handle_t *lookup_context,
unsigned32 *status);

ARGUMENTS

Input/Output

lookup_context Specifies the name service handle to delete. (A name service handle is
created by calling the rpc_ns_binding_lookup_begin () routine.)

On success, returns the value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_binding_lookup_done () routine deletes a lookup context created by calling the
rpc_ns_binding_lookup_begin () routine.

Note: Typically, a client calls this routine after completing remote procedure calls to a server
using a binding handle returned from the rpc_ns_binding_lookup_next () routine. A client
program calls this routine for each created lookup context, regardless of the status
returned from the rpc_ns_binding_lookup_next () routine, or success in making remote
procedure calls.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_lookup_begin ()
rpc_ns_binding_lookup_next ().

128 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_lookup_next()

NAME
rpc_ns_binding_lookup_next — returns a list of binding handles of one or more compatible
servers, if found, from the name service database (used by client applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_lookup_next(
rpc_ns_handle_t lookup_context,
rpc_binding_vector_t **binding_vec,
unsigned32 *status);

ARGUMENTS

Input

lookup_context Specifies a name service handle. This handle is returned from the
rpc_ns_binding_lookup_begin () routine.

Output

binding_vec Returns a vector of compatible server binding handles.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_bindings
No more bindings.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_binding_lookup_next () routine returns a vector of compatible exported server binding
handles. Compatible binding handles are specified by the import_context argument that the
application obtains by calling rpc_ns_binding_lookup_begin (). (See rpc_ns_binding_lookup_begin ()
on page 126 for further information on the selection of compatible binding handles.)

A similar routine is rpc_ns_binding_import_done (), which returns one compatible server binding
handle.

On successive calls, this routine traverses entries in the name service database, returning
compatible server binding handles from each entry. The routine can return multiple binding
handles from each entry. Successive invocations eventually return all such binding handles from

Part 2 RPC Application Programmer’s Interface 129

rpc_ns_binding_lookup_next() RPC API Manual Pages

all relevant entries. When there are no further compatible binding handles, the routine returns a
status code of rpc_s_no_more_bindings and the value NULL in binding_vec.

The rpc_ns_binding_lookup_next () routine obeys the binding search rules specified in Chapter 2
and Section 2.4 on page 31.

Each returned compatible binding handle contains an object UUID. Its value depends on the
value of the obj_uuid argument to the rpc_ns_binding_lookup_begin () call that returned
lookup_context:

• When obj_uuid contains a non-nil object UUID, the returned binding handle contains that
object UUID.

• When obj_uuid contains a nil object UUID, the object UUID returned in the binding handle
depends on how the servers exported object UUIDs to namespace entries. For a given
namespace entry in the traversal path:

— When servers did not export any object UUIDs to the given entry, the returned binding
handle contains a nil object UUID.

— When servers exported one object UUID to the given entry, the returned binding handle
contains that object UUID.

— When servers exported multiple object UUIDs to the given entry, the returned binding
handle contains one of the object UUIDs. rpc_ns_binding_lookup_next () selects the
returned object UUID in an unspecified way.

Notes: From the returned vector of server binding handles, the client application can employ
its own criteria for selecting individual binding handles, or the application can call the
rpc_ns_binding_select() routine to select a binding handle. The
rpc_binding_to_string_binding () and rpc_string_binding_parse () routines are useful for a
client creating its own selection criteria.

The client application can use the selected binding handle to attempt a remote
procedure call to the server. If the client fails to communicate with the server, it can
select another binding handle from the vector. When all of the binding handles in the
vector are used, the client application calls the rpc_ns_binding_lookup_next () routine
again.

Each time the client calls the rpc_ns_binding_lookup_next () routine, the routine returns another
vector of binding handles. The binding handles returned in each vector are randomly ordered.
The vectors returned from multiple calls to this routine are also randomly ordered.

When looking up compatible binding handles from a profile, the binding handles from entries of
equal profile priority are randomly ordered in the returned vector. In addition, the vector
returned from a call to rpc_ns_binding_lookup_next () contains only compatible binding handles
from entries of equal profile priority. This means the returned vector may be partially full.

For example, if the binding_max_count argument value in rpc_ns_binding_lookup_begin () was 5
and rpc_ns_binding_lookup_next () finds only three compatible binding handles from profile
entries of priority 1, rpc_ns_binding_lookup_next () returns a partially full binding vector (with
three binding handles). The next call to rpc_ns_binding_lookup_next () creates a new binding
vector and begins looking for compatible binding handles from profile entries of priority 0.

If the same compatible binding is encountered more than once in a search,
rpc_ns_binding_lookup_next () may choose not to return every instance of the binding.

When the search finishes, the routine returns a status code of rpc_s_no_more_bindings and
returns the value NULL in binding_vec.

130 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_lookup_next()

Note: The rpc_ns_binding_inq_entry_name() routine is called by an application in order to
obtain the name of the entry in the name service database where the binding handle
came from.

The rpc_ns_binding_lookup_next () routine allocates memory for the returned binding_vec. When
an application finishes with the vector, it must call the rpc_binding_vector_free () routine to
deallocate the memory. Each call to the rpc_ns_binding_lookup_next () routine requires a
corresponding call to the rpc_binding_vector_free () routine.

The application calls the rpc_ns_binding_lookup_done () to delete the lookup context when it is
done with a search or to begin a new search for compatible servers (by calling the
rpc_ns_binding_lookup_begin () routine). The order of binding handles returned can be different
for each new search. This means that the order in which binding handles are returned to an
application can be different each time the application is run.

Permissions Required

The application needs read permission to the specified name service object entry (the starting
name service entry) and to any name service object entry in the resulting search path.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_begin ()
rpc_ns_binding_lookup_done ()
rpc_ns_binding_select()
rpc_binding_vector_free ()
rpc_ns_binding_inq_entry_name()
rpc_binding_to_string_binding ()
rpc_string_binding_parse ()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 131

rpc_ns_binding_select() RPC API Manual Pages

NAME
rpc_ns_binding_select — returns a binding handle from a list of compatible binding handles

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_select(
rpc_binding_vector_t *binding_vec,
rpc_binding_handle_t *binding,
unsigned32 *status);

ARGUMENTS

Input/Output

binding_vec Specifies the vector of compatible server binding handles from which a
binding handle is selected. The returned binding vector no longer
references the selected binding handle (which is returned separately in
binding).

Output

binding Returns a selected server binding handle.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_no_more_bindings
No more bindings.

DESCRIPTION
The rpc_ns_binding_select() routine randomly chooses and returns a server binding handle from
a vector of server binding handles.

Each time the application calls the rpc_ns_binding_select() routine, the routine returns another
binding handle from the vector.

When all of the binding handles are returned from the vector, the routine returns a status code of
rpc_s_no_more_bindings and returns the value NULL in binding.

The RPC run-time system allocates storage for the data referenced by the returned binding.
When an application finishes with the binding handle, it calls the rpc_binding_free() routine to
deallocate the storage. Each call to the rpc_ns_binding_select() routine requires a corresponding
call to the rpc_binding_free() routine.

Note: Instead of using this routine, applications can select a binding handle according to their
specific needs. In this case the rpc_binding_to_string_binding () and
rpc_string_binding_parse () routines are useful to the applications since the routines
work together to extract the individual fields of a binding handle for examination.

Permissions Required

None.

132 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_select()

RETURN VALUE
None.

SEE ALSO
rpc_binding_free()
rpc_binding_to_string_binding ()
rpc_ns_binding_lookup_next ()
rpc_string_binding_parse ().

Part 2 RPC Application Programmer’s Interface 133

rpc_ns_binding_unexport() RPC API Manual Pages

NAME
rpc_ns_binding_unexport — removes binding handles and/or object UUIDs from an entry in the
name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_binding_unexport(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry from which binding handles or objects UUIDs are
removed. The entry name syntax is identified by the argument
entry_name_syntax.

if_handle An interface specification for the binding handles to be removed from the
name service database. The value NULL indicates that no binding
handles are removed.

object_uuid_vec A vector of object UUIDs to be removed from the name service database.
The application constructs this vector. The value NULL indicates that no
object UUIDs are removed.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_interface_not_found
Interface not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

134 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_unexport()

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_not_rpc_entry
Not an RPC entry.

DESCRIPTION
The rpc_ns_binding_unexport() routine allows an application to unexport (that is, remove) one of
the following from an entry in the name service database:

• all the binding handles for an interface

• one or more object UUIDs for a resource or resources

• both binding handles and object UUIDs.

The rpc_ns_binding_unexport() routine removes only those binding handles that match the
interface UUID and the major and minor interface version numbers found in the if_handle
argument. To remove multiple versions of an interface, applications use the
rpc_ns_mgmt_binding_unexport() routine.

Note: A server application can remove an interface and objects in a single call to this routine,
or it can remove them separately.

If the rpc_ns_binding_unexport() routine does not find any binding handles for the specified
interface, the routine returns an rpc_s_interface_not_found status code and does not remove the
object UUIDs, if any are specified.

If the application specifies both binding handles and object UUIDs, the object UUIDs are
removed only if the rpc_ns_binding_unexport() routine succeeds in removing the binding
handles.

If any of the specified object UUIDs are not found, routine rpc_ns_binding_unexport() returns the
status code rpc_s_not_all_objs_unexported.

Notes: Besides calling this routine, an application also calls the rpc_ep_unregister() routine to
unregister any endpoints that the server previously registered with the local endpoint
map.

Applications normally call this routine only when a server is expected to be unavailable
for an extended time.

Permissions Required

The application needs both read permission and write permission to the target name service
entry.

RETURN VALUE
None.

SEE ALSO
rpc_ep_unregister()
rpc_ns_binding_export ()
rpc_ns_mgmt_binding_unexport().

Part 2 RPC Application Programmer’s Interface 135

rpc_ns_entry_expand_name() RPC API Manual Pages

NAME
rpc_ns_entry_expand_name — returns a canonicalised version of an entry name

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_entry_expand_name(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
unsigned_char_t **expanded_name,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax Specifies the syntax of argument entry_name. (See Appendix C for the
possible values of this argument.)

An application can supply the value rpc_c_ns_syntax_default to use the
syntax specified by the RPC_DEFAULT_ENTRY_SYNTAX environment
variable.

entry_name The name of the entry to canonicalise. The entry name syntax is identified
by the argument entry_name_syntax.

Output

expanded_name Returns a pointer to the canonicalised version of argument entry_name.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
An application calls the rpc_ns_entry_expand_name() routine to obtain a canonicalised version of
an entry name. Canonicalisation rules depend on the underlying name service.

The RPC run-time system allocates memory for the returned expanded_name. The application is
responsible for calling the rpc_string_free() routine to free this memory.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_string_free().

136 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_entry_object_inq_begin()

NAME
rpc_ns_entry_object_inq_begin — creates an inquiry context for viewing the objects of an entry
in the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_begin(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry in the name service database for which object
UUIDs are viewed. The entry name syntax is identified by the argument
entry_name_syntax.

Output

inquiry_context Returns an inquiry context for use with routines
rpc_ns_entry_object_inq_next() and rpc_ns_entry_object_inq_done().

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_entry_object_inq_begin() routine creates an inquiry context for viewing the object
UUIDs exported to entry_name.

Before calling the rpc_ns_entry_object_inq_next() routine, the application must first call this
routine to create an inquiry context.

When finished viewing the object UUIDs, the application calls the rpc_ns_entry_object_inq_done()
routine to delete the inquiry context.

Permissions Required

None.

RETURN VALUE
None.

Part 2 RPC Application Programmer’s Interface 137

rpc_ns_entry_object_inq_begin() RPC API Manual Pages

SEE ALSO
rpc_ns_binding_export ()
rpc_ns_entry_object_inq_done()
rpc_ns_entry_object_inq_next()
rpc_ns_mgmt_handle_set_exp_age ().

138 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_entry_object_inq_done()

NAME
rpc_ns_entry_object_inq_done — deletes the inquiry context for viewing the objects of an entry
in the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_done(
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input/Output

inquiry_context Specifies the inquiry context to delete. (An inquiry context is created by
calling the rpc_ns_entry_object_inq_begin() routine.)

On success, returns the value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_entry_object_inq_done() routine deletes an inquiry context created by calling the
rpc_ns_entry_object_inq_begin() routine.

An application calls this routine after viewing exported object UUIDs using the
rpc_ns_entry_object_inq_next() routine.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_entry_object_inq_begin()
rpc_ns_entry_object_inq_next().

Part 2 RPC Application Programmer’s Interface 139

rpc_ns_entry_object_inq_next() RPC API Manual Pages

NAME
rpc_ns_entry_object_inq_next — returns one object at a time from an entry in the name service
database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_next(
rpc_ns_handle_t inquiry_context,
uuid_t *obj_uuid,
unsigned32 *status);

ARGUMENTS

Input

inquiry_context Specifies an inquiry context. The application obtains the inquiry context
by calling the rpc_ns_entry_object_inq_begin() routine.

Output

obj_uuid Returns an exported object UUID.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_entry_object_inq_next() routine returns one of the object UUIDs exported to an entry
in the name service database. The entry_name argument in the rpc_ns_entry_object_inq_begin()
routine specifies the entry.

An application can view all of the exported object UUIDs by repeatedly calling the
rpc_ns_entry_object_inq_next() routine. When all the object UUIDs are viewed, this routine
returns an rpc_s_no_more_members status. The returned object UUIDs are returned in
unspecified order.

The application supplies the memory for the object UUID returned in obj_uuid.

140 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_entry_object_inq_next()

After viewing the object UUIDs, the application must call the rpc_ns_entry_object_inq_done()
routine to delete the inquiry context.

The order in which routine rpc_ns_entry_object_inq_next() returns object UUIDs can be different
for each viewing of an entry. This means that the order in which an application receives object
UUIDs can be different each time the application is run.

Permissions Required

The application needs read permission for the target name service entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_export ()
rpc_ns_entry_object_inq_begin()
rpc_ns_entry_object_inq_done()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 141

rpc_ns_group_delete() RPC API Manual Pages

NAME
rpc_ns_group_delete — deletes a group attribute

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_group_delete(
unsigned32 group_name_syntax,
unsigned_char_t *group_name,
unsigned32 *status);

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group to delete. The group name syntax is identified by
the argument group_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_group_delete() routine deletes the group attribute from the specified entry in the
name service database.

Neither the specified entry nor the entries represented by the group members are deleted.

Permissions Required

The application needs write permission to the target name service entry.

142 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_delete()

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_add()
rpc_ns_group_delete().

Part 2 RPC Application Programmer’s Interface 143

rpc_ns_group_mbr_add() RPC API Manual Pages

NAME
rpc_ns_group_mbr_add — adds an entry name to a group; if necessary, creates the entry

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_group_mbr_add(
unsigned32 group_name_syntax,
unsigned_char_t *group_name,
unsigned32 member_name_syntax,
unsigned_char_t *member_name,
unsigned32 *status);

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group to which the member is added. The group name
syntax is identified by the argument group_name_syntax.

member_name_syntax An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

member_name The name of the group member to add. The member name syntax is
identified by the argument member_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_group_mbr_add() routine adds a group member to the group attribute of a name
service entry. The group_name argument specifies the entry.

144 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_add()

If the specified group_name entry does not exist, this routine creates the entry with a group
attribute and adds the group member specified by the member_name argument. In this case, the
application must have permission to create the entry.

An application can add the entry in argument member_name to a group before it creates the
member itself.

Permissions Required

The application needs both read permission and write permission for the target name service
entry. If the entry does not exist, the application also needs insert permission for the parent
directory.

RETURN VALUE
None.

SEE ALSO
rpc_group_mbr_remove()
rpc_ns_mgmt_entry_create().

Part 2 RPC Application Programmer’s Interface 145

rpc_ns_group_mbr_inq_begin() RPC API Manual Pages

NAME
rpc_ns_group_mbr_inq_begin — creates an inquiry context for viewing group members

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_begin(
unsigned32 group_name_syntax,
unsigned_char_t *group_name,
unsigned32 member_name_syntax,
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group to view. The group name syntax is identified by
the argument group_name_syntax.

member_name_syntax An integer value that specifies the syntax of return argument
member_name for the rpc_ns_group_mbr_inq_next() routine. (See Appendix
C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Output

inquiry_context Returns an inquiry context for use with the rpc_ns_group_mbr_inq_next()
and rpc_ns_group_mbr_inq_done() routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_group_mbr_inq_begin() routine creates an inquiry context for viewing the members of
an RPC group.

The application calls this routine to create an inquiry context before calling the
rpc_ns_group_mbr_inq_next() routine.

When finished viewing the RPC group members, the application calls the
rpc_ns_group_mbr_inq_done() routine to delete the inquiry context.

146 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_inq_begin()

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_add()
rpc_ns_group_mbr_inq_done()
rpc_ns_group_mbr_inq_next()
rpc_ns_mgmt_handle_set_exp_age ().

Part 2 RPC Application Programmer’s Interface 147

rpc_ns_group_mbr_inq_done() RPC API Manual Pages

NAME
rpc_ns_group_mbr_inq_done — deletes the inquiry context for a group

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_done(
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input/Output

inquiry_context Specifies the inquiry context to delete. (An inquiry context is created by
calling the rpc_ns_group_mbr_inq_begin() routine.)

On success, returns the value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_group_mbr_inq_done() routine deletes an inquiry context created by calling the
rpc_ns_group_mbr_inq_begin() routine.

An application calls this routine after viewing RPC group members using the
rpc_ns_group_mbr_inq_next() routine.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_inq_begin()
rpc_ns_group_mbr_inq_next().

148 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_inq_next()

NAME
rpc_ns_group_mbr_inq_next — returns one member name at a time from a group

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_next(
rpc_ns_handle_t inquiry_context,
unsigned_char_t **member_name,
unsigned32 *status);

ARGUMENTS

Input

inquiry_context Specifies an inquiry context. The application obtains the inquiry context
by calling the rpc_ns_group_mbr_inq_begin() routine.

Output

member_name Returns a pointer to an RPC group member name.

The syntax of the member_name argument depends on the value of
inquiry_context. The application specifies this syntax with the
member_name_syntax argument when it calls
rpc_ns_group_mbr_inq_begin() to obtain the inquiry context.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_group_mbr_inq_next() routine returns one member of the RPC group specified by the
group_name argument in the rpc_ns_group_mbr_inq_begin() routine.

An application can view all the members of an RPC group by repeatedly calling the
rpc_ns_group_mbr_inq_next() routine. When all the group members have been viewed, this
routine returns an rpc_s_no_more_members status. The group members are returned in
unspecified order.

Part 2 RPC Application Programmer’s Interface 149

rpc_ns_group_mbr_inq_next() RPC API Manual Pages

On each call to this routine that returns a member name, the RPC run-time system allocates
memory for the returned member_name. The application calls the rpc_string_free() routine for
each returned member_name string.

After viewing the RPC group’s members, the application must call the
rpc_ns_group_mbr_inq_done() routine to delete the inquiry context.

Permissions Required

The application needs read permission to the target name service entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_inq_begin()
rpc_ns_group_mbr_inq_done()
rpc_string_free()
rpc_ns_mgmt_set_exp_age().

150 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_remove()

NAME
rpc_ns_group_mbr_remove — removes an entry name from a group (used by client, server or
management applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_group_mbr_remove(
unsigned32 group_name_syntax,
unsigned_char_t *group_name,
unsigned32 member_name_syntax,
unsigned_char_t *member_name,
unsigned32 *status);

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group from which the member is removed. The group
name syntax is identified by the argument group_name_syntax.

member_name_syntax An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

member_name The name of the group member to remove. The member name syntax is
identified by the argument member_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_group_member_not_found
Group member not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Part 2 RPC Application Programmer’s Interface 151

rpc_ns_group_mbr_remove() RPC API Manual Pages

DESCRIPTION
The rpc_ns_group_mbr_remove() routine removes a member from the group attribute in the
group_name entry.

Permissions Required

The application needs both read permission and write permission for the target name service
entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_add().

152 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_binding_unexport()

NAME
rpc_ns_mgmt_binding_unexport — removes multiple binding handles, or object UUIDs, from
an entry in the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_binding_unexport(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_id_t *if_id,
unsigned32 vers_option,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry from which binding handles or object UUIDs are
removed. The entry name syntax is identified by the argument
entry_name_syntax.

if_id Specifies an interface identifier for the binding handles to be removed
from the name service database. The value NULL indicates that no
binding handles are removed.

vers_option Specifies how the rpc_ns_mgmt_binding_unexport() routine uses the
vers_major and the vers_minor fields of the if_id argument.

The following list presents the accepted values for this argument:

Value Description

rpc_c_vers_all Unexports (that is, removes) all bindings for the
interface UUID in if_id, regardless of the version
numbers.

rpc_c_vers_compatible
Removes those bindings for the interface UUID in if_id
with the same major version as in if_id, and with a
minor version greater than or equal to the minor
version in if_id.

rpc_c_vers_exact Removes those bindings for the interface UUID in if_id
with the same major and minor versions as in if_id.

rpc_c_vers_major_only
Removes those bindings for the interface UUID in if_id
with the same major version as in if_id (ignores the
minor version).

rpc_c_vers_upto Removes those bindings that offer a version of the
specified interface UUID less than or equal to the

Part 2 RPC Application Programmer’s Interface 153

rpc_ns_mgmt_binding_unexport() RPC API Manual Pages

specified major and minor version.

object_uuid_vec A vector of object UUIDs to be removed from the name service database.
The application constructs this vector. The value NULL indicates that no
object UUIDs are removed

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_interface_not_found
Interface not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_mgmt_binding_unexport() routine allows an application to unexport (that is, remove)
one of the following from an entry in the name service database:

• all the binding handles for a specified interface UUID, qualified by the interface version
numbers (major and minor)

• one or more object UUIDs for a resource or resources

• both binding handles and object UUIDs.

An application can remove an interface and objects in a single call to this routine, or it can
remove them separately.

If the rpc_ns_mgmt_binding_unexport() routine does not find any binding handles for the
specified interface, the routine returns an rpc_s_interface_not_found status and does not remove
the object UUIDs, if any are specified.

If the application specifies both binding handles and object UUIDs, the object UUIDs are
removed only if the routine succeeds in removing the binding handles.

If any of the specified object UUIDs are not found, routine rpc_ns_mgmt_binding_unexport()
returns the rpc_not_all_objs_unexported status code.

Notes: Besides calling this routine, an application also calls the rpc_mgmt_ep_unregister()
routine to remove any servers that have registered with the local endpoint map.

154 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_binding_unexport()

Applications normally call this routine only when a server is expected to be unavailable
for an extended time.

Permissions Required

The application needs both read permission and write permission to the target name service
entry.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ep_unregister()
rpc_ns_binding_export ()
rpc_ns_binding_unexport().

Part 2 RPC Application Programmer’s Interface 155

rpc_ns_mgmt_entry_create() RPC API Manual Pages

NAME
rpc_ns_mgmt_entry_create — creates an entry in the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_create(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry to create. The entry name syntax is identified by
the argument entry_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_already_exists
Name service entry already exists.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_mgmt_entry_create() routine creates an entry in the name service database.

A management application can call rpc_ns_mgmt_entry_create() to create an entry in the name
service database for use by another application that does not itself have the necessary name
service permissions to create an entry.

156 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_entry_create()

Permissions Required

The application that calls rpc_ns_mgmt_entry_create() needs insert permission for the parent
directory. In order to modify the entry, the application for which it was created needs both read
permission and write permission.

RETURN VALUE
None.

SEE ALSO

Part 2 RPC Application Programmer’s Interface 157

rpc_ns_mgmt_entry_delete() RPC API Manual Pages

NAME
rpc_ns_mgmt_entry_delete — deletes an entry from the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_delete(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry to delete. The entry name syntax is identified by
the argument entry_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_mgmt_entry_delete() routine removes an RPC entry from the name service database.

Note: Management applications use this routine only when an entry is no longer needed,
such as when a server is permanently removed from service. If the entry is a member
of a group or profile, it must also be deleted from the group or profile.

158 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_entry_delete()

Permissions Required

The application needs read permission for the target name service entry. The application also
needs delete permission for the entry or for the parent directory.

RETURN VALUE
None.

SEE ALSO
rpc_ns_mgmt_entry_create().

Part 2 RPC Application Programmer’s Interface 159

rpc_ns_mgmt_entry_inq_if_ids() RPC API Manual Pages

NAME
rpc_ns_mgmt_entry_inq_if_ids — returns the list of interface IDs exported to an entry in the
name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_inq_if_ids(
unsigned32 entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_id_vector_t **if_id_vec,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax Specifies the syntax of argument entry_name. (See Appendix C for the
possible values of this argument.)

An application can supply the value rpc_c_ns_syntax_default to use the
syntax specified by the RPC_DEFAULT_ENTRY_SYNTAX environment
variable.

entry_name Specifies the entry in the name service database for which an interface
identifier vector is returned. The entry name must conform to the syntax
specified by entry_name_syntax.

Output

if_id_vec Returns the interface identifier vector.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_interfaces_exported
No interfaces were exported to the entry.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_mgmt_entry_inq_if_ids() routine returns an interface identifier vector that contains
interface IDs from the binding information in a name service entry. This routine returns binding
information from the specified entry only; it does not search any profile or group members
contained in the specified entry.

In implementations that cache name service data, this routine always gets its returned data
directly from the name service, updating any local cache.

160 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_entry_inq_if_ids()

Applications must call rpc_if_id_vector_free () to free the memory used by the returned if_id_vec.

Permissions Required

The application needs read permission to the target name service entry.

RETURN VALUE
None.

SEE ALSO
rpc_if_id_vector_free ()
rpc_if_inq_id ()
rpc_ns_binding_export ().

Part 2 RPC Application Programmer’s Interface 161

rpc_ns_mgmt_handle_set_exp_age() RPC API Manual Pages

NAME
rpc_ns_mgmt_handle_set_exp_age — sets the expiration age for cached copies of name service
data obtained with a given handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_handle_set_exp_age(
rpc_ns_handle_t ns_handle,
unsigned32 expiration_age,
unsigned32 *status);

ARGUMENTS

Input

ns_handle Specifies the name service handle for which the application supplies an
expiration age.

expiration_age Specifies the expiration age, in seconds, for cached copies of name service
data obtained with ns_handle.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_mgmt_handle_set_exp_age () routine sets the expiration age for the specified name
service handle, ns_handle. This expiration age is used, instead of the application’s global
expiration age, for all name service operations obtained using ns_handle. Expiration age is
further described in rpc_ns_mgmt_inq_exp_age() on page 164.

Because name service caching is implementation-dependent, the effect of setting a handle’s
expiration age (on subsequent name service operations performed with the handle) is
implementation dependent.

Note: In implementations that perform name service caching, setting the handle expiration
age to a small value may cause operations that retrieve data from the name service to
update cached data frequently. An expiration age of 0 (zero) forces an update on each
operation involving the same attribute data. Frequent updates may adversely affect the
performance both of the calling application and any other applications that share the
same cache.

Permissions Required

None.

RETURN VALUE
None.

162 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_handle_set_exp_age()

SEE ALSO
rpc_ns_binding_import_begin ()
rpc_ns_binding_lookup_begin ()
rpc_ns_entry_object_inq_begin()
rpc_ns_group_mbr_inq_begin()
rpc_ns_mgmt_inq_exp_age()
rpc_ns_mgmt_set_exp_age()
rpc_ns_profile_elt_inq_begin().

Part 2 RPC Application Programmer’s Interface 163

rpc_ns_mgmt_inq_exp_age() RPC API Manual Pages

NAME
rpc_ns_mgmt_inq_exp_age — returns the application’s global expiration age for cached copies
of name service data

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_inq_exp_age(
unsigned32 *expiration_age,
unsigned32 *status);

ARGUMENTS

Input

None.

Output

expiration_age The application’s global expiration age, in seconds, for cached copies of
name service data.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_mgmt_inq_exp_age() routine returns the application’s global name service expiration
age.

The effect of expiration age on name service operations is implementation-dependent. For
implementations that cache, the expiration age is the maximum amount of time, in seconds, that
a cached copy of data from a name service attribute is considered valid by name service
operations that read data from a name service. Name service routines that may be affected by
expiration age are as follows:

rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_next ()
rpc_ns_entry_object_inq_next()
rpc_ns_group_mbr_inq_next()
rpc_ns_profile_elt_inq_next()

Implementations that cache look for cached copies of the requested data. When there is no
cached copy, the operation creates one with fresh data from the name service database. When
there is a cached copy, the operation compares its age with the calling application’s expiration
age. If the copy’s age exceeds the expiration age, the operation attempts to update the cached
copy with fresh data from the name service. If updating fails, the cached data remains
unchanged and the requested operation fails, returning the rpc_s_name_service_unavailable
status code.

Implementations that do not cache behave as if the expiration age were 0 (zero). Fresh data is
always retrieved from the name service.

Every application maintains a global expiration age value. When an application begins running,
the RPC run-time system specifies an implementation-dependent default global expiration age
for the application. Applications may change this value by calling rpc_ns_mgmt_set_exp_age().

164 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_inq_exp_age()

Applications may also set the expiration ages of individual name service handles. Whenever a
name service operation is performed using a handle for which the application has not set an
expiration age, the global expiration age value is used.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_mgmt_handle_set_exp_age ()
rpc_ns_mgmt_set_exp_age()
rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_next ()
rpc_ns_entry_object_inq_next()
rpc_ns_group_mbr_inq_next()
rpc_ns_profile_elt_inq_next().

Part 2 RPC Application Programmer’s Interface 165

rpc_ns_mgmt_set_exp_age() RPC API Manual Pages

NAME
rpc_ns_mgmt_set_exp_age — Modifies an application’s global expiration age for cached copies
of name service data

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_mgmt_set_exp_age(
unsigned32 expiration_age,
unsigned32 *status);

ARGUMENTS

Input

expiration_age Specifies the application’s global expiration age, in seconds, for cached
copies of name service data.

Applications can reset the expiration age to the implementation-specific
default by supplying the value rpc_c_ns_default_exp_age.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_mgmt_set_exp_age() routine sets the application’s global name service expiration age.

The effect of expiration age on name service operations is implementation-dependent. For
implementations that cache name service data, the expiration age is the maximum amount of
time, in seconds, that a cached copy of data from a name service attribute is considered valid by
name service operations that read data from a name service. Name service routines that may be
affected by expiration age are as follows:

rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_next ()
rpc_ns_entry_object_inq_next()
rpc_ns_group_mbr_inq_next()
rpc_ns_profile_elt_inq_next()

Implementations that cache look for cached copies of the requested data. When there is no
cached copy, the operation creates one with fresh data from the name service database. When
there is a cached copy, the operation compares its age with the calling application’s expiration
age. If the copy’s age exceeds the expiration age, the operation attempts to update the cached
copy with fresh data from the name service. If updating fails, the cached data remains
unchanged and the requested operation fails, returning the rpc_s_name_service_unavailable
status code.

Implementations that do not cache behave as if the expiration age were 0 (zero). Fresh data is
always retrieved from the name service.

Every application maintains a global expiration age value. When an application begins running,
the RPC run-time system specifies an implementation-dependent default global expiration age
for the application. Applications may query this value by calling rpc_ns_mgmt_inq_exp_age().

166 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_set_exp_age()

Applications may also set the expiration ages of individual name service handles. Whenever a
name service operation is performed using a handle for which the application has not set an
expiration age, the global expiration age value is used.

Note: In implementations that cache name service data, setting the expiration age to a small
value may cause operations that retrieve data from the name service to update cached
data frequently. An expiration age of 0 (zero) forces an update on each operation
involving the same attribute data. Frequent updates may adversely affect the
performance both of the calling application and any other applications that share the
same cache.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_mgmt_handle_set_exp_age ()
rpc_ns_mgmt_set_exp_age()
rpc_ns_binding_import_done ()
rpc_ns_binding_lookup_next ()
rpc_ns_entry_object_inq_next()
rpc_ns_group_mbr_inq_next()
rpc_ns_profile_elt_inq_next().

Part 2 RPC Application Programmer’s Interface 167

rpc_ns_profile_delete() RPC API Manual Pages

NAME
rpc_ns_profile_delete — deletes a profile attribute

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_profile_delete(
unsigned32 profile_name_syntax,
unsigned_char_t *profile_name,
unsigned32 *status);

ARGUMENTS

Input

profile_name_syntax An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

profile_name The name of the profile to delete. The profile name syntax is identified by
the argument profile_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_profile_delete() routine deletes the profile attribute from the specified entry in the
name service database.

Neither the specified entry nor the entry names included as members in each profile element are
deleted.

Note: Use this routine cautiously; deleting a profile may break a hierarchy of profiles.

168 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_delete()

Permissions Required

The application needs write permission to the target name service profile entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_elt_add ()
rpc_ns_profile_elt_remove().

Part 2 RPC Application Programmer’s Interface 169

rpc_ns_profile_elt_add() RPC API Manual Pages

NAME
rpc_ns_profile_elt_add — adds an element to a profile; if necessary, creates the entry

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_profile_elt_add(
unsigned32 profile_name_syntax,
unsigned_char_t *profile_name,
rpc_if_id_t *if_id,
unsigned32 member_name_syntax,
unsigned_char_t *member_name,
unsigned32 priority,
unsigned_char_t *annotation,
unsigned32 *status);

ARGUMENTS

Input

profile_name_syntax An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

profile_name Specifies the RPC profile that receives the new element. The profile name
syntax is identified by the argument profile_name_syntax.

if_id Specifies the interface identifier of the new profile element. To add or
replace the default profile element, specify NULL.

member_name_syntax An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

member_name Specifies an entry in the name service database to include in the new
profile element. The member name syntax is identified by the argument
member_name_syntax.

priority An integer value (0 to 7) that specifies the relative priority for using the
new profile element during the import and lookup operations. A value of
0 (zero) is the highest priority. A value of 7 is the lowest priority. Two or
more elements can have the same priority.

The default profile element has a priority of 0. When adding the default
profile, the result is unspecified if the application specifies a value other
than 0 here.

annotation Specifies an annotation string that is stored as part of the new profile
element. The string can be up to rpc_c_annotation_max characters long,
including the null terminator. The application specifies NULL or the
empty string ("") if there is no annotation string.

170 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_add()

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_profile_elt_add () routine adds an element to the profile attribute of the entry in the
name service database specified by the profile_name argument.

If the profile_name entry does not exist, this routine creates the entry with a profile attribute and
adds the profile element specified by the if_id, member_name, priority and annotation arguments.
In this case, the application must have permission to create the entry.

If an element with the specified member name and interface identifier is already in the profile,
this routine updates the element’s priority and annotation string using the values provided in
the priority and annotation arguments.

An application can add the entry in argument member_name to a profile before it creates the entry
itself.

Permissions Required

The application needs both read permission and write permission for the target name service
profile entry. If the entry does not exist, the application also needs insert permission for the
parent directory.

RETURN VALUE
None.

SEE ALSO
rpc_if_inq_id ()
rpc_ns_mgmt_entry_create()
rpc_ns_profile_elt_remove().

Part 2 RPC Application Programmer’s Interface 171

rpc_ns_profile_elt_inq_begin() RPC API Manual Pages

NAME
rpc_ns_profile_elt_inq_begin — creates an inquiry context for viewing the elements in a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_begin(
unsigned32 profile_name_syntax,
unsigned_char_t *profile_name,
unsigned32 inquiry_type,
rpc_if_id_t *if_id,
unsigned32 vers_option,
unsigned32 member_name_syntax,
unsigned_char_t *member_name,
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input

profile_name_syntax An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

profile_name Specifies the RPC profile to view. The profile name syntax is identified by
the argument profile_name_syntax.

inquiry_type An integer value that specifies the type of inquiry to perform on the
profile. The following list describes the valid values for this argument:

Value Description

rpc_c_profile_default_elt
Searches the profile for the default profile element, if
any.

The if_id, vers_option, and member_name arguments are
ignored.

rpc_c_profile_all_elts
Returns every element from the profile.

The if_id, vers_option, and member_name arguments are
ignored.

rpc_c_profile_match_by_if
Searches the profile for those elements that contain the
interface identifier specified by the if_id and vers_option
values.

The member_name argument is ignored.

rpc_c_profile_match_by_mbr
Searches the profile for those elements that contain the
member name specified by the member_name argument.

172 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_inq_begin()

The if_id and vers_option arguments are ignored.

rpc_c_profile_match_by_both
Searches the profile for those elements that contain the
interface identifier and member name specified by the
if_id, vers_option and member_name arguments.

if_id Specifies the interface identifier of the profile elements to be returned by
the rpc_ns_profile_elt_inq_next() routine.

This argument is meaningful only when specifying a value of
rpc_c_profile_match_by_if or rpc_c_profile_match_by_both for the
inquiry_type argument. Otherwise, this argument is ignored and the
application can specify the value NULL.

vers_option Specifies how the rpc_ns_profile_elt_inq_next() routine uses the if_id
argument.

This argument is used only when specifying a value of
rpc_c_profile_match_by_if or rpc_c_profile_match_by_both for the
inquiry_type argument. Otherwise, this argument is ignored.

The following list describes the valid values for this argument:

Value Description

rpc_c_vers_all Returns profile elements that offer the specified
interface UUID, regardless of the version numbers.

rpc_c_vers_compatible
Returns profile elements that offer the same major
version of the specified interface UUID and a minor
version greater than or equal to the minor version of
the specified interface UUID.

rpc_c_vers_exact Returns profile elements that offer the specified version
of the specified interface UUID.

rpc_c_vers_major_only
Returns profile elements that offer the same major
version of the specified interface UUID (ignores the
minor version).

rpc_c_vers_upto Returns profile elements that offer a version of the
specified interface UUID less than or equal to the
specified major and minor version.

member_name_syntax An integer value that specifies the syntax of argument member_name in
this routine and the syntax of argument member_name in the
rpc_ns_profile_elt_inq_next() routine. (See Appendix C for the possible
values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

member_name Specifies the member name that the rpc_ns_profile_elt_inq_next() routine
looks for in profile elements. The member name syntax is identified by
the argument member_name_syntax.

Part 2 RPC Application Programmer’s Interface 173

rpc_ns_profile_elt_inq_begin() RPC API Manual Pages

This argument is meaningful only when specifying a value of
rpc_c_profile_match_by_mbr or rpc_c_profile_match_by_both for the
inquiry_type argument. Otherwise, this argument is ignored.

Output

inquiry_context Returns a name service handle for use with the
rpc_ns_profile_elt_inq_next() and rpc_ns_profile_elt_inq_done () routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_profile_elt_inq_begin() routine creates an inquiry context for viewing the elements in a
profile.

Using the inquiry_type and vers_option arguments, an application specifies which of the following
profile elements will be returned from calls to the rpc_ns_profile_elt_inq_next() routine:

• the default element

• all elements

• those elements with the specified interface identifier

• those elements with the specified member name

• those elements with both the specified interface identifier and member name.

The application calls this routine to create an inquiry context before calling the
rpc_ns_profile_elt_inq_next() routine.

When finished viewing profile elements, the application calls the rpc_ns_profile_elt_inq_done ()
routine to delete the inquiry context.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_if_inq_id ()
rpc_ns_mgmt_handle_set_exp_age ()
rpc_ns_profile_elt_inq_done ()
rpc_ns_profile_elt_inq_next().

174 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_inq_done()

NAME
rpc_ns_profile_elt_inq_done — deletes the inquiry context for a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_done(
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

ARGUMENTS

Input/Output

inquiry_context Specifies the name service handle to delete. (A name service handle is
created by calling the rpc_ns_profile_elt_inq_begin() routine.)

On success, returns the value NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_ns_profile_elt_inq_done () routine deletes an inquiry context created by calling the
rpc_ns_profile_elt_inq_begin() routine.

An application calls this routine after viewing profile elements using the
rpc_ns_profile_elt_inq_next() routine.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_elt_inq_begin()
rpc_ns_profile_elt_inq_next().

Part 2 RPC Application Programmer’s Interface 175

rpc_ns_profile_elt_inq_next() RPC API Manual Pages

NAME
rpc_ns_profile_elt_inq_next — returns one element at a time from a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_next(
rpc_ns_handle_t inquiry_context,
rpc_if_id_t *if_id,
unsigned_char_t **member_name,
unsigned32 *priority,
unsigned_char_t **annotation,
unsigned32 *status);

ARGUMENTS

Input

inquiry_context Specifies a name service handle. This handle is returned from the
rpc_ns_profile_elt_inq_begin() routine.

Output

if_id Returns the interface identifier of the profile element.

member_name Returns a pointer to the profile element’s member name.

The syntax of the returned name is specified by the member_name_syntax
argument in the rpc_ns_profile_elt_inq_begin() routine.

Specifying NULL prevents the routine from returning this argument. In
this case the application need not call the rpc_string_free() routine.

priority Returns the profile element priority.

annotation Returns the annotation string for the profile element. If there is no
annotation string in the profile element, the empty string ("") is returned.

Specifying NULL prevents the routine from returning this argument. In
this case the application need not call the rpc_string_free() routine.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

176 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_inq_next()

rpc_s_no_more_elements
No more elements.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_profile_elt_inq_next() routine returns one element from the profile specified by the
profile_name argument in the rpc_ns_profile_elt_inq_begin() routine.

The selection criteria for the element returned are based on the inquiry_type argument in routine
rpc_ns_profile_elt_inq_begin(). Routine rpc_ns_profile_elt_inq_next() returns all the components
(interface identifier, member name, priority, annotation string) of a profile element.

An application can view all the selected profile entries by repeatedly calling the
rpc_ns_profile_elt_inq_next() routine. When all the elements have been viewed, this routine
returns an rpc_s_no_more_elements status code. The returned elements are unordered.

On each call to this routine that returns a profile element, the RPC run-time system allocates
memory for the returned member_name and annotation strings. The application is responsible for
calling the rpc_string_free() routine for each returned member_name and annotation string.

After viewing the profile’s elements, the application must call the rpc_ns_profile_elt_inq_done ()
routine to delete the inquiry context.

Permissions Required

The application needs read permission to the the target name service profile entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_elt_inq_begin()
rpc_ns_profile_elt_inq_done ()
rpc_string_free()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 177

rpc_ns_profile_elt_remove() RPC API Manual Pages

NAME
rpc_ns_profile_elt_remove — removes an element from a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns_profile_elt_remove(
unsigned32 profile_name_syntax,
unsigned_char_t *profile_name,
rpc_if_id_t *if_id,
unsigned32 member_name_syntax,
unsigned_char_t *member_name,
unsigned32 *status);

ARGUMENTS

Input

profile_name_syntax An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

profile_name The name of the profile from which an element is removed. The profile
name syntax is identified by the argument profile_name_syntax.

if_id Specifies the interface identifier of the profile element to be removed.

The application specifies NULL to remove the default profile member.

member_name_syntax An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

member_name Specifies the name service entry to remove from the profile. The member
name syntax is identified by the argument member_name_syntax.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_profile_element_not_found
Profile element not found.

178 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_remove()

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_profile_elt_remove() routine removes a profile element from the profile attribute in the
profile_name entry. Note that the member_name argument and the if_id argument must match
exactly for an element to be removed.

The entry (member_name) referred to as a member in the profile element is not deleted.

Note: Use this routine cautiously. Removing elements from a profile may break a hierarchy of
profiles.

Permissions Required

The application needs both read permission and write permission to the target name service
profile entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_delete()
rpc_ns_profile_elt_add ().

Part 2 RPC Application Programmer’s Interface 179

rpc_object_inq_type() RPC API Manual Pages

NAME
rpc_object_inq_type — returns the type of an object

SYNOPSIS
#include <dce/rpc.h>

void rpc_object_inq_type(
uuid_t *obj_uuid,
uuid_t *type_uuid,
unsigned32 *status);

ARGUMENTS

Input

obj_uuid Specifies the object UUID whose associated type UUID is returned. This
may be the nil UUID.

Output

type_uuid Returns the type UUID corresponding to the object UUID supplied in
argument obj_uuid.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_object_not_found
Object not found.

DESCRIPTION
A server application calls the rpc_object_inq_type () routine to obtain the type UUID of an object.

If the object is registered with the RPC run-time system using the rpc_object_set_type() routine,
the registered type is returned.

An application can also privately maintain an object/type registration. In this case, if the
application provides an object inquiry function (see rpc_object_set_inq_fn () on page 182). the
RPC run-time system uses that function to determine an object’s type.

The following table summarises how routine rpc_object_inq_type () obtains the returned type
UUID.

Has the application registered an:
Object UUID? Object inquiry function? Return Value

Returns the object’s registered type UUID.Yes (Ignored)

Returns the type UUID returned from calling the
inquiry function.

No Yes

Returns the nil UUID.No No

Table 3-2 Rules for Returning an Object’s Type

RETURN VALUE
None.

180 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_object_inq_type()

SEE ALSO
rpc_object_set_inq_fn ()
rpc_object_set_type().

Part 2 RPC Application Programmer’s Interface 181

rpc_object_set_inq_fn() RPC API Manual Pages

NAME
rpc_object_set_inq_fn — registers an object inquiry function

SYNOPSIS
#include <dce/rpc.h>

void rpc_object_set_inq_fn(
rpc_object_inq_fn_t inquiry_fn,
unsigned32 *status);

ARGUMENTS

Input

inquiry_fn Specifies a pointer to an object type inquiry function. When an
application calls the rpc_object_inq_type () routine, and the RPC run-time
system finds that the specified object is not registered, the run-time
system automatically calls this routine to determine the object’s type.
Specifying NULL removes a previously set inquiry function.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
A server application calls the rpc_object_set_inq_fn () routine to specify a function to determine an
object’s type. If an application privately maintains object/type registrations, the specified
inquiry function returns the type UUID of an object from that registration.

The RPC run-time system automatically calls the inquiry function when the application calls
routine rpc_object_inq_type () and the object was not previously registered by the
rpc_object_set_type() routine. The RPC run-time system also automatically calls the inquiry
function for every remote procedure call it receives if the object was not previously registered by
rpc_object_set_type().

The following C-language definition for rpc_object_inq_fn_t illustrates the prototype for this
function:

typedef void (*rpc_object_inq_fn_t)
(

uuid_t *object_uuid, /* in */
uuid_t *type_uuid, /* out */
unsigned32 *status /* out */

The returned type_uuid and status values are returned as the output arguments from the
rpc_object_inq_type () routine.

RETURN VALUE
None.

SEE ALSO
rpc_object_inq_type ()
rpc_object_set_type().

182 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_object_set_type()

NAME
rpc_object_set_type — registers the type of an object with the RPC run-time system

SYNOPSIS
#include <dce/rpc.h>

void rpc_object_set_type(
uuid_t *obj_uuid,
uuid_t *type_uuid,
unsigned32 *status);

ARGUMENTS

Input

obj_uuid Specifies an object UUID to associate with the type UUID in the type_uuid
argument. This may not be the nil UUID.

type_uuid Specifies the type UUID of the obj_uuid argument.

Specify the nil UUID to reset the object type to the default association of
object UUID/nil type UUID.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_already_registered
Object already registered.

rpc_s_invalid_object
Invalid object.

DESCRIPTION
The rpc_object_set_type() routine assigns a type UUID to an object UUID.

By default, the RPC run-time system assumes that the type of all objects is nil. A server program
that contains one implementation of an interface (one manager entry point vector) does not need
to call this routine, provided that the server registered the interface with the nil type UUID (see
rpc_server_register_if() on page 193 for a description).

A server program that contains multiple implementations of an interface (multiple manager
entry point vectors; that is, multiple type UUIDs) calls this routine once for each non-default
object UUID the server offers. Associating each object with a type UUID tells the RPC run-time
system which manager entry point vector (interface implementation) to use when the server
receives a remote procedure call for a non-nil object UUID.

The RPC run-time system allows an application to set the type for an unlimited number of
objects.

To remove the association between an object UUID and its type UUID (established by calling
this routine), a server calls this routine again and specifies the nil UUID for the type_uuid
argument. This resets the association between an object UUID and type UUID to the default.

A server cannot register a nil object UUID. The RPC run-time system automatically registers the
nil object UUID with a nil type UUID. Attempting to set the type of a nil object UUID will result

Part 2 RPC Application Programmer’s Interface 183

rpc_object_set_type() RPC API Manual Pages

in the routine’s returning the status code rpc_s_invalid_object.

Servers that want to maintain their own object UUID to type UUID mapping can use the
rpc_object_set_inq_fn () routine in place of, or in addition to, the rpc_object_set_type() routine.

RETURN VALUE
None.

SEE ALSO
rpc_object_set_inq_fn ()
rpc_server_register_if().

184 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_protseq_vector_free()

NAME
rpc_protseq_vector_free — frees the memory used by a protocol sequence vector and its
protocol sequences

SYNOPSIS
#include <dce/rpc.h>

void rpc_protseq_vector_free(
rpc_protseq_vector_t **protseq_vector,
unsigned32 *status);

ARGUMENTS

Input/Output

protseq_vector Specifies the address of a pointer to a vector of protocol sequences. On
return the pointer is set to NULL.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_protseq_vector_free() routine frees the memory used to store a vector of protocol
sequences when the vector was obtained by calling rpc_network_inq_protseqs(). Both the protocol
sequences and the protocol sequence vector are freed.

RETURN VALUE
None.

SEE ALSO
rpc_network_inq_protseqs().

Part 2 RPC Application Programmer’s Interface 185

rpc_server_inq_bindings() RPC API Manual Pages

NAME
rpc_server_inq_bindings — returns binding handles for communication with a server

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_inq_bindings(
rpc_binding_vector_t **binding_vector,
unsigned32 *status);

ARGUMENTS

Input

None.

Output

binding_vector Returns the address of a vector of server binding handles.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_no_bindings
No bindings.

DESCRIPTION
The rpc_server_inq_bindings() routine obtains a vector of server binding handles. Binding handles
are created by the RPC run-time system when a server application calls any of the following
routines to register protocol sequences:

rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if()

The returned binding vector can contain binding handles with dynamic endpoints and binding
handles with well-known endpoints, depending on which of the above routines the server
application called.

A server uses the vector of binding handles for exporting to the name service, for registering
with the local endpoint map, or for conversion to string bindings.

When there are no binding handles (no registered protocol sequences), this routine returns the
rpc_s_no_bindings status code and returns the value NULL in binding_vector.

The application is responsible for calling the rpc_binding_vector_free () routine to deallocate the
memory used by the vector.

RETURN VALUE
None.

186 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_inq_bindings()

SEE ALSO
rpc_binding_vector_free ()
rpc_ep_registerP()
rpc_ep_register_no_replace()
rpc_ns_binding_export()
rpc_server_use_protseq()
rpc_server_use_all_protseqs()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if()
rpc_server_use_all_protseqs().

Part 2 RPC Application Programmer’s Interface 187

rpc_server_inq_if() RPC API Manual Pages

NAME
rpc_server_inq_if — returns the manager entry point vector registered for an interface

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_inq_if(
rpc_if_handle_t if_handle,
uuid_t *mgr_type_uuid,
rpc_mgr_epv_t *mgr_epv,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies the interface specification whose manager entry point vector
(EPV) pointer is returned in argument mgr_epv.

mgr_type_uuid Specifies a type UUID for the manager whose EPV pointer is returned in
argument mgr_epv.

Specifying the nil UUID for this argument causes the routine to return a
pointer to the manager EPV that is registered with if_handle and the nil
type UUID for the manager.

Output

mgr_epv On success, returns a pointer to the manager EPV that corresponds to
arguments if_handle and mgr_type_uuid.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unknown_if
Unknown interface.

rpc_s_unknown_mgr_type
Unknown manager type.

DESCRIPTION
An application calls the rpc_server_inq_if() routine to determine the manager EPV for a
registered interface and type UUID of the manager.

RETURN VALUE
None.

SEE ALSO
rpc_server_register_if().

188 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_listen()

NAME
rpc_server_listen — tells the RPC run-time system to listen for remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_listen(
unsigned32 max_calls_exec,
unsigned32 *status);

ARGUMENTS

Input

max_calls_exec Specifies the number of concurrent executing remote procedure calls the
server must be able to handle. The RPC run-time system allocates
sufficient call threads to handle this number of concurrent calls.

The value rpc_c_listen_max_calls_default specifies an implementation-
dependent default value ≥ 1.

Note: The five rpc_server_use_*protseq*() routines:

rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if())

also specify a max_call_requests argument that specifies the
network resources allocated for concurrent call requests.
Normally the values of max_calls_exec and max_call_requests are
the same. Servers are guaranteed to support the minimum of
max_calls_exec and max_call_requests concurrent remote
procedure calls. Applications should not rely on a server
handling more than this number.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_already_listening
Server already listening.

rpc_s_max_calls_too_small
Maximum calls value is too small. Must be > 0.

rpc_s_no_protseqs_registered
No protocol sequences registered.

Part 2 RPC Application Programmer’s Interface 189

rpc_server_listen() RPC API Manual Pages

DESCRIPTION
The rpc_server_listen() routine causes a server to listen for remote procedure calls. The
max_calls_exec argument specifies the number of concurrent remote procedure calls the server is
guaranteed to be able to execute, assuming that the server has allocated sufficient network
resources to receive this number of call requests.

A server application that specifies a value for max_calls_exec greater than 1 is responsible for
concurrency control among the server manager routines, since each executes in a separate
thread.

When the server receives more remote procedure calls than it can execute (that is, more calls
than the value of max_calls_exec), the RPC run-time system accepts and queues additional
remote procedure calls until a call execution thread is available; that is, the number of
concurrently executing threads is < max_calls_exec. From the client’s perspective a queued
remote procedure call appears the same as one that the server is actively executing.

The rpc_server_listen() routine returns to the caller when one of the following events occurs:

• The rpc_mgmt_stop_server_listening() routine is called by one of the server application’s
manager routines.

• A client makes an authorised remote rpc_mgmt_stop_server_listening() routine call to the
server.

After rpc_server_listen() returns, no further calls are processed.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_stop_server_listening()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

190 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_register_auth_info()

NAME
rpc_server_register_auth_info — registers authentication information with the RPC run-time
system (used by server applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_register_auth_info(
unsigned_char_t *server_princ_name,
unsigned32 authn_svc,
rpc_auth_key_retrieval_fn_t get_key_fn,
void *arg,
unsigned32 *status);

ARGUMENTS

Input

server_princ_name Specifies a server principal name to use when authenticating remote
procedure calls using the service specified by authn_svc. The content and
syntax of the name depend on the value of authn_svc. (See Appendix D
for authentication service specific syntax.)

authn_svc Specifies the authentication service to use when the server receives a
remote procedure call request. (See Appendix D for the possible values
of this argument.)

get_key_fn Specifies the address of a server application-provided routine that returns
keys suitable for the specified authn_svc.

To use the authentication service-specific default method of acquiring
keys, NULL may be specified for this argument. (See Appendix D for a
description of the authentication service-specific run-time behaviour for
acquiring keys.)

The following C definition for rpc_auth_key_retrieval_fn_t illustrates the
prototype for the key acquisition routine:

typedef void (*rpc_auth_key_retrieval_fn_t)
(
void *arg, /* in */
unsigned_char_t *server_princ_name, /* in */
unsigned32 key_ver, /* in */
void **key, /* out */
unsigned32 *status /* out */

);

The RPC run-time system passes the server_princ_name argument value
for rpc_server_register_auth_info (), as the server_princ_name argument
value for the get_key_fn key acquisition routine. The RPC run-time system
automatically supplies a value for the key_ver argument.

The implementation of the key acquisition routine depends on the
authentication service in use. The routine must return a key appropriate
to the authentication service in the get_key_fn argument. For a key_ver
value of 0 (zero), the key acquisition routine must return the most recent
key available, as defined by the authentication service.

Part 2 RPC Application Programmer’s Interface 191

rpc_server_register_auth_info() RPC API Manual Pages

The key acquisition routine may be called from
rpc_server_register_auth_info (). In this case, if the key acquisition routine
returns a status other than rpc_s_ok, the rpc_server_register_auth_info ()
routine fails and returns the error status to the calling server.

The key acquisition routine is called by the RPC run-time system while
authenticating remote procedure call requests. If it returns a status other
than rpc_s_ok, the request fails and the RPC run-time system returns the
error status to the calling client.

arg Specifies an argument to pass to the key acquisition routine. (See
Appendix D for an explanation of how this argument is treated by the
run-time system, depending on the value of authn_svc and get_key_fn.)

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unknown_authn_service
Unknown authentication service.

DESCRIPTION
Servers call the rpc_server_register_auth_info () routine to register an authentication service to use
for authenticating remote procedure calls. A server calls this routine once for each
authentication service-principal name combination that it wants to register. Severs can register a
non-default key acquisition function and a key acquisition function argument when calling
rpc_server_register_auth_info ().

Applications may make multiple calls to rpc_server_register_auth_info () to register several
principal name-authentication service combinations. When an application calls
rpc_server_register_auth_info () with a combination already registered, the new registration
overwrites the old one.

A client application makes authenticated remote procedure calls using a binding annotated with
authentication information. If the binding has not been annotated with one of the principal
name-authentication service combinations registered by the server, the client’s remote
procedure call request may be rejected by the manager routine.

RETURN VALUE
None.

SEE ALSO
rpc_binding_set_auth_info ()
rpc_server_register_auth_info ().

192 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_register_if()

NAME
rpc_server_register_if — registers interface/type UUID/EPV associations with the RPC run-
time system

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_register_if(
rpc_if_handle_t if_handle,
uuid_t *mgr_type_uuid,
rpc_mgr_epv_t mgr_epv,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies the interface to register.

mgr_type_uuid Specifies a type UUID to associate with the mgr_epv argument.
Specifying the value NULL (or a nil UUID) registers the if_handle with a
nil type UUID.

mgr_epv Specifies the manager routine’s entry point vector. Specifying NULL
causes the routine to supply a default entry point vector.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_type_already_registered
An interface with the given type UUID already
registered.

DESCRIPTION
The rpc_server_register_if() routine registers a server interface with the RPC run-time system. A
server can register an unlimited number of interfaces. Once registered, an interface is available
to clients through any binding handle of the server, provided that the client supports the
protocols specified in the binding handle.

A server must provide the following information to register an interface with
rpc_server_register_if():

• an interface specification; the server specifies this using the if_handle argument

• a type UUID and manager entry point vector (EPV) pair, using the mgr_type_uuid and
mgr_epv arguments, respectively; this data pair identifies a manager to handle calls on the
interface.

A server may register more than one manager per interface. To do so, the server calls
rpc_server_register_if() at least once for each manager, specifying a different type UUID/manager
EPV data pair each time.

The type UUID/manager EPV data pairs registered by this routine are used by the run-time
system to determine which manager is invoked when a server receives a remote procedure call

Part 2 RPC Application Programmer’s Interface 193

rpc_server_register_if() RPC API Manual Pages

request from a client. When an RPC request is received on an interface, the RPC run-time system
matches the object UUID of the call to one of the registered type UUID/manager EPV pairs and
dispatches the call through the selected EPV to the appropriate manager routines.

By default, a nil object UUID matches a nil type UUID. To enable any other matches, the server
must establish a mapping of object UUIDs to type UUIDs by calling the routine
rpc_object_set_type(). The server must call rpc_object_set_type() at least once for each non-nil type
UUID it has registered in order to make that type UUID available for dispatching calls.

Note: The mapping of object UUIDs to type UUIDs applies to all registered interfaces. If a
non-nil type UUID has already been set for one interface, it is not necessary to call
rpc_object_set_type again when that type UUID is registered for a different interface.

In an interface, one manager EPV may be registered with a nil type UUID. As the table below
shows, this manager, by default, receives calls with object UUIDs that do not match another type
UUID. Note that rpc_object_set_type() cannot be used to set the nil object UUID to match any
other type UUID. However, a non-nil object UUID may be mapped to the nil type UUID. (See
rpc_object_set_type() on page 183 for further information on the object UUID to type UUID
mapping.)

More than one type UUID may be registered for each manager EPV on consecutive calls to
rpc_server_register_if(), allowing calls whose object UUIDs match different type UUIDs to be
dispatched to the same manager. However, only one manager EPV for an interface may be
registered per type UUID. When an interface has been registered with a given type UUID,
attempting to register it with the same type UUID results in the error
rpc_s_type_already_registered.

The following table summarises the rules used by the RPC run-time system for invoking
manager routines.

Has Server Has Server
Object Set Type Registered Type
UUID of Object for Manager Dispatching

of Call1 UUID?2 EPV?3 Action
Use the manager with the nil type
UUID.

Nil Not applicable4 Yes

Error: rpc_s_unknown_mgr_type.
Reject the remote procedure call.

Nil Not applicable4 No

Use the manager with the same
type UUID.

Non-nil Yes Yes

Use the manager with the nil type
UUID. If no manager with the nil
type UUID, error:
rpc_s_unknown_mgr_type. Reject
the remote procedure call.

Non-nil No (Ignored)

Error: rpc_s_unknown_mgr_type.
Reject the remote procedure call.

Non-nil Yes No

1. This is the object UUID found in a binding handle for a remote procedure.

2. The server specifies the type UUID for an object by calling rpc_object_set_type().

3. The server registers the type for the manager EPV by calling rpc_server_register_if() using
the same type UUID.

4. The nil object UUID is always automatically assigned the nil type UUID. It is illegal to
specify a nil object UUID in the rpc_object_set_type() routine.

194 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_register_if()

Specifying the Manager EPV

To use the implementation-provided default manager EPV, a server can specify the value NULL
for the mgr_epv argument to rpc_server_register_if(). A server that registers only one manager for
an interface, and that wishes to use the default manager EPV needs to call rpc_server_register_if()
only once, specifying the value NULL for the mgr_epv argument.

To use a non-default manager EPV, the server initialises a variable of the following type for each
implementation of the interface:

<if-name>_v<major-version>_<minor-version>_epv_t

To register such a server supplied EPV using rpc_server_register_if(), the server passes a pointer
to it as the mgr_epv argument.

When a server registers only one manager for an interface, it can use either the default manager
EPV or it can supply one. When a server registers more than one manager for an interface, it can
use the default manager EPV for one of the managers, but it must supply manager EPVs for all
the other managers. The server may supply manager EPVs for all managers.

Specifying the Type UUID

A server may specify a nil type UUID for one of the manager EPVs registered. Calls are
dispatched to a manager registered with the nil type UUID in two circumstances:

• when the call object UUID is nil

• when the call object UUID is non-nil and no type UUID has been set for the object UUID.

When a server registers only one manager for an interface, it can use either a nil or non-nil value.
When a server registers more than one manager for an interface, it can use the nil type UUID for
one of the manager EPVs. The server must supply distinct non-nil type UUIDs for all other
manager EPVs registered. The server may supply non-nil type UUIDs for all manager EPVs
registered.

The server may not specify the same type UUID for more than one manager EPV. The server
may, however, specify more than one type UUID per manager EPV. To do so, the server calls
rpc_server_register_if() more than once, each time specifying a type UUID/manager EPV pair
with the same manager EPV and a different type UUID. This permits calls with object UUIDs
that match different type UUIDs to be handled by the same manager.

When a server registers the nil type UUID, and does not make any calls to rpc_object_set_type(),
all calls, regardless of object UUID, are dispatched to the manager EPV registered with the nil
type UUID. In the simplest case, a server calls rpc_server_register_if with a NULL mgr_epv
argument, specifying the default manager EPV, and a nil mgr_type_uuid argument. If such a
server does not call rpc_object_set_type(), all calls will be dispatched to the default manager.

RETURN VALUE
None.

Part 2 RPC Application Programmer’s Interface 195

rpc_server_register_if() RPC API Manual Pages

SEE ALSO
rpc_binding_from_string_binding ()
rpc_binding_set_object ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_export ()
rpc_ns_binding_import_begin ()
rpc_ns_binding_lookup_begin ()
rpc_object_set_type()
rpc_server_unregister_if().

196 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_unregister_if()

NAME
rpc_server_unregister_if — removes an interface from the RPC run-time system

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_unregister_if(
rpc_if_handle_t if_handle,
uuid_t *mgr_type_uuid,
unsigned32 *status);

ARGUMENTS

Input

if_handle Specifies an interface specification to unregister (that is, remove).

The application specifies NULL to remove all interfaces previously
registered with the type UUID value given in the mgr_type_uuid
argument.

mgr_type_uuid Specifies the type UUID for the manager entry point vector (EPV) to
remove.

Note: This should be the same value as was provided in a call to the
rpc_server_register_if() routine.

The application specifies NULL to remove the interface given in the
if_handle argument for all previously registered type UUIDs.

The application specifies a nil UUID to remove the default manager EPV.
In this case all manager EPVs registered with a non-nil type UUID remain
registered.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_unknown_if
Unknown interface.

rpc_s_unknown_mgr_type
Unknown manager type.

DESCRIPTION
The rpc_server_unregister_if() routine removes the association between an interface and a
manager entry point vector (EPV).

The application specifies the manager EPV to remove by providing in the mgr_type_uuid
argument the type UUID value specified in a call to the rpc_server_register_if() routine. Once
removed, an interface is no longer available to client applications.

When an interface is removed, the RPC run-time system stops accepting new calls for that
interface.

Part 2 RPC Application Programmer’s Interface 197

rpc_server_unregister_if() RPC API Manual Pages

The following table summarises the behaviour of this routine.

if_handle mgr_type_uuid Behaviour
Removes the manager EPV
associated with the specified
arguments.

non-NULL non-NULL

Removes all manager EPVs
associated with argument if_handle.

non-NULL NULL

Removes all manager EPVs
associated with argument
mgr_type_uuid.

NULL non-NULL

NULL NULL Removes all manager EPVs.

Note: When both of the arguments if_handle and mgr_type_uuid are given the value NULL,
this call has the effect of preventing the server from receiving any new remote
procedure calls since all the manager EPVs for all interfaces have been removed.

RETURN VALUE
None.

SEE ALSO
rpc_server_register_if().

198 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_use_all_protseqs()

NAME
rpc_server_use_all_protseqs — tells the RPC run-time system to use all supported protocol
sequences for receiving remote procedure calls (used by server applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_use_all_protseqs(
unsigned32 max_call_requests,
unsigned32 *status);

ARGUMENTS

Input

max_call_requests Specifies the number of concurrent remote procedure call requests that
the server is guaranteed to accept from the transport. The RPC run-time
system allocates sufficient network resources to handle this number of
concurrent calls.

The RPC run-time system guarantees that the server can accept at least
this number of concurrent call requests. The actual number of these
requests can be greater than the value of max_call_requests and can vary
for each protocol sequence.

The value rpc_c_protseq_max_reqs_default specifies an implementation
dependent default value ≥1.

Note: The rpc_server_listen routine specifies a max_calls_exec argument
that specifies the number of call threads the server will allocate
to handle calls. Normally, the values of max_calls_exec and
max_call_requests are the same. Servers are guaranteed to
support the minimum of max_calls_exec and max_call_requests
concurrent remote procedure calls. Applications should not rely
on a server handling more than this number.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_cant_create_sock
Cannot create a transport endpoint.

rpc_s_max_descs_exceeded
Exceeded maximum number of transport endpoints.

rpc_s_no_protseqs
No supported protocol sequences.

Part 2 RPC Application Programmer’s Interface 199

rpc_server_use_all_protseqs() RPC API Manual Pages

DESCRIPTION
The rpc_server_use_all_protseqs() routine registers all supported protocol sequences with the RPC
run-time system. A server must register at least one protocol sequence with the RPC run-time
system to receive remote procedure call requests.

For each protocol sequence registered by a server, the RPC run-time system creates one or more
binding handles. The RPC run-time system creates different binding handles for each protocol
sequence. Each binding handle contains a dynamic endpoint that the RPC run-time system
generated.

The max_call_requests argument allows applications to specify a maximum number of concurrent
remote procedure call requests the server must handle.

After registering protocol sequences, a server typically calls the following routines:

• rpc_server_inq_bindings(), which obtains a vector containing all of the server’s binding
handles

• rpc_ep_register() or rpc_ep_register_no_replace(), which register the binding handles with
the local endpoint map

• rpc_ns_binding_export (), which places the binding handles in the name service database for
access by any client

• rpc_binding_vector_free (), which frees the vector of server binding handles

• rpc_server_register_if(), which registers with the RPC run-time system those interfaces that
the server offers

• rpc_server_listen(), which enables the reception of remote procedure calls.

To selectively register protocol sequences, a server calls the rpc_server_use_protseq(),
rpc_server_use_all_protseqs(), rpc_server_use_protseq_if() or rpc_server_use_protseq_ep() routine.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_binding_to_string_binding ()
rpc_binding_vector_free ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_listen()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

200 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_use_all_protseqs_if()

NAME
rpc_server_use_all_protseqs — tells the RPC run-time system to use all the protocol sequences
and endpoints specified in an interface specification for receiving remote procedure calls (used
by server applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_use_all_protseqs_if(
unsigned32 max_call_requests,
rpc_if_handle_t if_handle,
unsigned32 *status);

ARGUMENTS

Input

max_call_requests Specifies the number of concurrent remote procedure call requests that
the server is guaranteed to accept from the transport. The RPC run-time
system allocates sufficient network resources to handle this number of
concurrent calls.

The RPC run-time system guarantees that the server can accept at least
this number of concurrent call requests. The actual number of these
requests can be greater than the value of max_call_requests and can vary
for each protocol sequence.

The value rpc_c_protseq_max_reqs_default specifies an implementation-
dependent default value ≥1.

Note: The rpc_server_listen routine specifies a max_calls_exec argument
that specifies the number of call threads the server will allocate
to handle calls. Normally, the values of max_calls_exec and
max_call_requests are the same. Servers are guaranteed to
support the minimum of max_calls_exec and max_call_requests
concurrent remote procedure calls. Applications should not rely
on a server handling more than this number.

if_handle Specifies an interface specification containing the protocol sequences and
their corresponding endpoint information to use in creating binding
handles. Each created binding handle contains a well-known (non-
dynamic) endpoint contained in the interface specification.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_no_protseqs
No supported protocol sequences.

Part 2 RPC Application Programmer’s Interface 201

rpc_server_use_all_protseqs_if() RPC API Manual Pages

DESCRIPTION
The rpc_server_use_all_protseqs() routine registers all stub-defined protocol sequences and
associated endpoint address information with the RPC run-time system. A server must register
at least one protocol sequence with the RPC run-time system to receive remote procedure call
requests. The max_call_requests argument specifies the number of concurrent remote procedure
call requests the server is guaranteed to handle.

Note: To register selected stub-defined protocol sequences, applications use the
rpc_server_use_protseq_if() routine. After calling rpc_server_use_all_protseqs(), an
application typically calls the following routines:

• rpc_server_inq_bindings(), which obtains a vector containing all of the server’s
binding handles

• rpc_ns_binding_export (), which places the binding handles in the name service
database for access by any client

• rpc_binding_vector_free (), which frees the vector of server binding handles

• rpc_server_register_if(), which registers with the RPC run-time system those
interfaces that the server offers

• rpc_server_listen(), which enables the reception of remote procedure calls.

RETURN VALUE
None.

SEE ALSO
rpc_binding_vector_free ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_listen()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

202 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_use_protseq()

NAME
rpc_server_use_protseq — tells the RPC run-time system to use the specified protocol sequence
for receiving remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_use_protseq(
unsigned_char_t *protseq,
unsigned32 max_call_requests,
unsigned32 *status);

ARGUMENTS

Input

protseq Specifies a protocol sequence to register with the RPC run-time system.
Appendix B lists valid protocol sequence identifiers that may be used for
this argument.

max_call_requests Specifies the number of concurrent remote procedure call requests that
the server is guaranteed to accept from the transport. The RPC run-time
system allocates sufficient network resources to handle this number of
concurrent calls.

The RPC run-time system guarantees that the server can accept at least
this number of concurrent call requests. The actual number of these
requests can be greater than the value of max_call_requests and can vary
for each protocol sequence.

The value rpc_c_protseq_max_reqs_default specifies an implementation-
dependent default value ≥1.

Note: The rpc_server_listen() routine specifies a max_calls_exec
argument that specifies the number of call threads the server
will allocate to handle calls. Normally, the values of
max_calls_exec and max_call_requests are the same. Servers are
guaranteed to support the minimum of max_calls_exec and
max_call_requests concurrent remote procedure calls.
Applications should not rely on a server handling more than this
number.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Part 2 RPC Application Programmer’s Interface 203

rpc_server_use_protseq() RPC API Manual Pages

DESCRIPTION
The rpc_server_use_protseq() routine registers a single protocol sequence with the RPC run-time
system. A server must register at least one protocol sequence with the RPC run-time system to
receive remote procedure call requests. A server can call this routine multiple times to register
additional protocol sequences.

The max_call_requests argument allows an application to specify the number of concurrent
remote procedure call requests the server is guaranteed to handle.

Note: To register all stub-defined protocol sequences, a server calls the
rpc_server_use_all_protseqs() routine.

For a list of routines typically called after rpc_server_use_protseq(), see
rpc_server_use_all_protseqs() on page 199.

RETURN VALUE
None.

SEE ALSO
rpc_binding_vector_free ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_network_is_protseq_valid ()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_listen()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq_ep()
rpc_server_use_protseq_if().

204 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_use_protseq_ep()

NAME
rpc_server_use_protseq_ep — tells the RPC run-time system to use the specified protocol
sequence combined with the specified endpoint for receiving remote procedure calls (used by
server applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_use_protseq_ep(
unsigned_char_t *protseq,
unsigned32 max_call_requests,
unsigned_char_t *endpoint,
unsigned32 *status);

ARGUMENTS

Input

protseq Specifies a protocol sequence to register with the RPC run-time system.
Appendix B lists valid protocol sequence identifiers that may be used for
this argument.

max_call_requests Specifies the number of concurrent remote procedure call requests that
the server is guaranteed to accept from the transport. The RPC run-time
system allocates sufficient network resources to handle this number of
concurrent calls.

The RPC run-time system guarantees that the server can accept at least
this number of concurrent call requests. The actual number of these
requests can be greater than the value of max_call_requests and can vary
for each protocol sequence.

The value rpc_c_protseq_max_reqs_default specifies an implementation-
dependent default value ≥1.

Note: The rpc_server_listen() routine specifies a max_calls_exec
argument that specifies the number of call threads the server
will allocate to handle calls. Normally, the values of
max_calls_exec and max_call_requests are the same. Servers are
guaranteed to support the minimum of max_calls_exec and
max_call_requests concurrent remote procedure calls.
Applications should not rely on a server handling more than this
number.

endpoint Specifies address information for an endpoint. This information is used in
creating a binding handle for the protocol sequence specified in the
protseq argument. (See Section 3.1 on page 49 for information on the
syntax of the endpoint argument.)

Part 2 RPC Application Programmer’s Interface 205

rpc_server_use_protseq_ep() RPC API Manual Pages

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

DESCRIPTION
The rpc_server_use_protseq_ep() routine registers a protocol sequence and its specified endpoint
address information with the RPC run-time system. A server must register at least one protocol
sequence with the RPC run-time system to receive remote procedure call requests. A server can
call this routine multiple times to register additional protocol sequences and endpoints.

The max_call_requests argument specifies the number of concurrent remote procedure call
requests the server is guaranteed to handle.

Note: For a list of routines typically called after rpc_server_use_protseq_ep(), see
rpc_server_use_all_protseqs() on page 199.

RETURN VALUE
None.

SEE ALSO
rpc_binding_vector_free ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_listen()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep().

206 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_use_protseq_if()

NAME
rpc_server_use_protseq_if — tells the RPC run-time system to use the specified protocol
sequence combined with the endpoints in the interface specification for receiving remote
procedure calls (used by server applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_server_use_protseq_if(
unsigned_char_t *protseq,
unsigned32 max_call_requests,
rpc_if_handle_t if_handle,
unsigned32 *status);

ARGUMENTS

Input

protseq Specifies a protocol sequence to register with the RPC run-time system.
Appendix B lists valid protocol sequence identifiers that may be used for
this argument.

max_call_requests Specifies the number of concurrent remote procedure call requests that
the server is guaranteed to accept from the transport. The RPC run-time
system allocates sufficient network resources to handle this number of
concurrent calls.

The RPC run-time system guarantees that the server can accept at least
this number of concurrent call requests. The actual number of these
requests can be greater than the value of max_call_requests and can vary
for each protocol sequence.

The value rpc_c_protseq_max_reqs_default specifies an implementation-
dependent default value ≥1.

Note: The rpc_server_listen routine specifies a max_calls_exec argument
that specifies the number of call threads the server will allocate
to handle calls. Normally, the values of max_calls_exec and
max_call_requests are the same. Servers are guaranteed to
support the minimum of max_calls_exec and max_call_requests
concurrent remote procedure calls. Applications should not rely
on a server handling more than this number.

if_handle Specifies an interface specification whose endpoint information is used in
creating a binding for the protocol sequence specified in the protseq
argument.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Part 2 RPC Application Programmer’s Interface 207

rpc_server_use_protseq_if() RPC API Manual Pages

DESCRIPTION
The rpc_server_use_protseq_if() routine registers one protocol sequence with the RPC run-time
system, including its endpoint address information as provided by the stub.

A server must register at least one protocol sequence with the RPC run-time system to receive
remote procedure call requests. A server can call this routine multiple times to register
additional protocol sequences.

The max_call_requests argument specifies the number of concurrent remote procedure call
requests the server is guaranteed to handle.

Note: To register all stub-specified protocol sequences, applications use the
rpc_server_use_all_protseqs() routine. After calling rpc_server_use_protseq_if(), an
application typically calls the following routines:

• rpc_server_inq_bindings(), which obtains a vector containing all of the server’s
binding handles

• rpc_ns_binding_export (), which places the binding handles in the name service
database for access by any client

• rpc_binding_vector_free (), which frees the vector of server binding handles

• rpc_server_register_if(), which registers with the RPC run-time system those
interfaces that the server offers

• rpc_server_listen(), which enables the reception of remote procedure calls.

RETURN VALUE
None.

SEE ALSO
rpc_binding_vector_free ()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_export ()
rpc_server_inq_bindings()
rpc_server_listen()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use_protseq_ep().

208 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_sm_allocate()

NAME
rpc_sm_allocate — allocates memory within the RPC stub memory management scheme

SYNOPSIS
#include <rpc.h>

idl_void_p_t rpc_sm_allocate(
unsigned32 size,
unsigned32 *status);

ARGUMENTS

Input

size Specifies, in bytes, the size of memory to be allocated.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
Applications call rpc_sm_allocate () to allocate memory within the RPC stub memory
management scheme. Before a call to this routine, the stub memory management environment
must have been established. For manager code that is called from the stub, the stub itself
normally establishes the necessary environment. (See Chapter 2 for a description of stub
memory management and an explanation of the conditions under which the stub establishes the
necessary memory management environment.) When rpc_sm_allocate () is used by code that is
not called from the stub, the application must establish the required memory management
environment by calling rpc_sm_enable_allocate ().

When the stub establishes the memory management environment, the stub itself frees any
memory allocated by rpc_sm_allocate (). The application can free such memory before returning
to the calling stub by calling rpc_sm_free().

When the application establishes the memory management environment, it must free any
memory allocated, either by calling rpc_sm_free() or by calling rpc_sm_disable_allocate.

Multiple threads may call rpc_sm_allocate () and rpc_sm_free() to manage the same memory within
the stub memory management environment. To do so, the threads must share the same stub memory
management thread handle. Applications pass thread handles from thread to thread by calling
rpc_sm_get_thread_handle () and rpc_sm_set_thread_handle().

RETURN VALUE
A pointer to the allocated memory.

SEE ALSO
rpc_sm_free()
rpc_sm_enable_allocate ()
rpc_sm_disable_allocate ()
rpc_sm_get_thread_handle ()
rpc_sm_set_thread_handle ().

Part 2 RPC Application Programmer’s Interface 209

rpc_sm_client_free() RPC API Manual Pages

NAME
rpc_sm_client_free — frees memory returned from a client stub

SYNOPSIS
#include <rpc.h>

void rpc_sm_client_free(
idl_void_p_t node_to_free,
unsigned32 *status);

ARGUMENTS

Input

node_to_free Specifies a pointer to memory returned from a client stub.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_sm_client_free() routine releases memory allocated and returned from a client stub. The
thread calling rpc_sm_client_free() must have the same thread handle as the thread that made the
RPC call. Applications pass thread handles from thread to thread by calling
rpc_sm_get_thread_handle () and rpc_sm_set_thread_handle ().

This routine enables a routine to deallocate dynamically allocated memory returned by an RPC
call without knowledge of the memory management environment from which it was called.

RETURN VALUE
None.

SEE ALSO
rpc_sm_free()
rpc_sm_get_thread_handle ()
rpc_sm_set_client_alloc_free ()
rpc_sm_set_thread_handle ()
rpc_sm_swap_client_alloc_free ().

210 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_sm_destroy_client_context()

NAME
rpc_sm_destroy_client_context — reclaims the client memory resources for a context handle,
and makes the context handle null

SYNOPSIS
#include <rpc.h>

void rpc_sm_destroy_client_context(
idl_void_p_t p_unusable_context_handle,
unsigned32 *status);

ARGUMENTS

Input

p_unusable_context_handle
Specifies the context handle that can no longer be accessed.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_sm_destroy_client_context () routine is used by client applications to reclaim the client
resources used in maintaining an active context handle. Applications call this routine after a
communications error makes the context handle unusable.

When the rpc_sm_destroy_client_context () routine reclaims the memory resources, it also makes
the context handle null.

RETURN VALUE
None.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_enable_allocate ().

Part 2 RPC Application Programmer’s Interface 211

rpc_sm_disable_allocate() RPC API Manual Pages

NAME
rpc_sm_disable_allocate — releases resources and allocated memory within the stub memory
management scheme

SYNOPSIS
#include <rpc.h>

void rpc_sm_disable_allocate(
unsigned32 *status);

ARGUMENTS

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_sm_disable_allocate () routine releases all resources acquired by a call to
rpc_sm_enable_allocate (), and any memory allocated by calls to rpc_sm_allocate () after the call to
rpc_sm_enable_allocate () was made.

The rpc_sm_enable_allocate () and rpc_sm_disable_allocate () routines must be used in matching
pairs.

RETURN VALUE
None.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_enable_allocate ()

212 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_sm_enable_allocate()

NAME
rpc_sm_enable_allocate — enables the stub memory management environment

SYNOPSIS
#include <rpc.h>

void rpc_sm_enable_allocate(
unsigned32 *status);

ARGUMENTS

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
Applications can call rpc_sm_enable_allocate () to establish a stub memory management
environment in cases where one is not established by the stub itself. A stub memory
management environment must be established before any calls are made to rpc_sm_allocate ().
For server manager code called from the stub, the stub memory management environment is
normally established by the stub itself. (See Chapter 2 for a description of stub memory
management and an explanation of the conditions under which the stub establishes the
necessary memory management environment.) Code that is called from other contexts needs to
call rpc_sm_enable_allocate () before calling rpc_sm_allocate ().

Note: For a discussion of how spawned threads acquire a stub memory management
environment, see rpc_sm_get_thread_handle () on page 215.

RETURN VALUE
None.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_disable_allocate ().

Part 2 RPC Application Programmer’s Interface 213

rpc_sm_free() RPC API Manual Pages

NAME
rpc_sm_free — frees memory allocated by the rpc_sm_allocate () routine

SYNOPSIS
#include <rpc.h>

void rpc_sm_free(
idl_void_p_t node_to_free,
unsigned32 *status);

ARGUMENTS

Input

node_to_free Specifies a pointer to memory allocated by rpc_sm_allocate ().

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
Applications call rpc_sm_free() to release memory allocated by rpc_sm_allocate ().

When the stub allocates memory within the stub memory management environment, manager
code called from the stub can also use rpc_sm_free() to release memory allocated by the stub.
(See Chapter 2 for a description of stub memory management.)

The thread calling rpc_sm_free() must have the same thread handle as the thread that allocated
the memory with rpc_sm_allocate (). Applications pass thread handles from thread to thread by
calling rpc_sm_get_thread_handle () and rpc_sm_set_thread_handle().

RETURN VALUE
None.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_get_thread_handle()
rpc_sm_set_thread_handle().

214 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_sm_get_thread_handle()

NAME
rpc_sm_get_thread_handle — gets a thread handle for the stub memory management
environment

SYNOPSIS
#include <rpc.h>

rpc_sm_thread_handle_t rpc_sm_get_thread_handle(
unsigned32 *status);

ARGUMENTS

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
Applications call rpc_sm_get_thread_handle () to get a thread handle for the current stub memory
management environment. A thread that is managing memory within the stub memory
management scheme calls rpc_sm_get_thread_handle () to get a thread handle for its current stub
memory management environment. A thread that calls rpc_sm_set_thread_handle () with this
handle is able to use the same memory management environment.

When multiple threads call rpc_sm_allocate () and rpc_sm_free() to manage the same memory, they
must share the same thread handle. The thread that established the stub memory management
environment calls rpc_sm_get_thread_handle () to get a thread handle before spawning new threads that
will manage the same memory. The spawned threads then call rpc_sm_set_thread_handle() with the
handle provided by the parent thread.

Note: Typically, rpc_sm_get_thread_handle is called by a server manager routine before it spawns
additional threads. Normally the stub sets up the memory management environment for the
manager routine. The manager calls rpc_sm_get_thread_handle to make this environment
available to the spawned threads.

A thread may also use rpc_sm_get_thread_handle and rpc_sm_set_thread_handle to save and
restore its memory management environment.

RETURN VALUE
A thread handle.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_free()
rpc_sm_set_thread_handle ().

Part 2 RPC Application Programmer’s Interface 215

rpc_sm_set_client_alloc_free() RPC API Manual Pages

NAME
rpc_sm_set_client_alloc_free — sets the memory allocation and freeing mechanisms used by the
client stubs

SYNOPSIS
#include <rpc.h>

void rpc_sm_set_client_alloc_free(
idl_void_p_t (*p_allocate)(

unsigned32 size),
void (*p_free)(

idl_void_p_t ptr),
unsigned32 *status);

ARGUMENTS

Input

p_allocate Specifies a memory allocator routine.

p_free Specifies a memory free routine. This routine is used to free memory
allocated with the routine specified by p_allocate.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_sm_set_client_alloc_free () routine overrides the default routines that the client stub uses
to manage memory.

Note: The default memory management routines are ISO free() and ISO malloc (), except
when the remote call occurs within manager code in which case the default memory
management routines are rpc_sm_free() and rpc_sm_allocate ().

RETURN VALUE
None.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_free().

216 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_sm_set_thread_handle()

NAME
rpc_sm_set_thread_handle — sets a thread handle for the stub memory management
environment

SYNOPSIS
#include <rpc.h>

void rpc_sm_set_thread_handle(
rpc_sm_thread_handle_t id,
unsigned32 *status);

ARGUMENTS

Input

id Specifies a thread handle returned by a call to the
rpc_sm_get_thread_handle () routine.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
An application thread calls rpc_sm_set_thread_handle () to set a thread handle for memory
management within the stub memory management environment. A thread that is managing
memory within the stub memory management scheme calls rpc_sm_get_thread_handle () to get a
thread handle for its current stub memory management environment. A thread that calls
rpc_sm_set_thread_handle () with this handle is able to use the same memory management
environment.

When multiple threads call rpc_sm_allocate () and rpc_sm_free() to manage the same memory, they
must share the same thread handle. The thread that established the stub memory management
environment calls rpc_sm_get_thread_handle () to get a thread handle before spawning new threads that
will manage the same memory. The spawned threads then call rpc_sm_set_thread_handle() with the
handle provided by the parent thread.

Note: Typically, rpc_sm_set_thread_handle() is called by a thread spawned by a server manager
routine. Normally, the stub sets up the memory management environment for the manager
routine and the manager calls rpc_sm_get_thread_handle () to get a thread handle. Each
spawned thread then calls rpc_sm_get_thread_handle () to get access to the manager’s memory
management environment.

A thread may also use rpc_sm_get_thread_handle () and rpc_sm_set_thread_handle() to save
and restore its memory management environment.

RETURN VALUE
None.

SEE ALSO
rpc_sm_get_thread_handle ()
rpc_sm_allocate ()
rpc_sm_free().

Part 2 RPC Application Programmer’s Interface 217

rpc_sm_swap_client_alloc_free() RPC API Manual Pages

NAME
rpc_sm_swap_client_alloc_free — exchanges the current memory allocation and freeing
mechanism used by the client stubs with one supplied by the client

SYNOPSIS
#include <rpc.h>

void rpc_sm_swap_client_alloc_free(
idl_void_p_t (*p_allocate)(

unsigned32 size),
void (*p_free)(

idl_void_p_t ptr),
idl_void_p_t (**p_p_old_allocate)(

unsigned32 size),
void (**p_p_old_free)(

idl_void_p_t ptr),
unsigned32 *status);

ARGUMENTS

Input

p_allocate Specifies a new memory allocation routine.

p_free Specifies a new memory free routine.

Output

p_p_old_allocate Returns the memory allocation routine in use before the call to this
routine.

p_p_old_free Returns the memory free routine in use before the call to this routine.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_sm_swap_client_alloc_free () routine exchanges the current allocate and free mechanisms
used by the client stubs for routines supplied by the caller.

RETURN VALUE
None.

SEE ALSO
rpc_sm_allocate ()
rpc_sm_free()
rpc_sm_set_client_alloc_free ().

218 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_string_binding_compose()

NAME
rpc_string_binding_compose — combines the components of a string binding into a string
binding

SYNOPSIS
#include <dce/rpc.h>

void rpc_string_binding_compose(
unsigned_char_t *obj_uuid,
unsigned_char_t *protseq,
unsigned_char_t *network_addr,
unsigned_char_t *endpoint,
unsigned_char_t *options,
unsigned_char_t **string_binding,
unsigned32 *status);

ARGUMENTS

Input

obj_uuid Specifies a string representation of an object UUID.

protseq Specifies a representation of a protocol sequence.

network_addr Specifies a string representation of a network address.

endpoint Specifies a string representation of an endpoint.

options Specifies a string representation of network options.

Input/Output

string_binding Returns a pointer to a string representation of a binding.

Specifying NULL prevents the routine from returning this argument. In
this case, no string is allocated.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_string_binding_compose () routine combines string binding handle components into a
string binding. (See Section 3.1 on page 49 for information on the syntax of string bindings.)

The RPC run-time system allocates memory for the string returned in string_binding. The
application calls the rpc_string_free() routine to deallocate that memory.

A NULL or empty string ("") argument specifies that an input string that has no data.

RETURN VALUE
None.

Part 2 RPC Application Programmer’s Interface 219

rpc_string_binding_compose() RPC API Manual Pages

SEE ALSO
rpc_binding_from_string_binding ()
rpc_binding_to_string_binding ()
rpc_string_binding_parse ()
rpc_string_free()
uuid_to_string ().

220 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_string_binding_parse()

NAME
rpc_string_binding_parse — returns, as separate strings, the object UUID and address
components of a string binding

SYNOPSIS
#include <dce/rpc.h>

void rpc_string_binding_parse(
unsigned_char_t *string_binding,
unsigned_char_t **obj_uuid,
unsigned_char_t **protseq,
unsigned_char_t **network_addr,
unsigned_char_t **endpoint,
unsigned_char_t **network_options,
unsigned32 *status);

ARGUMENTS

Input

string_binding Specifies a string representation of a binding.

Input/Output

obj_uuid Returns a string representation of an object UUID.

Specifying NULL prevents the routine from returning this argument.

protseq Returns a string representation of a protocol sequence.

Specifying NULL prevents the routine from returning this argument.

network_addr Returns a string representation of a network address.

Specifying NULL prevents the routine from returning this argument.

endpoint Returns a string representation of an endpoint.

Specifying NULL prevents the routine from returning this argument.

network_options Returns a string representation of network options.

Specifying NULL prevents the routine from returning this argument.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_string_binding_parse () routine parses a string representation of a binding into its
component fields.

The RPC run-time system allocates memory for each component string the routine returns. To
deallocate this memory, the application calls the rpc_string_free() routine once for each returned
string. When NULL is specified for a component, no memory is allocated and no string is
returned so the application need not call rpc_string_free().

Part 2 RPC Application Programmer’s Interface 221

rpc_string_binding_parse() RPC API Manual Pages

When a field of the string_binding is empty, the rpc_string_binding_parse () routine returns the
empty string ("") in the corresponding output.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_binding_to_string_binding ()
rpc_string_binding_compose ()
rpc_string_free()
uuid_from_string().

222 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_string_free()

NAME
rpc_string_free — frees a character string allocated by the run-time system

SYNOPSIS
#include <dce/rpc.h>

void rpc_string_free(
unsigned_char_t **string,
unsigned32 *status);

ARGUMENTS

Input/Output

string Specifies the address of the pointer to the character string to free.

The value NULL is returned.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

rpc_s_ok Success.

DESCRIPTION
The rpc_string_free() routine deallocates the memory occupied by a character string when it was
allocated with one of the following routines:

dce_error_inq_text()
rpc_binding_inq_auth_client ()
rpc_binding_inq_auth_info ()
rpc_binding_to_string_binding ()
rpc_mgmt_ep_elt_inq_next()
rpc_mgmt_inq_server_princ_name()
rpc_ns_binding_inq_entry_name()
rpc_ns_entry_expand_name()
rpc_ns_group_mbr_inq_next()
rpc_ns_profile_elt_inq_next()
rpc_string_binding_compose ()
rpc_string_binding_parse ()
uuid_to_string ()

An application must call this routine once for each character string allocated and returned by
calls to other RPC run-time routines.

RETURN VALUE
None.

Part 2 RPC Application Programmer’s Interface 223

rpc_string_free() RPC API Manual Pages

SEE ALSO
dce_error_inq_text() on page 624
rpc_binding_inq_auth_client ()
rpc_binding_inq_auth_info ()
rpc_binding_to_string_binding ()
rpc_mgmt_ep_elt_inq_next()
rpc_mgmt_inq_server_princ_name()
rpc_ns_binding_inq_entry_name()
rpc_ns_entry_expand_name()
rpc_ns_group_mbr_inq_next()
rpc_ns_profile_elt_inq_next()
rpc_string_binding_compose ()
rpc_string_binding_parse ()
uuid_to_string ().

224 X/Open CAE Specification (1994)

RPC API Manual Pages uuid_compare()

NAME
uuid_compare — compares two UUIDs and determines their order

Used by client, server or management applications

SYNOPSIS
#include <dce/uuid.h>

signed32 uuid_compare(
uuid_t *uuid1,
uuid_t *uuid2,
unsigned32 *status);

ARGUMENTS

Input

uuid1 A pointer to a UUID. This UUID is compared with the UUID specified in
the uuid2 argument.

uuid2 A pointer to a UUID. This UUID is compared with the UUID specified in
the uuid1 argument.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
The uuid_compare() routine compares two UUIDs and determines their order.

RETURN VALUE
If successful, returns one of the following constants:

−1 The uuid1 argument precedes the uuid2 argument.

0 The uuid1 argument is equal to the uuid2 argument.

1 The uuid1 argument follows the uuid2 argument.

SEE ALSO
uuid_equal()
uuid_is_nil ().

Part 2 RPC Application Programmer’s Interface 225

uuid_create() RPC API Manual Pages

NAME
uuid_create — creates a new UUID

SYNOPSIS
#include <dce/uuid.h>

void uuid_create(
uuid_t *uuid,
unsigned32 *status);

ARGUMENTS

Output

uuid Returns the new UUID.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
The uuid_create() routine creates a new UUID.

RETURN VALUE
None.

SEE ALSO
uuid_create_nil ()
uuid_from_string()
uuid_to_string ().

226 X/Open CAE Specification (1994)

RPC API Manual Pages uuid_create_nil()

NAME
uuid_create_nil — creates a nil-valued UUID

SYNOPSIS
#include <dce/uuid.h>

void uuid_create_nil(
uuid_t *nil_uuid,
unsigned32 *status);

ARGUMENTS

Output

nil_uuid Returns a nil-valued UUID.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
The uuid_create_nil () routine creates a nil-valued UUID.

RETURN VALUE
None.

SEE ALSO
uuid_create().

Part 2 RPC Application Programmer’s Interface 227

uuid_equal() RPC API Manual Pages

NAME
uuid_equal — determines if two UUIDs are equal

SYNOPSIS
#include <dce/uuid.h>

boolean32 uuid_equal(
uuid_t *uuid1,
uuid_t *uuid2,
unsigned32 *status);

ARGUMENTS

Input

uuid1 A pointer to a UUID. This UUID is compared with the UUID specified in
the uuid2 argument.

uuid2 A pointer to a UUID. This UUID is compared with the UUID specified in
the uuid1 argument.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
The uuid_equal() routine compares two UUIDs and determines whether they are equal.

RETURN VALUE
If successful, returns one of the following constants:

TRUE The uuid1 argument is equal to the uuid2 argument.

FALSE The uuid1 argument is not equal to the uuid2 argument.

SEE ALSO
uuid_compare().

228 X/Open CAE Specification (1994)

RPC API Manual Pages uuid_from_string()

NAME
uuid_from_string — converts the string representation of a UUID to the binary representation

SYNOPSIS
#include <dce/uuid.h>

void uuid_from_string(
unsigned_char_t *string_uuid,
uuid_t *uuid,
unsigned32 *status);

ARGUMENTS

Input

string_uuid A string UUID. (For information about string UUIDs, see Section 3.1 on
page 49.)

Output

uuid Returns the UUID specified by the string_uuid argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
An application calls the uuid_from_string() routine to convert the string representation of a
UUID, string_uuid, to its equivalent binary representation.

RETURN VALUE
None.

SEE ALSO
uuid_to_string ().

Part 2 RPC Application Programmer’s Interface 229

uuid_is_nil() RPC API Manual Pages

NAME
uuid_is_nil — determines if a UUID is a nil-valued UUID.

SYNOPSIS
#include <dce/uuid.h>

boolean32 uuid_is_nil(
uuid_t *uuid,
unsigned32 *status);

ARGUMENTS

Input

uuid Specifies a UUID to test for nil value.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
The uuid_is_nil () routine determines whether the specified UUID is a nil-valued UUID. This
routine yields the same result as if an application did the following:

• called the uuid_create_nil () routine

• called the uuid_equal() routine to compare the returned nil-value UUID to the UUID specified
in the uuid argument.

RETURN VALUE
If successful, returns one of the following constants:

TRUE The uuid argument is a nil-valued UUID.

FALSE The uuid argument is not a nil-valued UUID.

SEE ALSO
uuid_compare()
uuid_create_nil ()
uuid_equal().

230 X/Open CAE Specification (1994)

RPC API Manual Pages uuid_to_string()

NAME
uuid_to_string — converts a UUID from a binary representation to a string representation

SYNOPSIS
#include <dce/uuid.h>

void uuid_to_string(
uuid_t *uuid,
unsigned_char_t **string_uuid,
unsigned32 *status);

ARGUMENTS

Input

uuid Specifies a UUID to be converted to string format.

Output

string_uuid Returns a pointer to the string representation of the UUID specified in the
uuid argument.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include:

uuid_s_ok Success.

DESCRIPTION
The uuid_to_string () routine converts a UUID to string UUID.

Note: The RPC run-time system allocates memory for the string returned in string_uuid. To
deallocate the memory, the application calls the rpc_string_free() routine.

RETURN VALUE
None.

SEE ALSO
rpc_string_free()
uuid_from_string().

Part 2 RPC Application Programmer’s Interface 231

RPC API Manual Pages

232 X/Open CAE Specification (1994)

X/Open CAE Specification

Part 3

Interface Definition Language and Stubs

X/Open Company Ltd.

Part 3 Interface Definition Language and Stubs 233

234 X/Open CAE Specification (1994)

Chapter 4

Interface Definition Language

The Interface Definition Language (IDL) is a language for specifying operations (procedures or
functions), parameters to these operations, and data types. This chapter specifies IDL and the
associated Attribute Configuration Source (ACS). It includes:

• a description of the notation used in the language specifications

• a specification of the IDL language

• a specification of the ACS

• a series of tables summarising IDL and ACS grammar.

4.1 Notation
The syntax of IDL and ACS is described using an extended BNF (Backus-Naur Form) notation.
The meaning of the BNF notation is as follows:

• Brackets ([]) enclose an optional part of the syntax.

• Ellipsis points (. . .) indicate that the left clause can be repeated either zero or more times if it
is optional or one or more times if it is required.

• The vertical bar (|) indicates alternative productions; it is read as ‘‘or’’.

• Language punctuation that does not conflict with punctuation characters used in the BNF
notation appears in a production in the appropriate position. Language punctuation that
does conflict with punctuation characters used in the BNF notation is enclosed in less-than
and greater-than symbols; for example, <[>. Note particularly that when ’ (single quotation)
or " (double quotation) appear in a production, they are a part of the language and must
appear in IDL source.

Elements in the grammar that are capitalised are terminals of the grammar. For example,
<Identifier> is not further expanded. Also, keywords of the language are terminals of the
grammar. For example, the keyword boolean is not further expanded.

Part 3 Interface Definition Language and Stubs 235

IDL Language Specification Interface Definition Language

4.2 IDL Language Specification
The syntax of the IDL language is derived from that of the ISO C programming language. Where
a term in this description of the IDL language is not fully defined, the C-language definition of
that term is implied.

This chapter specifies both language syntax and semantics. As a result, the syntax is presented in
pieces. Section 4.4.1 on page 269 provides a syntax summary, with the productions in the order
in which they appear in this chapter. An alphabetical cross-reference to the language syntax is
also provided in Section 4.4.2 on page 273.

4.2.1 IDL Lexemes

The following subsections define the lexemes of the IDL language.

4.2.1.1 Keywords and Reserved Words

The IDL contains keywords, which are listed in Section 4.6 on page 277. Some keywords are
reserved words, and must not be used as identifiers. Keywords that are not reserved may be
used as identifiers, except when used as attributes (that is, within [] (brackets)).

4.2.1.2 Identifiers

Each object is named with a unique identifier. The maximum length of an identifier is 31
characters.

Some identifiers are used as a base from which the compiler constructs other identifiers. These
identifiers have further restrictions on their length. Table 4-4 on page 276 lists the classes and
maximum lengths of identifiers that are used as bases. The character set for identifiers is the
alphabetic characters A to Z and a to z, the digits 0 to 9, and the _ (underbar) character. An
identifier must start with an alphabetic character or the _ (underbar) character.

The IDL is a case-sensitive language.

Restrictions on Names

Interface specifications must observe the following restrictions on names:

• A field name or parameter name cannot be the same as a type name.

• Type names, operation names, constant names and enumeration identifiers form a single
name space. An identifier may only have one usage within this name space.

4.2.1.3 IDL Punctuation

The punctuation used in IDL consists of the following characters:

• the . (dot)

• the , (comma)

• the pair () (parentheses)

• the pair [] (brackets)

• the pair { } (braces)

• the ; (semicolon)

• the : (colon)

236 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

• the * (asterisk)

• the ’ (single quote)

• the " (double quote)

• the = (equal sign).

4.2.1.4 Alternate Representation of Braces

The { (open brace) and } (close brace) characters are defined as national replacement set
characters by ISO and may not be present on all keyboards. Wherever an open brace is specified,
the ??< trigraph may be substituted. Wherever a close brace is specified, the ??> trigraph may be
substituted. These substitutions are the same as those specified in the ISO C standard.

4.2.1.5 White Space

White space is a character sequence that can be used to delimit any of the other low-level
constructs. The syntax of white space is as follows:

• a blank

• a return

• a horizontal tab

• a form feed in column 1

• a comment

• a sequence of one or more white space constructs.

A language keyword, an <Identifier> or a list of <Digit>s must be preceded by a
punctuation character or by white space. A language keyword, an <Identifier> or a list of
<Digit>s must be followed by a punctuation character or by white space. Any punctuation
character may be preceded or followed by white space.

4.2.2 Comments

The /* (slash and asterisk) characters introduce a comment. The contents of a comment are
examined only to find the */ (asterisk and slash) that terminate it. Thus, comments do not nest.
One or more comments may occur before the first non-comment lexical element of the IDL
source, between any two lexical elements of the IDL source, or after the last non-comment lexical
element of the IDL source.

4.2.3 Interface Definition Structure

An interface definition written in IDL has the following structure:

<interface> ::= <interface_header> { <interface_body> }

Part 3 Interface Definition Language and Stubs 237

IDL Language Specification Interface Definition Language

4.2.4 Interface Header

The structure of the interface header is as follows:

<interface_header> ::= <[> <interface_attributes> <]> interface <Identifier>

where:

<interface_attributes> ::= <interface_attribute>
[, <interface_attribute>] ...

<interface_attribute> ::= uuid (<Uuid_rep>)
| version (<Integer_literal>[.<Integer_literal>])
| endpoint (<port_spec> [,<port_spec>] ...)
| local
| pointer_default (<ptr_attr>)

<port_spec> ::= <Family_string> : <[> <Port_string> <]>

If an interface defines any operations, exactly one of the uuid attribute or the local attribute must
be specified. Whichever is specified must appear exactly once.

It is permissible to have neither the uuid nor the local attribute if the interface defines no
operations. The version attribute may occur at most once.

4.2.4.1 The uuid Attribute

The uuid attribute designates the UUID that is assigned to the interface to identify it uniquely
among all interfaces. The uuid attribute is expressed by the uuid keyword followed by a string
of characters that gives the literal representation of the UUID.

The textual representation of a UUID is a string that consists of 8 hexadecimal digits followed by
a dash, followed by 3 groups of 4 hexadecimal digits where the groups are separated by dashes,
followed by a dash followed by 12 hexadecimal digits. Hexadecimal digits with alphabetic
representations may use upper case or lower case. The following is an example of the textual
representation of a UUID:

12345678-9012-b456-8001-080020b033d7

All UUIDs are machine generated in a manner that gives high guarantees of uniqueness. For an
architectural definition of UUIDs and a full discussion of their guarantees, refer to Appendix A.

4.2.4.2 The version Attribute

The version attribute identifies a specific version of a remote interface when multiple versions of
the interface exist. Version semantics are specified in Chapter 6. The version attribute is
represented by the version keyword followed by a decimal integer that represents the major
version number of the interface, or two decimal integers separated by a dot, where the first
integer represents the major version number and the second represents the minor version
number. White space is not allowed between the two integers and the dot.

Legal Values for Version Numbers

The major and minor version numbers of an interface must each have a value between 0 and
65,535, inclusive.

238 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

Version Number Defaults

The defaulting rules for interface version numbers are as follows:

• The interpretation of an interface with only a single (major) version number is that the minor
version number is 0.

• An interface with no version attribute is given the version number 0.0.

4.2.4.3 The endpoint Attribute

The endpoint attribute specifies the well-known endpoint(s) on which servers that export the
interface will listen. Well-known endpoint values are typically assigned by the central authority
that owns the protocol.

A <port_spec> is composed of two strings separated by punctuation as described in the
syntax. The <Family_string> identifies the protocol family to be used; the <Port_string>
identifies the well-known endpoint designation for that family.

The actual syntax of <Port_string> is family-dependent. Registered values of
<Port_string> are given in Appendix H.

4.2.4.4 The local Attribute

The local attribute provides a means to use the IDL compiler as a header generation language.
When the local attribute is specified, the uuid attribute must not be specified.

Stubs are not generated for local interfaces. Checks for data transmissibility are omitted.

4.2.4.5 The pointer_default Attribute

The pointer_default attribute specifies the default treatment for pointers. If no pointer_default
attribute is specified in the interface attributes, and a construct requiring a default pointer class
is used, the compiler will issue an error. (See Section 4.2.20 on page 253 for more information.)

4.2.5 Interface Body

The structure of the interface body is as follows:

<interface_body> ::= [<import> ...] <interface_component>
[<interface_component> ...]

where:

<import> ::= import <import_list> ;
<interface_component> ::= <export>

| <op_declarator> ;
<export> ::= <type_declarator> ;

| <const_declarator> ;
| <tagged_declarator> ;

Part 3 Interface Definition Language and Stubs 239

IDL Language Specification Interface Definition Language

4.2.6 Import Declaration

The syntax of the <import_list> in an import declaration is as follows:

<import_list> ::= <import_name> [, <import_name>] ...
<import_name> ::= "<Import_string>"

where: <Import_string> gives a system dependent name for an import source.

4.2.7 Constant Declaration

The following subsections specify the syntax and semantics of constant declarations.

4.2.7.1 Syntax

The syntax for a constant declaration is as follows:

240 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

<const_declarator> ::= const <const_type_spec> <Identifier> = <const_exp>

<const_type_spec> ::= <primitive_integer_type>
| char
| boolean
| void *
| char *

<const_exp> ::= <integer_const_exp>
| <Identifier>
| <string>
| <character_constant>
| NULL
| TRUE
| FALSE

<integer_const_exp> ::= <conditional_exp>
<conditional_exp> ::= <logical_or_exp>

| <logical_or_exp> ? <integer_const_exp> : <conditional_exp>
<logical_or_exp> ::= <logical_and_exp>

| <logical_or_exp> <||> <logical_and_exp>
<logical_and_exp> ::= <inclusive_or_exp>

| <logical_and_exp> && <inclusive_or_exp>
<inclusive_or_exp> ::= <exclusive_or_exp>

| <inclusive_or_exp> <|> <exclusive_or_exp>
<exclusive_or_exp> ::= <and_exp>

| <exclusive_or_exp> ˆ <and_exp>
<and_exp> ::= <equality_exp>

| <and_exp> & <equality_exp>
<equality_exp> ::= <relational_exp>

| <equality_exp> == <relational_exp>
| <equality_exp> != <relational_exp>

<relational_exp> ::= <shift_exp>
| <relational_exp> <<> <shift_exp>
| <relational_exp> <>> <shift_exp>
| <relational_exp> <<=> <shift_exp>
| <relational_exp> <>=> <shift_exp>

<shift_exp> ::= <additive_exp>
| <shift_exp> <<<> <additive_exp>
| <shift_exp> <>>> <additive_exp>

<additive_exp> ::= <multiplicative_exp>
| <additive_exp> + <multiplicative_exp>
| <additive_exp> - <multiplicative_exp>

<multiplicative_exp> ::= <unary_exp>
| <multiplicative_exp> * <unary_exp>
| <multiplicative_exp> / <unary_exp>
| <multiplicative_exp> % <unary_exp>

<unary_exp> ::= <primary_exp>
| + <primary_exp>
| - <primary_exp>
| ˜ <primary_exp>
| ! <primary_exp>

<primary_exp> ::= <Integer_literal>
| <Identifier>

<string> ::= "[<Character>] ... "
<character_constant> ::= ’<Character>’

Part 3 Interface Definition Language and Stubs 241

IDL Language Specification Interface Definition Language

4.2.7.2 Semantics and Restrictions

The <integer_size> keyword hyper must not appear in a constant declaration.
<Character> is a character from the portable character set specified in Appendix G.

In the production <string>, no <Character> is permitted to be the " (double quote)
character, which is the delimiter, unless it is immediately preceded by the \ (backslash)
character. In the production <character_constant>, no <Character> may be the ’ (single
quote) character, which is the delimiter, unless it is immediately preceded by the \ (backslash)
character.

<Integer_literal> may appear if and only if <const_type_spec> is long, short, small,
unsigned long, unsigned short or unsigned small.

A <character_constant> may appear if and only if <const_type_spec> is char. NULL
may appear if and only if <const_type_spec> is void*.

TRUE or FALSE may appear if and only if <const_type_spec> is boolean.

<string> may appear if and only if <const_type_spec> is char*. Within a <string> a \
(backslash) is interpreted as introducing an escape sequence, as defined in ISO C standard,
Section 3.1.3.4. White space within a <string> is significant and is preserved as part of the
text of the string.

An <Identifier> must have been defined in a preceding constant declaration. The type that
<Identifier> was defined to be in that declaration must be consistent with the
<const_type_spec> in the current declaration.

4.2.8 Type Declarations and Tagged Declarations

The syntax for type declarations and tagged declarations is as follows:

<type_declarator> ::= typedef [<type_attribute_list>] <type_spec>
<declarators>

<type_attribute_list> ::= <[> <type_attribute>
[, <type_attribute>] ... <]>

<type_spec> ::= <simple_type_spec>
| <constructed_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <predefined_type_spec>
| <Identifier>

<declarators> ::= <declarator> [, <declarator>] ...
<declarator> ::= <simple_declarator>

| <complex_declarator>
<simple_declarator> ::= <Identifier>
<complex_declarator> ::= <array_declarator>

| <function_ptr_declarator>
| <ptr_declarator>

<tagged_declarator> ::= <tagged_struct_declarator>
| <tagged_union_declarator>

If a <simple_type_spec> is an <Identifier>, that <Identifier> must have been
defined previously.

242 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

4.2.9 Base Types

The base types are the fundamental data types of the IDL. Any other data types in an interface
definition are derived from these types. Section 4.2.9.1 gives the syntax rules for the base types.
Section 4.2.9.2 to Section 4.2.9.7 on page 244 define the various types.

4.2.9.1 Syntax

The syntax rules for use of the base types are as follows:

<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <byte_type>
| <void_type>
| <handle_type>

<floating_pt_type> ::= float
| double

<integer_type> ::= <primitive_integer_type>
| hyper [unsigned] [int]
| unsigned hyper [int]

<primitive_integer_type> ::= <signed_integer>
| <unsigned_integer>

<signed_integer> ::= <integer_size> [int]
<unsigned_integer> ::= <integer_size> unsigned [int]

| unsigned <integer_size> [int]
<integer_size> ::= long

| short
| small

<char_type> ::= [unsigned] char
<boolean_type> ::= boolean
<byte_type> ::= byte
<void_type> ::= void
<handle_type> ::= handle_t

4.2.9.2 Integer Types

Table 4-1 lists the integer types and their ranges.

Type Range
hyper -263, ..., 263-1
long -231, ..., 231-1
short -215, ..., 215-1
small -27, ..., 27-1
unsigned hyper 0, ..., 264-1
unsigned long 0, ..., 232-1
unsigned short 0, ..., 216-1
unsigned small 0, ..., 28-1

Table 4-1 Integer Base Types

Part 3 Interface Definition Language and Stubs 243

IDL Language Specification Interface Definition Language

4.2.9.3 The char Types

The keywords char and unsigned char are synonymous. Appendix G contains portable
character set values.

4.2.9.4 The boolean Type

The boolean keyword is used to indicate a data item that can only take one of the values TRUE
and FALSE.

4.2.9.5 The byte Type

A byte data item consists of opaque data: that is, its contents are not interpreted.

4.2.9.6 The void Type

The void keyword is valid only in an operation or pointer declaration. In an operation
declaration, it may be used to indicate an operation that does not return a function result value.
In a pointer declaration, it must be used in conjunction with the context_handle attribute.

4.2.9.7 The handle_t Type

The handle_t type is used to declare a primitive handle object. A primitive handle can be
declared in a type declaration or in a parameter list. If it is declared in a parameter list, it must be
the first parameter in the list.

4.2.10 Constructed Types

The syntax of constructed types is as follows:

<constructed_type_spec> ::= <struct_type>
| <union_type>
| <enumeration_type>
| <tagged_declarator>
| <pipe_type>

4.2.11 Structures

The syntax of structures is as follows:

<tagged_struct_declarator> ::= struct <tag>
| <tagged_struct>

<struct_type> ::= struct { <member_list> }
<tagged_struct> ::= struct <tag> { <member_list> }
<tag> ::= <Identifier>
<member_list> ::= <member> [<member>] ...
<member> ::= <field_declarator> ;
<field_declarator> ::= [<field_attribute_list>] <type_spec> <declarators>
<field_attribute_list> ::= <[> <field_attribute>

[, <field_attribute>] ... <]>

ISO C semantics apply to IDL structures.

244 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

4.2.12 Unions

The following subsections describe IDL unions.

4.2.12.1 Syntax

The syntax for a union definition is:

<tagged_union_declarator> ::= union <tag>
| <tagged_union>

<union_type> ::= union <union_switch> { <union_body> }
| union { <union_body_n_e> }

<union_switch> ::= switch (<switch_type_spec> <Identifier>)
[<union_name>]

<switch_type_spec> ::= <primitive_integer_type>
| <char_type>
| <boolean_type>
| <enumeration_type>

<tagged_union> ::= union <tag> <union_switch> { <union_body> }
| union <tag> { <union_body_n_e> }

<union_name> ::= <Identifier>
<union_body> ::= <union_case> [<union_case>] ...
<union_body_n_e> ::= <union_case_n_e> [<union_case_n_e>] ...
<union_case> ::= <union_case_label> [<union_case_label>] ... <union_arm>

| <default_case>
<union_case_n_e> ::= <union_case_label_n_e> <union_arm>

| <default_case_n_e>
<union_case_label> ::= case <const_exp> :
<union_case_label_n_e> ::= <[> case (<const_exp>

[, <const_exp>] ...) <]>
<default_case> ::= default : <union_arm>
<default_case_n_e> ::= <[> default <]> <union_arm>
<union_arm> ::= [<field_declarator>] ;
<union_type_switch_attr> ::= switch_type (<switch_type_spec>)
<union_instance_switch_attr> ::= switch_is (<attr_var>)

Encapsulated Unions

Encapsulated unions are created with the <union_switch> production.

Note: Encapsulated unions are so named because the discriminant and the union are tightly
bound; that is, in a typical implementation they are both automatically encapsulated in
a single structure.

Non-encapsulated Unions

A union that is created without the use of the <union_switch> production is a non-
encapsulated union. The discriminant of a non-encapsulated union is another parameter if the
union is a parameter, or another structure field if the union is a structure field.

When the non-encapsulated union is declared as a type, the <union_type_switch_attr>
production must be used. When a type that is a non-encapsulated type is used to declare a
structure field or a parameter, the <union_instance_switch_attr> production must be
used. When a non-encapsulated union is being declared directly as a structure field or
parameter, the <union_instance_switch_attr> production must be used.

Part 3 Interface Definition Language and Stubs 245

IDL Language Specification Interface Definition Language

4.2.12.2 Semantics and Restrictions

In encapsulated unions, if the <union_name> is omitted, the union is assigned the name
tagged_union in the generated header source.

The <default_case> defines the layout of data if the discriminant variable of the switch is
not equal to any of the case values.

Within a union, the type of each <union_case_label> must be that specified by the
<switch_type_spec>. Likewise the type specified in the <union_type_switch_attr>
and the <union_instance_switch_attr> must be the same.

A field within a union definition must not be or contain a conformant or conformant varying
array. (See Section 4.2.15 on page 247 for descriptions of conformant and conformant varying
arrays.)

A union arm that consists solely of a terminating semicolon is legal and specifies a null arm.

There must be at most one default case for a union.

4.2.13 Enumerated Types

The syntax of enumerated types is as follows:

<enumeration_type> ::= enum { <Identifier> [, <Identifier>] ... }

The <Identifier>s are mapped from left to right onto consecutive integers, beginning with
the value zero.

An enumeration may have up to 32,767 <Identifier>s.

4.2.14 Pipes

IDL supports streams of typed data. The programming construct to support this is pipe, which
is a type constructor that is similar to struct and union.

An in parameter that is a pipe allows a callee to pull an open-ended stream of typed data from a
caller. An out parameter that is a pipe allows a callee to push an open-ended stream back to a
caller.

4.2.14.1 Syntax

The syntax used to declare a pipe type is as follows:

<pipe_type> ::= pipe <type_spec> <pipe_declarators>

<pipe_declarators> ::= <pipe_declarator> [, <pipe_declarator>] ...
<pipe_declarator> ::= <simple_declarator>

| <ptr_declarator>

4.2.14.2 Semantics and Restrictions

Data types that are pipes are subject to several restrictions:

• Pipe types must only be parameters; that is, a pipe type must not be the base type of an array
or a pipe, a function result or a member of a structure or union.

• The base type of a pipe must not be or contain a pointer, a conformant array or a conformant
structure.

• A pipe type must not be used in the definition of another type.

246 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

• A pipe type must not have the transmit_as attribute.

• A type that is the base type for a pipe must not have the transmit_as attribute.

• A pipe parameter must be passed by value or by reference. A pipe that is passed by reference
must not have the ptr parameter attribute.

• A pipe type must not be the target of a pointer.

Also, an operation that has one or more pipe parameters must not have the idempotent
attribute.

4.2.15 Arrays

The following sections describe the syntax and semantics of arrays.

4.2.15.1 Syntax

The syntax rules for array declarations are as follows:

<array_declarator> ::= <Identifier> <array_bounds_list>
<array_bounds_list> ::= <array_bounds_declarator>

[<array_bounds_declarator>] ...
<array_bounds_declarator> ::= <[> [<array_bound>] <]>

| <[> <array_bounds_pair> <]>
<array_bounds_pair> ::= <array_bound> .. <array_bound>

<array_bound> ::= *
| <Integer_literal>
| <Identifier>

4.2.15.2 Semantics and Restrictions

The bounds of each dimension of an array are expressed inside a separate <[>, <]> (bracket)
pair.

If the bracket pair contains a single <const_exp> that evaluates to n, a lower bound of zero
and an upper bound of n−1 are signified.

If the bracket pair is empty or contains a single * (asterisk), a lower bound of zero and an upper
bound to be determined at run time are signified.

In an <array_bounds_pair> the <array_bound> preceding the . . (dot dot) indicates the
lower bound of the dimension and the <array_bound> following the . . (dot dot) indicates the
upper bound.

An * (asterisk) before or after . . (dot dot) means that the corresponding bound is to be
determined at run time.

Any <Identifier> appearing as an array bound must resolve to an integer constant. The base
type of an array cannot be a conformant array or conformant structure.

4.2.15.3 Arrays of Arrays

The user may declare types that are arrays and then declare arrays of objects of such types. The
semantics of an m-dimensional array of objects of a type defined to be an n-dimensional array
are the same as the semantics of an m+n-dimensional array.

Part 3 Interface Definition Language and Stubs 247

IDL Language Specification Interface Definition Language

4.2.16 Type Attributes

The following sections describe type attributes.

4.2.16.1 Syntax

The syntax for type attributes is as follows:

<type_attribute> ::= transmit_as (<xmit_type>)
| handle
| align (<integer_size>)
| <usage_attribute>
| <union_type_switch_attr>
| <ptr_attr>

<usage_attribute> ::= string
| context_handle

<xmit_type> ::= <simple_type_spec>

4.2.16.2 Semantics and Restrictions

Attributes that are specified for a type in a typedef statement are inherited by declarations that
specify that type. A parameter of a call inherits the attributes of its corresponding type.

4.2.16.3 The transmit_as Attribute

The transmit_as attribute associates a presented type in the target language with an IDL
transmitted type, <xmit_type>. The user must supply routines that perform conversions
between the presented and transmitted types, and that release memory used to hold the
converted data.

The <xmit_type> in a transmit_as attribute must be either a <base_type_spec>, a
<predefined_type_spec> or an <Identifier> from a <type_declarator> that was
previously defined.

The following types must not have the transmit_as attribute.

• types with the context_handle attribute; this also applies to types used as a parameter that
has the context_handle attribute

• pipe types

• types used as the base type in a pipe definition

• conformant, varying or conformant varying arrays

• conformant structures; the following restrictions apply to the transmitted type:

— If an out or in, out parameter is a type with the transmit_as attribute, the transmitted
type must not be conformant.

— The transmitted type must not be a pointer or contain a pointer.

Section 5.1.5.3 on page 289 for the interaction of the transmit_as and handle attributes.

4.2.16.4 The handle Attribute

The handle attribute specifies that a type may serve as a customised handle. Customised
handles permit the design of handles that are meaningful to an application. The user must
provide binding and unbinding routines to convert between the custom handle type and the
primitive handle type, handle_t.

248 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

4.2.16.5 The string Attribute

The string attribute is provided to preserve the string property of data so that it may be
appropriately processed by application components written in languages that support a string
data type.

The string attribute only applies to one-dimensional arrays. The element type of such an array is
limited to one of the following:

1. char

2. byte

3. A structure all of whose members are of type byte, or a named type that resolves to byte.
For this purpose, the NULL-terminated string construct supported in C through the str. . .
library routines serves as a string data type. If the base type of a string is larger than one
byte, then the required NULL terminator must be composed of the same number of bytes
as the base type.

4. A named type that resolves to one of items 1, 2 or 3.

For further information on objects with the string attribute, see Section 4.2.19 on page 253.

4.2.16.6 The context_handle Attribute

In many interfaces, a called procedure needs to maintain state between calls. This is done by
means of a context handle. A context handle is a void* with the context_handle attribute.

There are several restrictions on the use of context handles.

• Context handles must only be parameters. They must not be array elements, structure or
union members, or the base type of a pipe.

• Context handles must not have the transmit_as attribute.

• Context handles must not have the ptr attribute.

• A parameter that is or contains a context handle must not have the ptr attribute.

• A NULL context handle must not be in only.

• A context handle must not be the target of a pointer.

4.2.17 Field Attributes

The following sections describe the syntax and semantics of field attributes.

4.2.17.1 Syntax

The syntax for declaring field attributes is as follows:

Part 3 Interface Definition Language and Stubs 249

IDL Language Specification Interface Definition Language

<field_attribute> ::= first_is (<attr_var_list>)
| last_is (<attr_var_list>)
| length_is (<attr_var_list>)
| min_is (<attr_var_list>)
| max_is (<attr_var_list>)
| size_is (<attr_var_list>)
| <usage_attribute>
| <union_instance_switch_attr>
| ignore
| <ptr_attr>

<attr_var_list> ::= <attr_var> [, <attr_var>] ...
<attr_var> ::= [[*] <Identifier>]

4.2.17.2 Semantics and Restrictions

A <usage_attribute> must not be applied to an item of a type that resolves to a type with a
<usage_attribute> in its declaration. For the form *<Identifier>, the <Identifier> in
the <attr_var> must be a pointer to a <primitive_integer_type>. The context_handle
attribute is not permitted on fields. Therefore, the <usage_attribute> must not resolve to
context_handle in this production.

4.2.17.3 The ignore Attribute

The ignore attribute is used for a pointer, contained within a structure, that must not be
dereferenced. The ignore attribute is restricted to pointer members of structures.

4.2.18 Field Attributes in Array Declarations

Field attributes are used in conjunction with array declarations to specify either the size of the
array, or the portion of the array that contains valid data. To do this, they associate another
parameter or structure field with the array. The associated datum contains the extra information.
Array parameters must associate with another parameter, and array structure fields must
associate with another field. Array parameters with field attributes are not allowed to have a
transmit_as attribute associated with their type. Since an array parameter with one or more of
the field attributes max_is, size_is, first_is, last_is or length_is is fully described only in the
presence of another parameter, it cannot be properly processed by the
<type_id>_to_xmit_type routine.

4.2.18.1 Conformant Arrays

An array is called conformant if it has an <array_bounds_declarator> that is empty or
contains an * (asterisk). Conformant arrays have one of the attributes max_is or size_is.

The max_is Attribute

The max_is attribute is used to specify the maximum array indexes in each dimension of an
array. Each <attr_var> in a max_is clause specifies the maximum array index in one
dimension.

An <attr_var> must be non-NULL if and only if the upper bound of the corresponding
dimension is empty or is an * (asterisk). At least one <attr_var> in a max_is clause must be
non-NULL.

The <attr_var>s in a max_is clause are in one-to-one correspondence with the dimensions of
the array, with the first <attr_var> corresponding to the first dimension. If there are fewer
<attr_var>s than the array has dimensions, then the behaviour is undefined.

250 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

If a declaration has the max_is attribute, it must not have the size_is attribute. (See The size_is
Attribute for the relationship between these two attributes.)

The size_is Attribute

The size_is attribute is used to specify the number of data elements in each dimension of an
array. Each <attr_var> in a size_is clause specifies the number of data elements in one
dimension.

An <attr_var> must be non-NULL if and only if the upper bound of the corresponding
dimension is empty or contains an * (asterisk). At least one <attr_var> in a size_is clause
must be non-NULL.

The <attr_var>s are in one-to-one correspondence with the dimensions of the array, with the
first <attr_var> corresponding to the first dimension. If there are fewer <attr_var>s than
the array has dimensions, then the behaviour is undefined.

If a declaration has a size_is attribute, it must not have a max_is attribute. A given conformant
array may be declared using either the max_is or size_is attribute. The relationship between the
values of these attributes for a given array can be derived as follows: in the mth dimension of the
array, the lowest index to be used in this dimension is specified by lower_bound_m. For a
declaration using the max_is attribute, call the the mth <attr_var> max_value_m. For a
declaration of the same array using the size_is attribute, call the mth <attr_var> size_value_m.
For equivalent declarations, the relationship between these attribute values is then given by the
equation:

size_value_m = max_value_m - lower_bound_m + 1

4.2.18.2 Varying and Conformant Varying Arrays

An array is called varying if none of its <array_bounds_declarator> components is empty
or contains an * (asterisk), and it has either a last_is, first_is or length_is attribute. An array is
called conformant varying if it is conformant and it has a last_is, first_is or length_is attribute.

The last_is Attribute

The last_is attribute is used to define the upper index bounds for significant elements in each
dimension of an array. Each <attr_var> in a last_is clause indicates the highest index, in a
given dimension, whose element value is significant both to the caller and the callee. Elements in
a given dimension with indexes higher than the dimension’s <attr_var> are not meaningful
to caller and callee.

If the <attr_var> corresponding to a dimension in an array is null, then the value used is the
corresponding dimension found in either the associated type definition for a varying array, or
the value of the max_is or size_is parameter for a conformant varying array.

The <attr_var>s are in one-to-one correspondence with the dimensions of the array, with the
first <attr_var> corresponding to the first dimension. If there are fewer <attr_var>s than
the array has dimensions, then the behaviour is undefined.

If a declaration has a last_is attribute, it must not have a length_is attribute. (See The length_is
Attribute on page 252 for the relationship between these two attributes.)

Part 3 Interface Definition Language and Stubs 251

IDL Language Specification Interface Definition Language

The first_is Attribute

The first_is attribute is used to define the lower index bounds for significant elements in each
dimension of an array. Each <attr_var> in a first_is clause indicates the lowest index, in a
given dimension, whose element value is significant both to the caller and the callee. Elements in
a given dimension with indexes lower than the dimension’s <attr_var> are not meaningful to
caller and callee.

A NULL <attr_var> indicates that the lower bound for that dimension is to be used as the
first_is value for that dimension. At least one <attr_var> in a first_is clause must be non-
NULL.

The <attr_var>s are in one-to-one correspondence with the dimensions of the array, with the
first <attr_var> corresponding to the first dimension. If there are fewer <attr_var>s than
the array has dimensions, then the behaviour is undefined.

The length_is Attribute

The length_is attribute is used to define the number of significant elements in each dimension of
an array. Each <attr_var> in a length_is clause indicates the number of elements, in a given
dimension, whose element value is significant both to the caller and the callee.

Significant elements in a given dimension are counted from the lowest significant index for that
dimension. This may be the fixed lower bound for this dimension or may be specified by using a
first_is clause.

At least one <attr_var> in a length_is clause must be non-NULL.

If a declaration has a length_is attribute, it must not have a last_is attribute.

A given varying array may be declared using either the last_is or length_is attribute. The
relationship between the values of these attributes for a given array is derived as follows: in the
mth dimension of the array, the lowest index to be used in this dimension is specified by
lowest_index_m. For a declaration using the last_is attribute, call the the mth <attr_var>
last_value_m. For a declaration of the same array using the length_is attribute, call the mth
<attr_var> length_value_m. For equivalent declarations, the relationship between these
attribute values is then given by the equation:

length_value_m = last_value_m - lowest_index_m + 1

4.2.18.3 Relationships Between Attributes

The following rules apply to the relationship between the max_is, first_is and last_is values for
a dimension.

• The first_is value must not be greater than the max_is value. Otherwise, the behaviour is
undefined.

• The last_is value must not be greater than the max_is value. Otherwise, the behaviour is
undefined.

• If the first_is value is equal to the last_is value +1, the interpretation is to select zero
elements.

• If the first_is value is greater than the last_is value +1, the behaviour is undefined.

252 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

4.2.18.4 Negative Size and Length Specifications

If the size_is or length_is value is negative, the behaviour is undefined.

4.2.19 Field Attributes in String Declarations

The string attribute provides guidance to the stub generator that an array must be treated as a
string when generating stubs for languages that support strings. When generating stubs for
languages that do not support strings, they are treated simply as an array of the base type; that
is, the string attribute is ignored.

When declaring a string, it is necessary to declare space for one more than the maximum number
of characters the string is to hold.

The following subsections describe the use of each of the field attributes with strings.

4.2.19.1 The first_is, last_is and length_is Attributes

An array with the string attribute must not have any of the varying attributes; that is, first_is,
last_is or length_is.

4.2.19.2 The max_is Attribute

The max_is attribute names a parameter or record field that holds one more than the highest
allowable index for a data character of a string.

A conformant array with the string attribute need not have a max_is or size_is attribute if and
only if it is an in or in, out parameter. In these cases the extent is determined from the input
length.

Also, a conformant array with the string attribute need not have a max_is or size_is attribute if
it is contained in an object referenced by an in, out or out pointer. In these cases, the extent is
determined from the length of the data passed and may change size if the pointer referent
changes across the call.

4.2.19.3 The size_is Attribute

A size_is attribute is an alternative mechanism for defining the maximum amount of string data
that may be present. If a declaration has a size_is attribute, it must not have a max_is attribute.

The usage of size_is and its relationship to max_is must be derived from The size_is Attribute
on page 251 by using the obvious analogy between arrays with the string property and those
without.

4.2.20 Pointers

The following sections describe pointers in IDL.

4.2.20.1 Syntax

The syntax for a pointer declaration is as follows:

<ptr_declarator> ::= * [*] ... <Identifier>

Elsewhere in the grammar, attributes are applied to entities involving <ptr_declarator>s.
The production for pointer attributes is

<ptr_attr> ::= ref
| ptr

Part 3 Interface Definition Language and Stubs 253

IDL Language Specification Interface Definition Language

A <ptr_attr> may be applied only to declarations with an explicit <ptr_declarator>, or
to the implicit pointer present for array parameters.

4.2.20.2 Semantics and Restrictions

Pointers are used in applications in a wide variety of ways. IDL currently supports two different
levels of pointer capability:

• reference pointers

• full pointers.

Description of Reference Pointers

A reference pointer is one that is used for simple indirection. It has the following characteristics
in any language that supports pointers:

• A reference pointer must not have the value NULL. It can always be dereferenced.

• A reference pointer’s value must not change during a call. It always points to the same
referent on return from the call as it did when the call was made.

• A referent pointed to by a reference pointer must not be reached from any other name in the
operation; that is, the pointer must not cause any aliasing of data within the operation.

• For in and in, out parameters, data returned from the callee is written into the existing
referent specified by the reference pointer.

If these restrictions are not met, the effects are undefined.

Description of Full Pointers

A full pointer has a wider range of capabilities. The characteristics of a full pointer are as
follows:

• A full pointer may have the value NULL.

• A full pointer’s value may change across a call. It may change from NULL to non-NULL,
from non-NULL to NULL, or from one non-NULL value to a different non-NULL value. The
value may also remain unchanged across the call.

• The referent pointed to by a full pointer may be reached from other names in the application;
that is, full pointers support aliasing and cycles.

4.2.20.3 Attributes Applicable to Pointers

The following IDL attributes are used to indicate the supported pointer classes:

ref Representing reference pointers

ptr Representing full pointers

These attributes may be used on parameters, structure and union members, and in type
definitions.

254 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

Pointer Attributes in the Interface Header

At most, one <ptr_attr> may appear in the interface header. (This appears with the
pointer_default attribute. See Section 4.2.4.5 on page 239.) A <ptr_attr> must appear if any
of the following is true:

• The interface declaration contains an operation parameter, typedef, structure member, union
arm, and so on, with more than one * (asterisk) in a <ptr_declarator>.

• The interface declaration contains a typedef, structure member or union arm with a
<ptr_declarator> that does not have a <ptr_attr>.

If a <ptr_attr> that is not required according to the preceding rules appears in the interface
header, it is ignored.

Pointer Attributes on Parameters

By default, the first2 indirection operator (an *, asterisk) in a parameter declaration is treated as a
reference pointer. This is the pointer that accomplishes what is commonly termed ‘‘pass by
reference’’. If there are multiple indirection operators in a parameter declaration, all but the first
have the characteristic specified by <ptr_attr> in the interface header.

Any pointer attributes placed on a parameter (that is, directly in the syntax of an operation
declaration) affect only the first <ptr_declarator>. To affect any others, intermediate named
types must be used.

Pointer Attributes on Function Results

If an operation returns a pointer to a type, then ptr is permitted as an operation attribute to
describe the properties of the pointer. Even in the absence of this attribute, the meaning is that a
full pointer is returned by the function. No pointer attribute other than ptr is permitted as an
operation attribute.

Pointer Attributes in Member Declarations

By default, pointers in structure member and union arm declarations are interpreted as specified
by the interface pointer attribute. In these contexts, the pointer attributes ref and ptr may be
applied to override the default for the top-level pointer in the <ptr_declarator>.

Pointer Attributes in typedefs

Pointer attributes are allowed in typedefs. Pointer declarators at the top level of a typedef with a
pointer attribute are always treated in accordance with the specified pointer attribute. Pointer
declarators at the top level of a typedef without a pointer attribute and non-top-level pointers
are interpreted according to the <ptr_attr> in the interface header of the interface in which it
is defined.

Pointer attributes may only be applied where an explicit <ptr_declarator> occurs. There is
no way to override the pointer attribute of a declared type at the reference site.

2. Since indirection operators associate left to right, as in C, the ‘‘first’’ indirection operator is the rightmost one in the IDL source.

Part 3 Interface Definition Language and Stubs 255

IDL Language Specification Interface Definition Language

4.2.20.4 Varying Arrays of Pointers

Varying arrays of pointers bear special attention because there may be more valid elements on
the return from the call than there were at the start of the call.

Varying Arrays of ref Pointers

Because a reference pointer must not have the value NULL, special requirements apply to
varying or conformant varying arrays of reference pointers. If:

• there is an in, out or out varying or conformant varying array of reference pointers

• the associated <attr_var> (last_is, first_is or length_is) is also in, out or out

then all array elements that are valid at the time of the call (the in, out case) or may be valid at
the time of the return from the call must point to storage that can be written with the returned
referents.

Unless the client and server have made some private arrangement, outside the IDL, that is
binding on all client and server implementations, the caller must initialise all pointers of the
array to point to valid memory, even those outside the limit specified by the last_is, first_is or
length_is variable at the time of the call.

On the callee side, the callee stub must instantiate storage for each pointer in the varying array,
regardless of the value of the associated last_is, first_is, or length_is variable at the time of the
call, provided that the layout of the pointed-to storage can be determined at compile time; that
is, the pointed to storage must contain no full pointers, unions, conformant arrays, conformant
structures, and so on.

Varying Arrays of ptr Pointers

Varying arrays of full pointers are treated differently. Again, consider the case cited above: an in,
out or out varying or conformant varying array whose associated <attr_var> (last_is, first_is
or length_is) is also in, out or out.

When the array elements are full pointers, array elements past the limit established by the
associated last_is, first_is or length_is variable need not be initialised before the call on the
caller side.

The callee stub does must initialise the array elements past the limit established by the
associated last_is, first_is or length_is variable. If the called user code increases the number of
valid elements, it must initialise those elements before the call returns to the called stub code.

On return from a call, array elements that were not valid at the time of a call are treated as
uninitialised.

4.2.20.5 Restrictions on Pointers

The pointer support IDL provides is very powerful and flexible. At times this flexibility collides
with other features of IDL, resulting in the following restrictions:

• Binding parameters must not have the ptr attribute. This restriction refers to the first
parameter position, when that parameter is the type handle_t or is a type with the handle
attribute.

• Context handle parameters must not have the ptr attribute.

• Types that are the base type of a pipe must not be or contain a pointer.

256 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

• Parameters that are pointers and have only the out directional attribute must not have the ptr
attribute.

Parameters with only the out directional attribute may, however, contain full pointers. Such
pointers are not initialised at the time the manager code is called. It is the responsibility of the
manager code to initialise these pointers, either to NULL or to point to accessible memory,
before returning to the callee stub.

• When using the transmit_as attribute with parameters that either are or contain pointers, the
transmitted type must not be or contain a pointer type. When using the ACS represent_as
attribute (see Section 4.3.6 on page 265) with parameters that either are or contain pointers,
the network type must not be or contain a pointer type.

• A parameter or structure member that is referenced by an <attr_var> must not have a ptr
attribute. (This guarantees that the variable determining array size will never be null.)

4.2.21 Pointers as Arrays

When declaring a conformant array parameter, IDL provides an alternative to using []
(brackets). A parameter that is a pointer to a type is treated as an array of that type if the
parameter has either of the array attributes max_is or size_is.

Note that this equivalence of arrays and pointers is only true in parameter lists. As structure or
union members, arrays and pointers are distinct. A structure or union member declared with
bracket notation declares an array contained within the structure. A member declared to be a
pointer is a pointer to a data element. If a structure field is a pointer and has the size_is or
max_is attribute, then it is a pointer to an array of data.

Because of parsing ambiguities, the language does not allow mixing pointer and bracket
notation when declaring a pointer to a conformant array. The language does not allow declaring
a pointer to a varying array. A pointer to a structure that contains a varying array must be used
instead.

The array attributes controlling the valid range of elements may be applied to arrays declared as
pointers, just as they apply to arrays declared with brackets; the size_is, max_is, last_is and
length_is attributes may be applied to pointers, just as they may be to arrays.

4.2.21.1 Pointers with the string Attribute

A pointer to any of the base types specified in Section 4.2.9 on page 243 may have the string
attribute. Its meaning is that the pointer is a pointer to a string of the base type. Such a string is
equivalent to a conformant array, and is treated in accordance with the rules for a conformant
array with the string attribute.

4.2.21.2 Possible Ambiguity Resolved

When dealing with an operation such as:

void op ([in] long s, [in, size_is(s)] long * * myarray);

a possible ambiguity arises. Is myarray a pointer to an array of longs, or an array of pointers to
longs? IDL defines this signature to be an array of pointers to longs. The max_is and size_is
attributes always apply to the top-level, or rightmost, * (asterisk) in the IDL signature of the
parameter.

Part 3 Interface Definition Language and Stubs 257

IDL Language Specification Interface Definition Language

4.2.22 Operations

The syntax of an operation declaration is as follows:

<op_declarator> ::= [<operation_attributes>] <simple_type_spec>
<Identifier> <parameter_declarators>

The syntax for operation attributes is:

<operation_attributes> ::= <[> <operation_attribute>
[, <operation_attribute>] ... <]>

<operation_attribute> ::= idempotent
| broadcast
| maybe
| <usage_attribute>
| <ptr_attr>

If none of idempotent, broadcast, maybe is present, at-most-once semantics are applied; the
operation is executed no more than one time. If a remote call fails, it is not be retried
automatically if there is any chance that the called code has started execution.

When used as an <operation_attribute>, the <ptr_attr> must not be the ref attribute.
(See Pointer Attributes on Function Results on page 255 for more information on <ptr_attr>
as an <operation_attribute>.)

An operation must not have an array type result.

4.2.22.1 The idempotent Attribute

The idempotent attribute indicates that the operation does not modify any state and/or yields
the same result on each invocation.

An operation with the idempotent attribute must not have any pipe parameters.

4.2.22.2 The broadcast Attribute

The broadcast attribute specifies that the operation may be invoked multiple times concurrently
as the result of a single RPC. This is different from the idempotent attribute, which specifies that
a call may be retried in the event of failure. Operations with the broadcast attribute may be sent
to multiple servers, effectively concurrently. The output arguments that the caller receives are
taken from the first reply to return successfully. An operation with the broadcast attribute is
implicitly an idempotent operation.

An operation with the broadcast attribute must not have any pipe parameters.

4.2.22.3 The maybe Attribute

The maybe attribute specifies that the operation’s caller must not require and must not receive a
response or fault indication. An operation with the maybe attribute must not contain any output
parameters and is implicitly an idempotent operation.

An operation with the maybe attribute must not have any pipe parameters.

258 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

4.2.23 Parameter Declarations

The following sections describe the syntax and semantics of parameter declarations.

4.2.23.1 Syntax

The syntax rules for parameter declarations are as follows:

<param_declarators> ::= ([<param_declarator>
[, <param_declarator>] ...])
| (void)

<param_declarator> ::= <param_attributes> <type_spec> <declarator>
<param_attributes> ::= <[> <param_attribute>

[, <param_attribute>] ... <]>

<param_attribute> ::= <directional_attribute>
| <field_attribute>

<directional_attribute> ::= in
| out

4.2.23.2 Semantics and Restrictions

If the <param_declarators> production consists of only a pair of parentheses, the semantics
are the same as if the keyword void appeared between the parentheses. The remote operation
has no parameters.

4.2.23.3 Directional Attributes

At least one directional attribute must be specified for each parameter. Table 4-2 gives the
meanings of the directional attributes.

Attribute Meaning
in The parameter is passed from the caller to the callee.
out The parameter is passed from the callee to the caller.

Table 4-2 IDL Directional Attributes

A parameter with the out attribute must be either an array or an explicitly declared pointer. An
explicitly declared pointer is declared by a pointer_declarator, rather than by a
simple_declarator with a named parameter as its type_specifier.

Any parameter from which the binding for a call is to be derived must have the in attribute. If an
operation has an in handle_t, in customised handle (handle) or in context handle
(context_handle), and also contains an in, out context handle, the in, out context handle may be
null. If an operation does not have an in handle_t, in customised handle or in context handle,
but does contain one or more in, out context handles, at least one of the in, out context handles
must be non-null.

4.2.23.4 Aliasing in Parameter Lists

If two pointer parameters in a parameter list point at the same data item, or at data structures
that have some items in common, parameter aliasing is said to occur.

Aliasing is supported only for full pointers; both parameters involved in the aliasing must be full
pointers. Full pointers are aliases when:

1. They have the same value.

Part 3 Interface Definition Language and Stubs 259

IDL Language Specification Interface Definition Language

2. They are declared to point to the same type.

3. The size of the pointed-to type, as determined at or before run time, is the same.

The scope of aliasing is a single instance of an RPC call. Aliasing is not preserved across nested
RPCs.

Aliasing of reference pointers is not supported and yields unspecified results. Aliasing is not
supported for the case where the target of one pointer is a component (for example, a structure
field or array element) of another pointer. This yields unspecified results.

4.2.24 Function Pointers

The following sections describe the syntax, semantics and restrictions of function pointers.

4.2.24.1 Syntax

The syntax for declaration of a function pointer is:

<function ptr declarator> ::=
<simple type spec> (* <identifier>) <param declarations>

4.2.24.2 Semantics

An instance of a function pointer type allows functions to be referenced indirectly.

4.2.24.3 Restrictions

Function pointers are permitted only within interfaces declared with the local attribute.

4.2.25 Predefined Types

Predefined types are data types derived from the base types that are intrinsic to the IDL
language. The syntax for predefined types is as follows:

<predefined_type_spec> ::= error_status_t
| <international_character_type>

<international_character_type> ::= ISO_LATIN_1
| ISO_MULTILINGUAL
| ISO_UCS

4.2.26 The error_status_t Type

The error_status_t type is used to declare an object in which communications and fault status
information can be held. This is the appropriate type for objects with the comm_status or
fault_status attributes.

Note: The error_status_t type is transmitted as an IDL unsigned long. However,
implementations may choose to unmarshal this type as a local operating system error
type instead of unsigned long.

260 X/Open CAE Specification (1994)

Interface Definition Language IDL Language Specification

4.2.27 International Character Types

The following types may be used to represent alternative character sets:

ISO_LATIN_1
ISO_MULTI_LINGUAL
ISO_UCS

Data of type char is subject to ASCII/EBCDIC conversion when it is transmitted by the RPC
mechanism. The predefined international character types are protected from data representation
format conversion.

4.2.28 Anonymous Types

An enumeration type is said to be anonymous if it is not a type named through a typedef
statement. A structure or union type is said to be anonymous if it does not have a tag and is not
named through a typedef statement. The following rules apply to the usage of anonymous
types:

• A parameter cannot have an anonymous type.

• A function result cannot have an anonymous type.

• The target of a pointer cannot have an anonymous type.

Part 3 Interface Definition Language and Stubs 261

The Attribute Configuration Source Interface Definition Language

4.3 The Attribute Configuration Source
The Attribute Configuration Source (ACS) is used to specify details of a stub to be generated.
ACS is used to create a separate attribute configuration source that accompanies an IDL
specification. The ACS specification affects the interface between the application code and the
stub; for example, it can specify whether an explicit binding handle parameter is used. The ACS
specification also affects the way stub code is generated; for example, it can specify in-line or
out-of-line data marshalling. The ACS specification does not affect the way the data is
transmitted or received during a remote procedure call; this is determined entirely by the IDL
specification.

4.3.1 Comments

Comments in ACS conform to the same rules as IDL comments.

4.3.2 Identifiers

Each ACS source is associated with some IDL source. The following associations apply:

• The interface name in the ACS source must be the same as the interface name in the interface
definition.

• Any type names used in the ACS source must have been declared as names of types in the
interface definition, except for type names that are <ACS_repr_type>s or a type used in
the <ACS_implicit_handle_attr>.

• Any operation names used in the ACS source must have been declared as names of
operations in the interface definition.

• If an identifier occurs as a parameter name within an operation declaration in the ACS
source, that identifier must have been used as the name of a parameter within the declaration
of the corresponding operation in the interface definition. Not all such parameters need occur
in the ACS operation definition.

• If a type is declared in a typedef with ACS attributes, those attributes are not inherited by
other types declared using the type with ACS attributes.

Note: This is the opposite of the case for IDL type attributes, which are inherited. (See
Section 4.2.23.2 on page 259.)

4.3.3 Syntax

The syntax of an ACS specification is as follows:

<ACS_interface> ::= <ACS_interface_header> { <ACS_interface_body> }
where

<ACS_interface_header> ::= [<ACS_interface_attr_list>] interface
<ACS_interface_name>

<ACS_interface_attr_list> ::= <[> <ACS_interface_attrs> <]>
<ACS_interface_attrs> ::= <ACS_interface_attr> [, <ACS_interface_attr>] ...
<ACS_interface_attr> ::= <ACS_code_attr>

| <ACS_nocode_attr>
| <ACS_inline_attr>
| <ACS_outofline_attr>
| <ACS_explicit_handle_attr>
| <ACS_implicit_handle_attr>
| <ACS_auto_handle_attr>

<ACS_explicit_handle_attr> ::= explicit_handle

262 X/Open CAE Specification (1994)

Interface Definition Language The Attribute Configuration Source

<ACS_implicit_handle_attr> ::= implicit_handle (<ACS_named_type>
<Identifier>)

<ACS_auto_handle_attr> ::= auto_handle
<ACS_interface_name> ::= <Identifier>
<ACS_interface_body> ::= [<ACS_body_element>] ...
<ACS_body_element> ::= <ACS_include> ;

| <ACS_type_declaration> ;
| <ACS_oper> ;

<ACS_include> ::= include <ACS_include_list>
<ACS_include_list> ::= <ACS_include_name> [, <ACS_include_name>] ...
<ACS_include_name> ::= "<Import_string>"
<ACS_type_declaration> ::= typedef [<ACS_type_attr_list>] <ACS_named_type>
<ACS_named_type> ::= <Identifier>
<ACS_type_attr_list> ::= <[> <ACS_type_attrs> <]>
<ACS_type_attrs> ::= <ACS_type_attr> [, <ACS_type_attr>] ...
<ACS_type_attr> ::= <ACS_repr_attr>

| <ACS_inline_attr>
| <ACS_outofline_attr>
| <ACS_heap_attr>

<ACS_repr_attr> ::= represent_as (<ACS_repr_type>)
<ACS_repr_type> ::= <Identifier>
<ACS_oper> ::= [<ACS_oper_attr_list>] <Identifier> ([<ACS_params>])
<ACS_oper_attr_list> ::= <[> <ACS_oper_attrs> <]>
<ACS_oper_attrs> ::= <ACS_oper_attr> [, <ACS_oper_attr>] ...
<ACS_oper_attr> ::= <ACS_commstat_attr>

| <ACS_faultstat_attr>
| <ACS_code_attr>
| <ACS_nocode_attr>
| <ACS_explicit_handle_attr>
| <ACS_enable_alloc_attr>

<ACS_params> ::= <ACS_param> [, <ACS_param>] ...
<ACS_param> ::= [<ACS_param_attr_list>] <Identifier>
<ACS_param_attr_list> ::= <[> <ACS_param_attrs> <]>
<ACS_param_attrs> ::= <ACS_param_attr> [, <ACS_param_attr>] ...
<ACS_param_attr> ::= <ACS_commstat_attr>

| <ACS_faultstat_attr>
| <ACS_heap_attr>

<ACS_code_attr> ::= code
<ACS_nocode_attr> ::= nocode
<ACS_inline_attr> ::= in_line
<ACS_outofline_attr> ::= out_of_line
<ACS_commstat_attr> ::= comm_status
<ACS_faultstat_attr> ::= fault_status
<ACS_heap_attr> ::= heap
<ACS_enable_alloc_attr> ::= enable_allocate

4.3.4 Include Declaration

The include statement specifies one or more header sources that are are included in generated
stub code, for example, via C-preprocessor #include statements. The user must supply the
header sources. A C-language definition source (.h file) must always be provided for use when
compiling the stubs. If the stubs are being generated for another language, then a definition
source for that language must be provided as well. The same ACS source may not work with
different target languages.

If the include statements do not fully specify the location of the header sources, the compiler
uses implementation-specific searching mechanisms to locate them. Similarly, if the file
extension is not specified, then the compiler appends the appropriate file extension for the

Part 3 Interface Definition Language and Stubs 263

The Attribute Configuration Source Interface Definition Language

language of choice.

Include sources are necessary if, in the ACS source, there occur one or more types specified in
the represent_as clause’s <ACS_named_type> or the implicit_handle attribute’s
<type_spec> that are not types defined in the interface definition (or any imported interfaces).
Since the definitions of such types are needed by the generated stub code, the user must supply
them in this manner.

4.3.5 Specifying Binding Handles

The means of providing binding information to the RPC run-time system is the binding handle.
Binding handles (or simply, handles) may be passed as parameters of the operation or fetched by
the generated stub from a static area. A handle passed as an operation parameter is termed an
explicit handle. If an explicit handle is used, it is always the first parameter of an operation.
Explicit handles may be declared in the IDL source, in which case both the client and server
must use the explicit handle. Explicit handles may also be declared in the ACS source, in which
case the two sides (client and server) may make the decision to use an explicit handle separately.

When an interface contains one or more operations whose first parameter is not an explicit
handle, and which do not have an in or in, out context handle, a means of providing a handle is
needed. The implicit_handle and auto_handle attributes provide this capability.

If an interface has an operation requiring an implicit handle, and no ACS source is supplied, or
the supplied ACS source does not specify either implicit_handle or auto_handle, then the
default auto_handle attribute is applied. The auto_handle attribute is also applied in the event
that a operation has an in, out context handle but no other binding handle mechanism.

4.3.5.1 The explicit_handle Attribute

When used as an interface attribute, the explicit_handle attribute is applied to all operations in
the interface. When used as an operation attribute, it is applied to only the specified operation.

The explicit_handle attribute specifies that the operation has an additional first parameter of
type handle_t and named IDL_handle, even if one is not explicitly declared in the IDL source.
Customised binding handles must be declared in the IDL source. The explicit_handle attribute
may occur as an interface attribute only if the implicit_handle attribute and auto_handle
attribute do not occur.

4.3.5.2 The implicit_handle Attribute

The implicit_handle attribute is one of the methods for specifying handles. Under the
implicit_handle method, the handle used on calls to operations without a handle in the first
parameter position is the data object specified in the implicit_handle attribute.

The implicit_handle attribute must occur at most once in the ACS source. The implicit_handle
attribute may occur only if the auto_handle attribute does not occur and the explicit_handle
attribute does not occur as an interface attribute.

The <type_spec> specified in the implicit_handle attribute need not be specified in the
associated interface definition source. If it is specified, then the definition specified in the IDL
source is used; it must be either a type that resolves to the type handle_t or a type with the
handle attribute. If it is not a type defined in the interface definition source, then the ACS source
must contain an include statement, specifying a definition source that defines the
<type_spec>. The type is treated as a customised handle; that is, as if it had the handle
attribute applied to it.

264 X/Open CAE Specification (1994)

Interface Definition Language The Attribute Configuration Source

4.3.5.3 The auto_handle Attribute

The auto_handle attribute indicates that any operations needing handles are automatically
bound; that is, a client that makes a call on that operation makes no specification as to which
server the operation may execute on.

The environment variable RPC_DEFAULT_ENTRY must be set to the name of the namespace
entry from which the stub will import bindings to be used when an operation is invoked.

The auto_handle attribute must occur at most once.

The auto_handle attribute may occur only if the implicit_handle attribute does not occur and
the explicit_handle attribute does not occur as an interface attribute.

4.3.6 The represent_as Attribute

The represent_as attribute associates a named local type in the target language
(<ACS_repr_type>) with a transfer type (<ACS_named_type>) that is transferred between
caller and callee.

There are some restrictions on the types to which the represent_as attribute may be applied. The
following types must not have the represent_as attribute:

• pipe types

• types used as the base type in a pipe definition

• conformant, varying or conformant varying arrays

• structures whose last member is a conformant array (a conformant structure)

• pointers or types that contain a pointer.

4.3.7 The code and nocode Attributes

At most, one of the code and nocode attributes may appear in the interface attribute list. If
neither is present, the effect is as if code is present.

The nocode attribute is only honoured when generating a client stub. Servers must support all
defined operations.

If code appears in the interface attribute list, stub code is be generated for any operation in the
interface that does not appear in the ACS source with nocode in its operation attribute list.

If nocode appears in the interface attribute list, stub code is only generated for those operations
in the interface that appear in the ACS source with code in their operation attribute lists.

At most, one of code and nocode may appear in an operation attribute list. If both the interface
and the operation have a code or nocode attribute, the attribute applied to the operation
overrides the attribute applied to the interface.

Part 3 Interface Definition Language and Stubs 265

The Attribute Configuration Source Interface Definition Language

4.3.8 The in_line and out_of_line Attributes

The in_line and out_of_line attributes may be applied at the interface or type levels. At most,
one may be applied to any interface or type. If the out_of_line attribute is specified on a type
that is not a candidate for out-of-line marshalling, it is ignored.

If neither of these attributes is specified in the interface attribute list, the effect is as if the in_line
attribute is specified. If neither of these attributes is specified for a type, then the effect is as if the
attribute specified in the interface attribute list is specified for that type. The types that are
candidates for out-of-line marshalling are as follows:

• structures

• unions

• arrays

• context handles

• pipes.

If a candidate type has the out_of_line attribute, marshalling and/or unmarshalling of that type
is performed through a subroutine call. Otherwise the marshalling and/or unmarshalling may
be performed by code that is part of the direct control flow in the stubs for any operations that
have a parameter of that type. When dealing with types imported from another interface
definition module, it is the ACS source associated with the imported module that determines
whether types defined in that module are marshaled in-line or out-of-line.

4.3.9 Return Statuses

Two attributes, comm_status and fault_status, are available to provide a status return
mechanism for certain error conditions that occur during the execution of remote routines.
Portable applications must include an ACS specification that specifies these attributes.

4.3.9.1 The comm_status Attribute

The comm_status attribute must occur at most once per operation. It may appear as an
operation attribute for the operation, or as a parameter attribute for one of the parameters of the
operation.

If the comm_status attribute appears as an operation attribute, the operation must have been
defined to deliver a result of type error_status_t. If the run-time system detects that some
communications error (for example, a broken connection or a timeout) has occurred during
execution of the operation, the error code is returned as the operation result. If the run-time
system does not detect a communications failure, then the operation result has the value
returned by the manager routine.

If the comm_status attribute appears as a parameter attribute, the <Identifier> associated
with it need not be the <Identifier> of a parameter defined in the IDL. If the comm_status
attribute does specify the <Identifier> of a parameter defined in the IDL, then the parameter
must be an out parameter of type error_status_t*. In the event that the remote call completes
successfully, the parameter has the value assigned by the called procedure.

If the <Identifier> associated with the comm_status attribute is not the <Identifier> of
a parameter defined in the IDL, then an extra out parameter of type error_status_t* is created.
This follows the last parameter defined in the IDL, unless a parameter with the fault_status
attribute is present. If a parameter with the fault_status attribute is present, then the parameters
are defined in the order they appear in the ACS. In the case of successful completion of the call,
the extra parameter has the value error_status_ok.

266 X/Open CAE Specification (1994)

Interface Definition Language The Attribute Configuration Source

If a communications error occurs during execution of the operation, the error code is returned in
the parameter with the comm_status attribute.

For a summary of which errors are reported through the comm_status mechanism when
enabled, refer to Appendix E.

4.3.9.2 The fault_status Attribute

The fault_status attribute is similar to the comm_status attribute. However, it deals with certain
failures of the remote routine rather than communications errors.

The fault_status attribute must occur at most once per operation. It may appear as an operation
attribute for the operation, or as a parameter attribute for one of the parameters of the operation.

If the fault_status attribute appears as an operation attribute, the operation must have been
defined to deliver a result of type error_status_t. If the remote procedure fails in a way that
causes a fault PDU to be returned, the error code is returned as the operation result. If a failure is
not detected, then the operation result has the value returned by the manager routine.

If the fault_status attribute appears as a parameter attribute, the <Identifier> associated
with it need not be the <Identifier> of a parameter defined in the IDL. If the fault_status
attribute does specify the <Identifier> of a parameter defined in the IDL, then the parameter
must be an out parameter of type error_status_t*. In the event that the remote call completes
successfully, the parameter has the value assigned by the called procedure.

If the <Identifier> associated with the fault_status attribute is not the <Identifier> of a
parameter defined in the IDL, then an extra out parameter of type error_status_t* is created. This
follows the last parameter defined in the IDL unless a parameter with the com_status attribute is
present. If a parameter with the com_status attribute is present, then the parameters are defined
in the order in which they appear in the ACS. In the case of successful completion of the call, the
extra parameter has the value error_status_ok.

If a suitable error occurs during execution of the operation, the error code is returned in the
parameter with the fault_status attribute.

For a summary of which exceptions are reported through the fault_status mechanism when
enabled, refer to Appendix E.

4.3.9.3 Interaction of the comm_status and fault_status Attributes

It is possible for one operation to have both the fault_status and the comm_status attributes,
either as operation attributes or as parameter attributes.

If both attributes are applied as operation attributes, or both attributes are applied to the same
parameter, then the operation or parameter has the value error_status_ok if no error occurred.
Otherwise, it has the appropriate comm_status or fault_status value. Since the values returned
in parameters with the comm_status attribute are disjoint from the values returned in
parameters with the fault_status attribute, and it is not possible for a single call to result in two
failures, there is no ambiguity in interpreting the returned status value.

If both attributes are specified for an operation, and each attribute refers to an <Identifier>
that is not defined in the IDL source, then two extra parameters are defined after the last
parameter defined in the IDL source. These parameters are defined in the order in which they
appear in the ACS source.

Part 3 Interface Definition Language and Stubs 267

The Attribute Configuration Source Interface Definition Language

4.3.10 The heap Attribute

The heap attribute specifies that the server copy of the parameter or parameter of the type so
specified will always be allocated in heap memory, rather than on the stack.

4.3.11 The enable_allocate Attribute

The enable_allocate attribute causes the stub to initialise stub memory management in
conditions where it otherwise would not do so. It has no effect if the stub would perform the
initialisation for other reasons.

268 X/Open CAE Specification (1994)

Interface Definition Language IDL Grammar Synopsis

4.4 IDL Grammar Synopsis
The following sections give a synopsis of the IDL grammar for quick reference.

4.4.1 Grammar Synopsis

This section provides a synopsis of the IDL productions discussed in Chapter 4.

(1) <interface> ::= <interface_header> { <interface_body> }
(2) <interface_header> ::= <[> <interface_attributes> <]> interface

<Identifier>
(3) <interface_attributes> ::= <interface_attribute>

[, <interface_attribute>] ...
(4) <interface_attribute> ::= uuid (<Uuid_rep>)

| version (<Integer_literal>)
| endpoint (<port_spec> [, <port_spec>] ...)
| local
| pointer_default (<ptr_attr>)

(5) <port_spec> ::= " <Family_string> : <[> <Port_string> <]> "
(6) <interface_body> ::= [<import> ...] <interface_component>

[<interface_component> ...]
(7) <import> ::= import <import_list> ;
(8) <interface_component> ::= <export> | <op_declarator> ;
(9) <export> ::= <type_declarator> ;

| <const_declarator> ;
| <tagged_declarator> ;

(10) <import_list> ::= <import_name> [, <import_name>] ...
(11) <import_name> ::= "<Import_string>"
(12) <const_declarator> ::= const <const_type_spec> <Identifier> = <const_exp>
(13) <const_type_spec> ::= <primitive_integer_type>

| char
| boolean
| void *
| char *

(14) <const_exp> ::= <Integer_const_exp>
| <Identifier>
| <string>
| <character_constant>
| NULL
| TRUE
| FALSE

(14.01) <integer_const_exp> ::= <conditional_exp>
(14.02) <conditional_exp> ::= <logical_or_exp>

| <logical_or_exp> ? <integer_const_exp> : <conditional_exp>
(14.03) <logical_or_exp> ::= <logical_and_exp>

| <logical_or_exp> <||> <logical_and_exp>
(14.04) <logical_and_exp> ::= <inclusive_or_exp>

| <logical_and_exp> && <inclusive_or_exp>
(14.05) <inclusive_or_exp> ::= <exclusive_or_exp>

| <inclusive_or_exp> <|> <exclusive_or_exp>
(14.06) <exclusive_or_exp> ::= <and_exp>

| <exclusive_or_exp> ˆ <and_exp>
(14.07) <and_exp> ::= <equality_exp>

| <and_exp> & <equality_exp>
(14.08) <equality_exp> ::= <relational_exp>

| <equality_exp> == <relational_exp>
| <equality_exp> != <relational_exp>

(14.09) <relational_exp> ::= <shift_exp>

Part 3 Interface Definition Language and Stubs 269

IDL Grammar Synopsis Interface Definition Language

| <relational_exp> <<> <shift_exp>
| <relational_exp> <>> <shift_exp>
| <relational_exp> <<=> <shift_exp>
| <relational_exp> <>=> <shift_exp>

(14.10) <shift_exp> ::= <additive_exp>
| <shift_exp> <<<> <additive_exp>
| <shift_exp> <>>> <additive_exp>

(14.11) <additive_exp> ::= <multiplicative_exp>
| <additive_exp> + <multiplicative_exp>
| <additive_exp> - <multiplicative_exp>

(14.12) <multiplicative_exp> ::= <unary_exp>
| <multiplicative_exp> * <unary_exp>
| <multiplicative_exp> / <unary_exp>
| <multiplicative_exp> % <unary_exp>

(14.13) <unary_exp> ::= <primary_exp>
| + <primary_exp>
| - <primary_exp>
| ˜ <primary_exp>
| ! <primary_exp>

(14.14) <primary_exp> ::= <Integer_literal>
| <Identifier>

(15) <string> ::= "[<Character>] ... "
(16) <character_constant> ::= ’<Character>’
(17) <type_declarator> ::= typedef [<type_attribute_list>] <type_spec>

<declarators>
(18) <type_attribute_list> ::= <[> <type_attribute>

[, <type_attribute>] ... <]>
(19) <type_spec> ::= <simple_type_spec>

| <constructed_type_spec>
(20) <simple_type_spec> ::= <base_type_spec>

| <predefined_type_spec>
| <Identifier>

(21) <declarators> ::= <declarator> [, <declarator>] ...
(23) <declarator> ::= <simple_declarator> | <complex_declarator>
(24) <simple_declarator> ::= <Identifier>
(25) <complex_declarator> ::= <array_declarator>

| <function_ptr_declarator>
| <ptr_declarator>

(26) <tagged_declarator> ::= <tagged_struct_declarator>
| <tagged_union_declarator>

(27) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <byte_type>
| <void_type>
| <handle_type>

(28) <floating_pt_type> ::= float
| double

(29) <integer_type> ::= <primitive_integer_type>
| hyper [unsigned] [int]
| unsigned hyper [int]

(29.1) <primitive_integer_type> ::= <signed_integer>
| <unsigned_integer>

(30) <signed_integer> ::= <integer_size> [int]
(31) <unsigned_integer> ::= <integer_size> unsigned [int]

| unsigned <integer_size> [int]
(32) <integer_size> ::= long

270 X/Open CAE Specification (1994)

Interface Definition Language IDL Grammar Synopsis

| short
| small

(33) <char_type> ::= [unsigned] char
(34) <boolean_type> ::= boolean
(35) <byte_type> ::= byte
(36) <void_type> ::= void
(37) <handle_type> ::= handle_t
(38) <constructed_type_spec> ::= <struct_type>

| <union_type>
| <enumeration_type>
| <tagged_declarator>
| <pipe_type>

(39) <tagged_struct_declarator> ::= struct <tag>
| <tagged_struct>

(40) <struct_type> ::= struct { <member_list> }
(41) <tagged_struct> ::= struct <tag> { <member_list> }
(42) <tag> ::= <Identifier>

(43) <member_list> ::= <member> [<member>] ...
(44) <member> ::= <field_declarator> ;
(45) <field_declarator> ::= [<field_attribute_list>] <type_spec>

<declarators>
(46) <field_attribute_list> ::= <[> <field_attribute>

[, <field_attribute>] ... <]>
(47) <tagged_union_declarator> ::= union <tag>

| <tagged_union>
(48) <union_type> ::= union <union_switch> { <union_body> }

| union { <union_body_n_e> }
(48.1) <union_switch> ::= switch (<switch_type_spec> <Identifier>)

[<union_name>]
(49) <switch_type_spec> ::= <primitive_integer_type>

| <char_type>
| <boolean_type>
| <enumeration_type>

(50) <tagged_union> ::= union <tag> <union_switch> { <union_body> }
| union <tag> { <union_body_n_e> }

(51) <union_name> ::= <Identifier>
(52) <union_body> ::= <union_case> [<union_case>] ...
(52.1) <union_body_n_e> ::= <union_case_n_e> [<union_case_n_e>] ...
(53) <union_case> ::= <union_case_label> [<union_case_label>] ...

<union_arm>
| <default_case>

(53.1) <union_case_n_e> ::= <union_case_label_n_e> <union_arm>
| <default_case_n_e>

(54) <union_case_label> ::= case <const_exp> :
(54.1) <union_case_label_n_e> ::= <[> case (<const_exp>

[, <const_exp>] ...) <]>
(55) <default_case> ::= default : <union_arm>
(55.1) <default_case_n_e> ::= <[> default <]> <union_arm>
(55.2) <union_arm> ::= [<field_declarator>] ;
(55.3) <union_type_switch_attr> ::= switch_type (<switch_type_spec>)
(55.4) <union_instance_switch_attr> ::= switch_is (<attr_var>)
(57) <enumeration_type> ::= enum { <Identifier> [, <Identifier>] ... }
(58) <pipe_type> ::= pipe <type_spec> <pipe_declarators>
(59) <array_declarator> ::= <Identifier> <array_bounds_list>
(60) <array_bounds_list> ::= <array_bounds_declarator>

[<array_bounds_declarator>] ...
(61) <array_bounds_declarator> ::= <[> [<array_bound>] <]>

| <[> <array_bounds_pair> <]>

Part 3 Interface Definition Language and Stubs 271

IDL Grammar Synopsis Interface Definition Language

(62) <array_bounds_pair> ::= <array_bound> .. <array_bound>
(63) <array_bound> ::= *

| <Integer_literal>
| <Identifier>

(64) <type_attribute> ::= transmit_as (<xmit_type>)
| handle
| align (<integer_size>)
| <usage_attribute>
| <union_type_switch_attr>
| <ptr_attr>

(65) <usage_attribute> ::= string
| context_handle

(66) <xmit_type> ::= <simple_type_spec>
(67) <field_attribute> ::= first_is (<attr_var_list>)

| last_is (<attr_var_list>)
| length_is (<attr_var_list>)
| max_is (<attr_var_list>)
| size_is (<attr_var_list>)
| <usage_attribute>
| <union_instance_switch_attr>
| ignore
| <ptr_attr>

(68) <attr_var_list> ::= <attr_var> [, <attr_var>] ...
(69) <attr_var> ::= [[*] <Identifier>]
(70) <ptr_declarator> ::= * <Identifier>
(70.1) <ptr_attr> ::= ref

| full
(71) <op_declarator> ::= [<operation_attributes>]

<simple_type_spec> <Identifier> <parameter_declarators>
(72) <operation_attributes> ::= <[> <operation_attribute>

[, <operation_attribute>] ... <]>
(73) <operation_attribute> ::= idempotent

| broadcast
| maybe
| <usage_attribute>
| <ptr_attr>

(74) <param_declarators> ::= ([<param_declarator> [,
<param_declarator>] ...])
| (void)

(75) <param_declarator> ::= <param_attributes> <type_spec> <declarator>
(76) <param_attributes> ::= <[> <param_attribute> [,

<param_attribute>] ... <]>
(77) <param_attribute> ::= <directional_attribute>

| <field_attribute>
(78) <directional_attribute> ::= in

| out
(79) <function_ptr_declarator> ::=

<simple_type_spec> (* <identifier>) <param_declarations>
(80) <predefined_type_spec> ::= error_status_t

| <international_character_type>
(82) <pipe_declarators> ::= <pipe_declarator> [, <pipe_declarator>] ...
(83) <pipe_declarator> ::= <simple_declarator>

| <ptr_declarator>

272 X/Open CAE Specification (1994)

Interface Definition Language IDL Grammar Synopsis

4.4.2 Alphabetic Listing of Productions

Table 4-3 lists the terminals and non-terminals of the grammar in alphabetic order, with their
numbers and the numbers of all productions that use them.

Table 4-3 Alphabetic Listing of Productions

Production Name Number Used In
<additive_exp> 14.11 14.10
<and_exp> 14.07 14.06
<array_bound> 63 61, 62
<array_bounds_declarator> 61 60
<array_bounds_list> 60 59
<array_bounds_pair> 62 61
<array_declarator> 59 25
<attr_var> 69 55.4, 68
<attr_var_list> 68 67
<base_type_spec> 27 20
<boolean_type> 34 27, 49
<byte_type> 35 27
<char_type> 33 27, 49
<Character> Terminal 15, 16
<character_constant> 16 14
<complex_declarator> 25 23
<conditional_exp> 14.02 14.01
<const_declarator> 12 9
<const_exp> 14 12, 54, 54.1
<const_type_spec> 13 12
<constructed_type_spec> 38 19
<declarator> 23 21, 75
<declarators> 21 17, 45
<default_case> 55 52
<default_case_n_e> 55.1 52.1
<directional_attribute> 78 77
<enumeration_type> 57 38, 49
<equality_exp> 14.08 14.07
<exclusive_or_exp> 14.06 14.05
<export> 9 8
<Family_string> Terminal 5
<field_attribute> 67 46, 77
<field_attribute_list> 46 45
<field_declarator> 45 44, 55.2
<function_ptr_declarator> 79 25
<Import_string> Terminal 11
<floating_pt_type> 28 27
<handle_type> 37 27
<Identifier> Terminal 2,12,14,14.14,20,24,42,48.1,51,57,59,63,69,70,71,79

Part 3 Interface Definition Language and Stubs 273

IDL Grammar Synopsis Interface Definition Language

Production Name Number Used In
<import> 7 6
<import_list> 10 7
<import_name> 11 10
<inclusive_or_exp> 14.05 14.04
<integer_const_exp> 14.01 14, 14.02
<integer_size> 32 30, 31, 64
<Integer_literal> Terminal 4, 14.14, 63
<integer_type> 29 27
<interface> 1 GOAL
<interface_attribute> 4 3
<interface_attributes> 3 2
<interface_body> 6 1
<interface_component> 8 6
<interface_header> 2 1
<international_character_type> 81 80
<logical_and_exp> 14.04 14.03
<logical_or_exp> 14.03 14.02
<member> 44 43
<member_list> 43 40, 41
<multiplicative_exp> 14.12 14.11
<op_declarator> 71 8
<operation_attribute> 73 72
<operation_attributes> 72 71
<param_attribute> 77 76
<param_attributes> 76 75
<param_declarator> 75 74
<param_declarators> 74 71, 79
<pipe_declarator> 83 82
<pipe_declarators> 82 58
<pipe_type> 58 38
<port_spec> 5 4
<Port_string> Terminal 5
<predefined_type_spec> 80 20
<primary_exp> 14.14 14.13
<primitive_integer_type> 29.1 13, 29, 49
<ptr_attr> 70.1 4, 64, 67, 73
<ptr_declarator> 70 25, 83
<relational_exp> 14.09 14.08
<shift_exp> 14.10 14.09
<signed_integer> 30 29
<simple_declarator> 24 22, 23, 83
<simple_type_spec> 20 19, 66, 71, 79
<string> 15 14
<struct_type> 40 38
<switch_type_spec> 49 48.1, 55.3

274 X/Open CAE Specification (1994)

Interface Definition Language IDL Grammar Synopsis

Production Name Number Used In
<tag> 42 39, 41, 47, 50
<tagged_declarator> 26 9, 38
<tagged_struct> 41 39
<tagged_struct_declarator> 39 26
<tagged_union> 50 47
<tagged_union_declarator> 47 26
<type_attribute> 64 18
<type_attribute_list> 18 17
<type_declarator> 17 9
<type_spec> 19 17, 45, 58, 75
<unary_exp> 14.13 14.12
<union_arm> 55.2 53, 53.1, 55
<union_body> 52 48, 50
<union_body_n_e> 52.1 48, 50
<union_case> 53 52
<union_case_n_e> 53.1 52.1
<union_case_label> 54 53
<union_case_label_n_e> 54.1 53.1
<union_instance_switch_attr> 55.4 67
<union_name> 51 48.1
<union_switch> 48.1 48, 50
<union_type> 48 38
<union_type_switch_attr> 55.3 64
<unsigned_integer> 31 29
<usage_attribute> 65 64, 67, 73
<Uuid_rep> Terminal 4
<void_type> 36 27
<xmit_type> 66 64

Part 3 Interface Definition Language and Stubs 275

IDL Constructed Identifiers Interface Definition Language

4.5 IDL Constructed Identifiers
Table 4-4 lists the various classes of identifiers that are used to construct other identifiers. It
shows the various strings that are applied to the identifier to build new identifiers. The table also
gives the maximum length that a user-supplied identifier is permitted to have in order for the
resulting identifier have 31 characters or less. Identifiers of 31 characters or less fall within the
ISO C ‘‘minimum maximum’’ requirement for identifiers. This value need not be meaningful for
other target languages. The length specified for interface names assumes a single digit major and
minor version number. The actual length allowed for interface names is:

(19 −((digits-in-major-version) + (digits-in-minor-version)))

Table 4-4 Constructed Identifier Classes

Max
Class of ID Constructed IDs Length

Interface name <interface>_v<major_version>_<minor_version>_c_ifspec 17
<interface>_v<major_version>_<minor_version>_s_ifspec
<interface>_v<major_version>_<minor_version>_epv_t
<interface>_v<major_version>_<minor_version>_c_epv
<interface>_v<major_version>_<minor_version>_s_epv

Type with <type_id>_to_xmit 21
transmit_as <type_id>_from_xmit
attribute <type_id>_free_inst

<type_id>_free_xmit
Type with <type_id>_bind 24
handle <type_id>_unbind
attribute
Type with <type_id>_rundown 23
context_handle
attribute
Pointed-to node <type_id>_mc 28
type <type_id>_ms

<type_id>_uc
<type_id>_us

Type with <type_id>Omr, <type_id>Pmr 28
out_of_line <type_id>Ome, <type_id>Pme
attribute <type_id>Our, <type_id>Pur

<type_id>Oue, <type_id>Pue
Pipe type <type_id>_h 29

<type_id>_l
Type with <type_id>_to_local 20
represent_as <type_id>_from_local
attribute <type_id>_free_inst

<type_id>_free_local

276 X/Open CAE Specification (1994)

Interface Definition Language IDL and ACS Reserved Words

4.6 IDL and ACS Reserved Words
Reserved words are keywords of the language that must not be used as user identifiers. IDL
reserved words are given in the following list:

boolean byte case char
const default double enum
FALSE float handle_t hyper
import int interface long
NULL pipe short small
struct switch TRUE typedef
union unsigned void

The following list gives the IDL keywords that are reserved when in the context of an attribute:
that is, between [] (brackets):

align broadcast case comm_status
context_handle endpoint first_is handle
idempotent ignore implicit_handle in
last_is length_is local max_is
maybe out ptr ref
size_is string switch_is switch_type
transmit_as uuid version

The following are ACS reserved words: include, interface, typedef.

The following list gives the ACS keywords that are reserved when in the context of an attribute:
that is, between [] (brackets):

auto_handle code comm_status enable_allocate
explicit_handle fault_status heap implicit_handle
in_line nocode out_of_line represent_as

Part 3 Interface Definition Language and Stubs 277

Interface Definition Language

278 X/Open CAE Specification (1994)

Chapter 5

Stubs

The IDL source and any ACS are used to generate client and server stubs for a specified
interface. Except for data type and syntax mappings, specified for the C language in Appendix F,
the mappings of IDL and ACS to stub code for a given language are mostly implementation-
dependent. However, there are certain additional portability requirements on the
application/stub interface as well as interoperability requirements on stub code. These
requirements are specified in the following sections.

5.1 The Application/Stub Interface
Applications interact with the stub mainly by calling IDL specified remote interfaces (on the
client side) and by implementing managers for these interfaces (on the server side). However, in
certain cases, applications need to be aware of specific details of stub code. These include:

• parameter marshalling and memory management

• the default manager EPV

• the interface handle

• the pipe processing interface

• type attribute interfaces

• context handle rundown.

The following sections specify these aspects of stub code. Where appropriate, they provide C
bindings that portable C applications must adhere to.

5.1.1 Parameters

Parameter semantics depend on the IDL directional attributes as follows:

• The value of a parameter with the in attribute is marshalled by the client stub when the client
invokes the call. It is unmarshalled by the server stub and passed to the server manager on
invocation by the stub.

• The value of a parameter with the out attribute is marshalled by the server stub when the
server manager routine returns. It is unmarshalled by the client stub and passed to the client
when the call returns.

• The value of a parameter with the attributes in, out is passed from the client to the server as
an in parameter and passed from the server to the client as an out parameter.

In the event of an abnormal end-of-call, resulting from either an exception condition on the
server (which may be reported through fault_status parameter) or a communications failure
(which may be reported through comm_status parameter) the values of out parameters are
undefined.

Part 3 Interface Definition Language and Stubs 279

The Application/Stub Interface Stubs

5.1.1.1 Parameter Memory Management

RPC attempts to extend local procedure call parameter memory management semantics to a
situation in which the calling and called procedure no longer share the same memory space. In
effect, parameter memory has to be allocated twice, once on the client side, once on the server
side. Stubs do as much of the extra allocation work as possible so that the complexities of
parameter allocation are transparent to applications. In some cases, however, applications may
have to manage parameter memory in a way that differs from the usual local procedure call
semantics. This section specifies stub and application requirements on parameter allocation.

For the purposes of memory allocation, three classes of parameter need to be considered:

• non-pointer types

• reference pointers

• full pointers.

For all types, the client application supplies parameters to the client stub, which marshals them
for transmission to the server. The client application is entirely responsible for managing the
memory occupied by the passed parameters. On the server side, the server stub allocates and
frees all memory required for the received parameters themselves.

In the case of the pointer types, however, the application and stubs must manage memory not
only for the parameters themselves, but also for the pointed-to nodes. In this case, the memory
management requirements depend both on the pointer type and on the parameter’s directional
attributes.

The rules are as follows.

5.1.1.2 Client-side Allocation

in parameters For all pointer types, the client application must allocate memory for the
pointed-to nodes.

out parameters For reference pointers, the client application must allocate memory for
the pointed-to nodes unless the pointer is part of a data structure created
by server manager code. For parameters containing full pointers, the stub
allocates memory for the pointed-to nodes.

in, out parameters For reference pointers, the client application must allocate memory for
the pointed-to nodes. For full pointers, on making the call, the client
application must allocate memory for the pointed-to node. On return, the
stub keeps track of whether each parameter is the original full pointer
passed by the client, or a new pointer allocated by the server. If a pointer
is unchanged, the returned data overwrites the existing pointed-to node.
If a pointer is new, the stub allocates memory for the pointed-to node.
When a parameter contains pointers, such as an element in a linked list,
the stub keeps track of the chain of references, allocating nodes as
necessary.

It is the client application’s responsibility to free any memory allocated by
the stub for new nodes. Clients can call the routine rpc_sm_client_free() for
this purpose.

280 X/Open CAE Specification (1994)

Stubs The Application/Stub Interface

If the server deletes or eliminates a reference to a pointed to node, an
‘‘orphaned’’ node may be created on the client side. It is the client
application’s responsibility to keep track of memory that it has allocated
for pointed-to nodes and to deal with any nodes for which the server no
longer has references.

5.1.1.3 Server-side Allocation

in parameters For all pointer types, the stub manages all memory for pointed-to nodes.

out parameters For reference pointers, the stub allocates memory for the pointed-to nodes
as long as the size of the targets can be determined at compile time. When
the manager routine is entered, such reference pointers point to valid
storage. For parameters that contain full pointers, the server manager
code must allocate memory for pointed-to nodes. Servers can call the
routine rpc_sm_allocate () for this purpose.

in, out parameters For reference pointers, the stub allocates memory for pointed-to nodes if
either the size of the pointed to nodes can be determined at compile time
or the reference pointers point to values received from the client. When
the manager routine is entered, such reference pointers point to valid
storage. For full pointers, the stub allocates memory for the original
pointed-to nodes. The server manager code must allocate memory if it
creates new references. Servers can call the routine rpc_sm_allocate () for
this purpose.

The server stub automatically frees all memory allocated by calls to rpc_sm_allocate ().

5.1.1.4 Aliasing

For both out and in, out parameters, when full pointers are aliases, according to the rules
specified in Section 4.2.23.4 on page 259, the stubs maintain the pointed-to objects such that any
changes made by the server are reflected to the client for all aliases. The stubs detect and
correctly handle aliasing both in the case where an alias exists on initiation of an RPC and in the
case where an alias is created by the server.

5.1.2 Default Manager EPVs

The IDL compiler must be able to generate server stubs that contain a default manager EPV, as
described in Section 3.1 on page 49.

5.1.3 Interface Handle

The stub must declare an interface handle according to the naming conventions specified in
Section 3.1 on page 49.

5.1.4 Pipes

At the caller user code to caller stub interface and the callee stub to callee user code interface,
pipes appear as a simple callback mechanism. The processing of a pipe parameter appears to be
synchronous to the user-written code. The mechanism implemented in the RPC stub and run-
time system allows these apparent callbacks to happen without a real remote callback; therefore,
the mechanism is very efficient.

Part 3 Interface Definition Language and Stubs 281

The Application/Stub Interface Stubs

Pipe processing is subject to the following restrictions:

• If an operation has more than one in or in, out parameter that is a pipe, those pipes must be
completely processed in the in direction, in the order in which they appear in the operation’s
signature, before any out pipes are filled.

• If an operation has more than one out or in, out parameter that is a pipe, those pipes must be
completely processed in the out direction, in the order in which they appear in the
operation’s signature, after all in pipes are drained.

The processing of pipes, and the definition of complete processing, is discussed later in this
section.

Pipes are defined as type constructors rather than as type attributes because they are manifested
at the programming interface in a non-obvious way.

As an example of a pipe, consider the following IDL fragment:

typedef
pipe element_t pipe_t;

The client and server stubs must declare pipe processing functions with the following signatures
and semantics:

typedef
struct pipe_t {

/*
** pointer to routine call back to pull the next
** chunk from this pipe
*/
void (*pull) (

char *state, /* in: pipe’s state pointer */
element_t *buf, /* in: buffer in which to place a chunk */
idl_ulong_int esize, /* in: buffer size (# of elements) */
idl_ulong_int *ecount /* out: size of chunk (# of elements) */

);
/*
** pointer to routine call back to push the next
** chunk into this pipe
*/
void (*push) (

char *state,/* in: pipe’s state pointer */
element_t *buf, /* in: buffer from which to copy chunk */
idl_ulong_int ecount /* in: size of chunk (# of elements) */

);
/*
** pointer to allocate callback to get buffer.
** Only used on caller side.

*/
void (*alloc) (

char *state,/* in: pipe’s state pointer */
idl_ulong_int bsize, /* in: requested size (# of *bytes*) */
element_t **buf, /* out: pointer to allocated buffer */
idl_ulong_int *bcount /* out: size of alloc’d buffer (# of

bytes*)*/
);
/* pointer to arbitrary storage used by push, pull and alloc. */
char *state;

} pipe_t;

282 X/Open CAE Specification (1994)

Stubs The Application/Stub Interface

The routine pipe_t.alloc allocates memory from which pipe data can be marshalled or into which
pipe data can be unmarshalled. The parameter bsize states the preferred size of this memory in
terms of a number of bytes. The parameters bcount and buf describe the actual memory that is
allocated. If the pipe_t.alloc routine allocates less memory than is requested, the RPC run-time
mechanism will use the smaller amount of memory and make more calls back to the user.
However, the allocation routine must return at least enough memory to hold one item of the
pipe base type; otherwise, an error condition occurs. If the pipe_t.alloc routine allocates more
memory than is requested, the excess is not used.

The structure member pipe_t.state is intended to give the alloc, push and pull routines a means of
working together. It is available for the implementor of the client or manager, as described in the
following sections. The following list enumerates which of these objects are necessary in each of
the four possible cases, and who is responsible for supplying them. The generalisation to in, out
pipes is obvious.

• An in pipe, caller side:

• The pipe_t structure is allocated by the user.

• The pipe_t.pull, pipe_t.alloc and pipe_t.state fields are initialised by the user.

• The pipe_t.state field is available for use by the implementor of the caller code.

• The structure is passed as the pipe parameter. The structure is passed either by value or by
reference at the IDL writer’s choice, as indicated by the signature of the operation containing
the pipe parameter.

• An in pipe, callee side:

• The pipe_t structure is allocated by the stub.

• The pipe_t.pull and pipe_t.state fields are initialised by the stub.

• The pipe_t.state field is reserved for use by the stub.

• The structure is passed as the pipe parameter either by value or by reference.

• An out pipe, callee side:

• The pipe_t structure is allocated by the stub.

• The pipe_t.push and pipe_t.state fields are initialised by the stub.

• The pipe_t.state field is reserved for use by the stub.

• The structure is passed as the pipe parameter either by value or by reference.

• An out pipe, caller side:

• The pipe_t structure is allocated by the user.

• The pipe_t.push, pipe_t.alloc and pipe_t.state fields are initialised by the user.

• The pipe_t.state field is available for use by the implementor of the caller code.

• The structure is passed as the pipe parameter either by value or by reference.

To describe the processing of a pipe parameter, it is useful to consider separately the three cases
of in, out and in, out pipes.

Part 3 Interface Definition Language and Stubs 283

The Application/Stub Interface Stubs

5.1.4.1 Processing of in Pipes

Remember that an in pipe transfers data from the client to the server. On the client side, this
involves the pull and alloc routines provided by the application code. On the server side, this
involves the pull routine provided by the server stub. The client stub must marshal an in pipe
parameter whose type is pipe_t, from the previous example. For the parameter of this type, pipe,
the client stub executes the following code sequence to get chunks of the pipe for marshalling:

#define DESIRED_NUM_ELEMENTS ...
long count;
long num_buf_elem;
long num_buf_bytes;
element_t *buf;

do {
/*
** allocate a buffer into which this pipe will be
** copied by the pull routine.
*/
(*(pipe->alloc))(

pipe->state,
DESIRED_NUM_ELEMENTS * sizeof(element_t),
&buf,
&num_buf_bytes

);
num_buf_elem = num_buf_bytes / sizeof(element_t);
/*
** Copy the data to the allocated buffer.
*/
(*(pipe->pull)) (

pipe->state,
buf,
num_buf_elem,
&count

);
} while (count > 0);

Thus, the client application code must supply pull and alloc routines that work in concert to yield
a sequence of pointers to chunks of which only the last is empty. The client stub must not
modify the state pointed to by pipe->state. Note that to transmit a large amount of information
that is already in the proper form in memory (that is, already an array of element_t), the alloc
and pull routines may conspire to allocate a buffer that already has the information in it and have
the pull routine be a null routine.

The server stub must unmarshal chunks of the pipe and yield them in response to calls back
from the manager. The manager may need to limit the size of the chunks it receives.

The server stub must contain a generated pull routine and private storage pointed to by the state
field of the structure representing the pipe. The private storage will be used by the stub to
manage the pipe operations. The manager reads from the pipe by making calls of the form:

284 X/Open CAE Specification (1994)

Stubs The Application/Stub Interface

#define DESIRED_NUM_ELEMENTS ...
long count;
element_t buf [DESIRED_NUM_ELEMENTS];

do {
...
(*(pipe->pull)) (

pipe->state,
&buf,
DESIRED_NUM_ELEMENTS,
&count

);
} while (count > 0);

The routine pipe->pull must unmarshal, into the manager supplied buffer, an amount of data that
is nonzero, but no more data than the buffer can hold. The buffer must be large enough to hold at
least one item of the pipe base type; otherwise an error condition occurs. The stub need not
guarantee to fill the buffer; the amount of data in the buffer must be specified in the count
parameter to the pipe->pull routine.

No more data in the pipe is signaled to the application code by a zero length chunk. Any further
calls by the manager result in an error. Any calls to the n + 1th in pipe’s pull routine before the
first n in pipes have been completely drained also results in an error. Also, if a manager returns
to the callee stub before all the pipes in the interface have been drained or filled an error results.
This is the requirement referred to previously: pipes must be completely processed in the order
they appear in the operation signature. There is no guarantee that the chunking seen by the
manager will match the chunking supplied by the client’s pull routine.

5.1.4.2 Processing of out Pipes

Remember that an out pipe transfers data from the server to the client. On the client side, this
involves the pipe->push and pipe->alloc routines provided by the application code. On the server
side, this involves the pipe->push routine provided by the server stub.

For an out pipe, the client stub’s role is to unmarshal chunks of the pipe into a buffer and call
back to the application passing a reference to the buffer. In order to allow the application code to
manage its memory usage, and to avoid possibly unnecessary copying, the client stub must first
call back to the application’s pipe->alloc routine to get a buffer. In some cases, this may relieve the
pipe->push routine of any work.

The client stub may have to go through more than one (pipe->alloc, pipe->push) cycle in order to
unmarshal data that the server marshalled as a single chunk.

There is no guarantee that the chunking seen by the client will match the chunking supplied by
the server’s push routine. The client stub must execute the following code sequence repeatedly,
until there is no more data in the pipe:

Part 3 Interface Definition Language and Stubs 285

The Application/Stub Interface Stubs

#define DESIRED_NUM_ELEMENTS ...
long count;
long num_buf_elem;
long num_buf_bytes;
element_t *buf;

while (data_in_pipe) {
/*
** allocate a buffer into which this pipe will
** be copied by the push routine.
*/
(*(pipe->alloc)) (

pipe->state,
DESIRED_NUM_ELEMENTS * sizeof(element_t),
&buf,
&num_buf_bytes

);
...
num_buf_elem = num_buf_bytes / sizeof(element_t);
/*
** Copy the data to the allocated buffer.
*/
(*(pipe->push)) (

pipe->state,
buf,
count

);
};
/*
** Terminate the pipe by sending zero bytes of data.
*/
(*(pipe->push)) (

pipe->state,
buf,
0

);

On the server side, the stub must implement a push routine, which the manager calls back
repeatedly passing it a pipe->state, a count and a chunk. This routine must marshal the chunk
into the out stream. The manager’s last call to this routine must pass it a reference to a zero-
length chunk so that the stub routine can terminate the pipe.

As with in pipes, the stub enforces well-behaved pipe filling on the part of the manager by
generating ‘‘pipe filling errors’’, if necessary. Any out pipes must be filled completely and in
order, after all input pipes have be drained completely. The manager must call the stub-supplied
routines with code similar to the following fragment:

286 X/Open CAE Specification (1994)

Stubs The Application/Stub Interface

#define DESIRED_NUM_ELEMENTS ...
long count;
element_t buf [DESIRED_NUM_ELEMENTS];

while (more_pipe_data) {
...
(*(pipe->push)) (

pipe->state,
&buf,
count

);
};
(*(pipe->push)) (

pipe->state,
&buf,
0

);

5.1.4.3 Processing of in, out Pipes

A pipe parameter may be in, out. The application’s pull routine must reinitialise the pipe state
after the pipe has been drained so that it can be used by the push routine correctly.

At the caller side, the pipe_t structure must be provided by the user code. It must have pull (for
the in direction), push (for the out direction), alloc and state initialised. During the last pull call,
when it returns a 0 (zero) count to indicate that the pipe is now drained, it must prepare the state
variable to receive push calls.

At the callee side, the pipe_t structure is provided by the stub. The stub must initialise both
routine pointers and perform a state variable turn around, as described here.

5.1.5 IDL and ACS Type Attributes

The following sections describe IDL and ACS type attributes as they affect the application/stub
interface.

5.1.5.1 The IDL transmit_as Attribute

The transmit_as attribute associates a presented type in the target language with an IDL
transmitted type (<xmit_type>). The presented type is the type seen by clients and servers.
The transmitted type is the type that the stub passes to the run-time system for transmission.
The application must supply routines that perform conversions between the presented and
transmitted types, and to release memory used to hold the converted data.

Table 5-1 on page 288 lists the routines that the application must supply, where <type_id> is the
identifier part of the type defined in the statement in which the transmit_as attribute occurs.

Part 3 Interface Definition Language and Stubs 287

The Application/Stub Interface Stubs

Routine Name Routine Use
Allocates an instance of the transmitted type and
converts from the presented type to the transmitted
type (used by both caller and callee).

<type_id>_to_xmit

Converts from the transmitted type to the presented
type (used by both caller and callee).

<type_id>_from_xmit

Frees resources used by the presented type, but not
the type itself as it is allocated by the stub (used by
callee).

<type_id>_free_inst

Frees storage returned by <type_id>_to_xmit routine
(used by both caller and callee).

<type_id>_free_xmit

Table 5-1 Transmitted Type Routines

The signatures of these routines are as follows:

void <type_id>_to_xmit (<presented_type> *, (<transmitted_type> **))
void <type_id>_from_xmit ((<transmitted_type> *), (<presented_type> *))
void <type_id>_free_inst (<presented_type> *)
void <type_id>_free_xmit ((<transmitted_type> *))

If the presented type is composed of one or more pointers, then the application’s
<type_id>_from_xmit routine must allocate the targets of any such pointers. The stub storage
release behaviour is as follows.

Suppose that the transmit_as attribute appears either on the type of a parameter or on a
component of a parameter and that the parameter has the out or in, out attribute. Then, the
<type_id>_free_inst routine is called automatically for the data item which has the transmit_as
attribute.

Suppose that the transmit_as attribute appears on the type of a parameter and that the
parameter has only the in attribute. Then, the <type_id>_free_inst routine is called automatically.

Finally, suppose that the transmit_as attribute appears on a component of a parameter and that
the parameter has only the in attribute. Then, the <type_id>_free_inst routine is not called
automatically for the component; the manager application code must release any resources that
the component uses, possibly by explicitly calling the <type_id>_free_inst routine.

The <type_id>_free_xmit routine frees any storage that has been allocated for the transmitted type
by <type_id>_to_xmit.

5.1.5.2 The IDL handle Attribute

The handle attribute specifies that a type can serve as a customised handle. Customised handles
permit the design of handles that are meaningful to an application. The client application must
provide binding and unbinding routines to convert between the custom handle type and the
primitive handle type, handle_t.

A primitive handle must contain object UUID and destination information that is meaningful to
the client/server run-time support mechanisms. A customised handle may only be defined in a
type declaration. It must not be defined in an operation declaration. When a parameter in the
first position is a type with the handle attribute, the parameter does double duty. It determines
the binding for the call, and it is transmitted to the called procedure as a normal parameter.
Types with the handle attribute in other than the first parameter position are treated as ordinary
parameters; their handle attribute is ignored, and they do not contribute to the binding process.

288 X/Open CAE Specification (1994)

Stubs The Application/Stub Interface

The client application must supply the following routines:

handle_t <type_id>_bind (<type_id> custom_handle)
void <type_id>_unbind (<type_id> custom_handle, handle_t)

where <type_id> is the identifier of the customised handle data type and custom_handle
represents the formal parameters of the customised handle data type. The routine <type_id>_bind
must generate and return a primitive binding handle from a customised handle of type
<type_id>. The client stub must call <type_id>_bind before it sends the request, and call
<type_id>_unbind before it returns to the caller. The <type_id>_unbind routine actions are
application-specific and may have no effect.

5.1.5.3 Interaction of IDL transmit_as and IDL handle Attributes

If a type has both the transmit_as and handle attributes and the type is used as the first
parameter in an operation, the <type_id>_bind routine must be invoked before the
<type_id>_to_xmit routine.

However, a type that includes the handle attribute in its definition must not be used, directly or
indirectly, in the definition of a type with the transmit_as attribute. A type that includes the
transmit_as attribute in its definition must not be used, directly or indirectly, in the definition of
a type with the handle attribute. The handle attribute is not allowed on a type that contains a
transmit_as type.

5.1.5.4 The ACS represent_as Attribute

The represent_as attribute associates a named local type in the target language
(<ACS_repr_type>) with a transfer type (<ACS_named_type>) that is transferred between caller
and callee. The user must supply routines that perform conversions between the local and
transfer types, and that release memory used to hold the converted data.

Table 5-2 lists the routines that the application must supply, where the represent_as attribute
has been specified for (<ACS_named_type>).

Routine Name Routine Use
Allocates an instance of the network type and
converts from the local type to the network type
(used by both caller and callee).

<ACS_named_type>_from_local

Converts from the network type to the local type
(used by both caller and callee).

<ACS_named_type>_to_local

Frees storage instance used for the network type
(used by both caller and callee).

<ACS_named_type>_free_inst

Frees storage returned by the routine
<ACS_named_type>_from_local (used by callee).

<ACS_named_type>_free_local

Table 5-2 Transferred Type Routines

The signatures of these routines are as follows:

void <ACS_named_type>_from_local ((<ACS_repr_type> *), (<ACS_named_type> **))
void <ACS_named_type>_to_local ((<ACS_named_type> *), (<ACS_repr_type>P *))
void <ACS_named_type>_free_inst ((<ACS_named_type> *))
void <ACS_named_type>_free_local ((<ACS_repr_type> *))

Suppose that the represent_as attribute is applied either to the type of a parameter or to a
component of a parameter and that the parameter has the out or in, out attribute. Then, the
<ACS_named_type>_free_local routine is called automatically for the data item that has the type

Part 3 Interface Definition Language and Stubs 289

The Application/Stub Interface Stubs

to which the represent_as attribute was applied.

Suppose that the represent_as attribute is applied to the type of a parameter and that the
parameter has only the in attribute. Then, the <ACS_named_type>_free_local routine is called
automatically.

Finally, suppose that the represent_as attribute is applied to the type of a component of a
parameter and that the parameter has only the in attribute. Then, the
<ACS_named_type>_free_local routine is not called automatically for the component; the manager
application code must release any resources that the component uses, possibly by explicitly
calling the <ACS_named_type>_free_local routine.

5.1.5.5 Interaction of the ACS represent_as Attribute and the IDL handle Attribute

A type must not have both the handle and represent_as attributes.

5.1.5.6 Interaction of the ACS represent_as Attribute with the IDL transmit_as Attribute

If a type has both the represent_as and transmit_as attributes, the transformations are applied in
the appropriate order: on the transmit side, <type_id>_from_local then <type_id>_to_xmit; on the
receive side, <type_id>_from_xmit then <type_id>_to_local.

5.1.6 Context Handle Rundown

A context handle is opaque to the caller. However, a caller may distinguish between a null
context handle and an active one. A context handle whose value is 0 (zero) is termed a null
context handle and does not represent any currently saved context. A context handle with any
other value is termed an active context handle and represents saved context.

When making an RPC that will create saved context, the caller must pass a null context handle.
The called procedure may return an active context handle. A context handle parameter with
only the out attribute (that is, without either the in of in, out attributes) is interpreted as if it
were a null context handle at the time of the call. It is the responsibility of the caller to pass the
unmodified context handle back to the server on the next call.

The interpretation of the context handle is totally up to the called procedure. If the caller
modifies a context handle in any way other than initialising it to 0 (zero) before its first use, then
behaviour is unpredictable. It is the responsibility of the callee to return a null context handle
when it is no longer maintaining context on behalf of the caller. For example, if the context
handle represents an open file and the call closes the file, the callee must set the context handle
to 0 (zero) and return it to the caller. If the callee terminates the context and fails to return a null
context handle, then the context rundown routine will be erroneously called when the client
exits.

For some contexts a context rundown routine may be required. If communications between the
caller and the callee break down while the callee is maintaining context for the caller, the run-
time system invokes the context rundown routine to enable the callee to clean up this context.
When an interface requires context but does not require a context rundown routine, it is
sufficient to use parameters that have the context_handle attribute. However, where a rundown
routine is required, the user must define a named type that has the context_handle attribute.

By making the type definition, the user implicitly specifies the name of the rundown routine for
the context. The declaration of a type with the context_handle attribute and the name
<context_type_name> specifies a rundown routine with the name <context_type_name>_rundown.
A rundown routine takes one parameter, the context handle of the context that is to be run
down, and delivers no result.

290 X/Open CAE Specification (1994)

Stubs The Application/Stub Interface

For example, if the application declares:

typedef [context_handle] void *my_context

it must supply, in the manager application code, a rundown routine that matches the prototype:

void my_context_rundown (void *context_handle);

A context handle is valid in only one execution context. Therefore, the opaque data structure
that a context handle refers to on a client implicitly includes a binding handle. Whenever an
operation has an in or a non-null in, out context handle parameter, and the operation also has a
first parameter that is of type handle_t or has the handle attribute, then the binding handle
represented by the context handle and the binding handle represented by the first parameter
must refer to the same execution context. Furthermore, when an operation has an in or a non-
null in, out context handle parameter, any interface-wide binding mechanism —
implicit_handle or auto_handle — is ignored for that operation. If an operation has more than
one in context handle, all the respective binding handles must refer to the same remote
execution context.

Part 3 Interface Definition Language and Stubs 291

Interoperability Requirements on Stubs Stubs

5.2 Interoperability Requirements on Stubs
Stub code shall conform to interoperability requirements in the following areas:

• operation number generation

• error handling when unmarshalling floating point data.

5.2.1 Operation Numbers

The RPC protocols use operation numbers to inform a server which operation of an interface to
invoke. Stubs generate operation numbers consecutively, beginning with 0 (zero), in the order in
which operations appear in the IDL source.

5.2.2 Error Handling During Floating-Point Unmarshalling

This section specifies how stubs handle errors that occur when unmarshalling floating-point
data. The following list names a set of octet stream representations of floating point values for
which stubs must generate errors:

MAX Some value greater than the largest value that can be represented in the
receiver’s floating-point representation.

MIN Some value less than the smallest value that can be represented in the
receiver’s floating-point representation.

NaN The logical equivalent to IEEE ‘‘not a number’’.

Minuszero The logical equivalent to IEEE −0.0.

+INF Positive infinity (in the format specified in the format label).

−INF Negative infinity.

Table 5-3 specifies stub behaviour for each of these conditions. The table indicates the value to be
unmarshalled or a fault status code that must be returned by the caller (client).

Condition Unmarshalled Value Fault Status Code
MAX undefined rpc_s_fault_fp_overflow
MIN 0.0 None
Minuszero 0.0 None
+INF or NaN undefined rpc_s_fault_fp_error
−INF undefined rpc_s_fault_fp_error

Table 5-3 Floating Point Error Handling

When a floating-point error occurs on the server side, the server must return the appropriate
fault PDU to the client to generate the fault status specified. The mapping of fault PDU values to
fault status codes is specified in Appendix E.

292 X/Open CAE Specification (1994)

X/Open CAE Specification

Part 4

RPC Services and Protocols

X/Open Company Ltd.

Part 4 RPC Services and Protocols 293

294 X/Open CAE Specification (1994)

Chapter 6

Remote Procedure Call Model

This chapter provides a high-level description of the Remote Procedure Call (RPC) model
specified by this document. Implementations must comply with the specified model in order to
guarantee both application portability and interoperability between RPC peers.3

Note: For a description of the RPC model that provides guidelines for application program
portability, see Chapter 2.

The RPC mechanism maps the local procedure call paradigm onto an environment where the
calling procedure and the called procedure are distributed between different execution contexts
that usually, but not necessarily, reside on physically separate computers that are linked by
communications networks.

A procedure is defined as a closed sequence of instructions that is entered from, and returns
control to, an external source. Data values may be passed in both directions along with the flow
of control. A procedure call is the invocation of a procedure. A local procedure call and an RPC
behave similarly; however, there are semantic differences due to several properties of RPCs:

• Server/client relationship (binding)

While a local procedure call depends on a static relationship between the calling and the
called procedure, the RPC paradigm requires a more dynamic behaviour. As with a local
procedure call, the RPC establishes this relationship through binding between the calling
procedure (client) and the called procedure (server). However, in the RPC case a binding
usually depends on a communications link between the client and server RPC run-time
systems. A client establishes a binding over a specific protocol sequence to a specific host
system and endpoint.

• No assumption of shared memory

Unlike a local procedure call, which commonly uses the call-by-reference passing mechanism
for input/output parameters, RPCs with input/output parameters have copy-in, copy-out
semantics due to the differing address spaces of calling and called procedures.

• Independent failure

Beyond execution errors that arise from the procedure call itself, an RPC introduces
additional failure cases due to execution on physically separate machines. Remoteness
introduces issues such as remote system crash, communications links, naming and binding
issues, security problems, and protocol incompatibilities.

• Security

Executing procedure calls across physical machine boundaries has additional security
implications. Client and server must establish a security context based on the underlying
security protocols, and they require additional attributes for authorising access.

3. Implementations must comply with this specification regardless of the underlying transport protocol. Security protocols other
than the one currently specified in this document may also behave differently. Although these protocol specifics should be
considered as part of the specification of the protocol machines, appropriate explanations are also included in this part of the
specification for clarity and better readability.

Part 4 RPC Services and Protocols 295

Client/Server Execution Model Remote Procedure Call Model

6.1 Client/Server Execution Model
The RPC model makes a functional distinction between clients and servers. A client requests a
service, and a server provides the service by making resources available to the remote client.

6.1.1 RPC Interface and RPC Object

Two entities partially determine the relationship between a client and a server instance: RPC
interfaces and RPC objects. Both interfaces and objects are identified by UUIDs. (See Appendix A
for a UUID specification.)

6.1.1.1 RPC Interfaces

An RPC interface is the description of a set of remotely callable operations that are provided by a
server. Interfaces are implemented by managers, which are sets of server routines that implement
the interface operations. RPC offers an extensive set of facilities for defining, implementing and
binding to interfaces. RPC explicitly imposes only a few restrictions on the behaviour of
interface implementations. These include the following:

Execution Semantics Because RPC calls depend on network transports that provide varying
guarantees of success, interface specifications include an indication of the
effects of multiple invocations. Managers must be consistent with the
specified semantics.

Version Numbering RPC provides a mechanism to specify interface versions and a protocol to
select a compatible interface at bind time. Managers must provide the
required version compatibility; that is, they are required to support the
specified interface major version and the minor versions that are less than
or equal to the minor version number of the interface advertised by the
server.

An interface identifier is a UUID that uniquely identifies the RPC interface being called. Interface
UUIDs are mandatory and are included in the interface specification in IDL (see Chapter 4).

6.1.1.2 RPC Objects

RPC objects are either server instances or other resources that are operated on and managed by
RPC servers, such as devices, databases and queues. Servers here are the instances of services
(applications) that are provided to RPC clients. Binding to RPC objects is facilitated by RPC, but
object usage is optional and in the domain of application policies. Hence, RPC objects provide a
means of object-oriented programming in the RPC environment, but allow applications to
determine how these entities are actually being implemented. The object identifier is a UUID,
called an object UUID that uniquely identifies the object on which the RPC is operating.

Object UUIDs for server instances and for resources cannot be intermixed. If multiple server
instances are distinguished via object UUIDs (also called instance UUIDs), each binding
operation only supports a single embedded object UUID. If the usage of multiple object UUIDs
is required, these may be passed as explicit call arguments.

Servers may refer to multiple RPC objects, and RPC objects may be referenced by multiple
servers; servers typically use different object UUIDs to refer to the same RPC object. RPC objects
may be accessed by operations defined by one or a set of RPC interfaces.

To identify classes of RPC objects, these may also be tagged with type UUIDs. RPC has no
predefined notion of an object or types of objects, but managers at the server may associate a
type with an object. Type UUIDs are set to the nil UUID by default. Type UUIDs can only be
assigned to RPC objects with non-nil UUIDs.

296 X/Open CAE Specification (1994)

Remote Procedure Call Model Client/Server Execution Model

6.1.2 Interface Version Numbering

A client may bind to a server for a particular interface only if the client interface meets with the
following conditions:

1. The client interface has the same UUID as the server interface.

2. The client interface has the same major version number as the server interface.

3. The client interface has a minor version number that is less than or equal to the server
interface’s minor version number.

6.1.2.1 Rules for Changing Version Numbers

From the version numbering rules, it can be seen that the minor version number is used to
indicate that an upwardly compatible change has been made to the interface. The rules for
changing version numbers are as follows:

1. The minor version number must be increased any time an upwardly compatible change or
set of upwardly compatible changes is made to the interface definition.

2. The major version number must be increased any time any non-upwardly compatible
change or set of changes is made to the interface definition.

3. If a change is made that requires a major version number increase, any upwardly
compatible changes may be made at the same time; changing the minor version number is
not required in this case, although it is permissible, and it is recommended that the minor
version number be reset to 0 (zero).

4. The major version number can never be decreased.

5. The minor version number cannot be decreased without simultaneously increasing the
major version number. These rules lead to the following guidelines for the use of version
numbers:

— The initial values for the major and minor version numbers of an interface should be
small. The values 1 and 0, yielding the version number 1.0, are typical.

— The increment used when increasing the major or minor version number is usually 1.

6.1.2.2 Definition of an Upwardly Compatible Change

The following are upwardly compatible changes, and may be made to an existing interface
definition provided the minor or major version number is increased:

• Adding an operation to the interface, if and only if the operation is placed lexically after all
the existing operations in the IDL source.

• Adding a type definition or constant, provided the new type definition or constant is used
only by operations added at the same time, or later.

6.1.2.3 Non-upwardly Compatible Changes

Any change to an existing interface definition not listed in Section 6.1.2.2 is not upwardly
compatible and requires an increase to the major version number.

Part 4 RPC Services and Protocols 297

Client/Server Execution Model Remote Procedure Call Model

6.1.3 Remote Procedure Calls

A specific remote operation, equivalent to a local function call in C, is instantiated by one RPC.
The operation performed by an RPC is determined by the interface (identifier and version) and
the operation number. Each instance of an RPC is uniquely identified by a distinct pair of session
and call identifiers.4

A session is uniquely determined by the activity (connectionless protocol) or association
(connection-oriented protocol). Sessions can be serially reused, but concurrent multiplexing of
sessions is not supported.

Multiple session identifiers may correspond to a single client and server execution context pair,
which is identified by the cas_id (connectionless protocol, obtained through the conversation
manager handshake) or the assoc_group_id (connection-oriented protocol).

6.1.4 Nested RPCs

A called remote procedure can initiate another RPC. The second RPC is nested with the first
RPC. Initial and nested RPCs are distinct according to the definition of an RPC; they are different
RPC threads and operate on distinct sessions.

A specialised form of nested RPC involves a called remote procedure that makes an RPC to the
execution context of the calling client application thread. Calling the original client’s execution
context requires that a server application thread is listening in that execution context. Also, the
second remote procedure needs a server binding handle for the execution context of the calling
client.

6.1.5 Execution Semantics

Execution semantics identify how many times a server-side procedure may be executed during a
given client-side invocation. The guarantees provided by the RPC execution semantics are
independent of the underlying communications environment. All invocations of remote
procedures risk disruption due to communications failures. However, some procedures are
more sensitive to such failures, and their impact depends partly on how reinvoking an operation
transparently to the client affects its results.

The operation declarations of an RPC interface definition indicate the effect of multiple
invocations on the outcome of the operations. The at-most-once execution semantic guarantees
that operations are not executed multiple times.

The execution semantics for RPCs are summarised in Table 6-1 on page 299.

4. ‘‘Session’’ in this context refers to an established client/server relation. This is expressed as an activity for the connectionless RPC
protocol. The connection-oriented protocol defines this as association: a communications channel shared between a client’s and a
server’s endpoint. Local policy governs the number and lifetime of sessions.

298 X/Open CAE Specification (1994)

Remote Procedure Call Model Client/Server Execution Model

Semantics Meaning
The operation must execute either once, partially, or not at all. This is
the default execution semantics for remote procedure calls (also called
non-idempotent).

at-most-once

The operation can execute more than once. The manager routine must
assure that executing more than once using the same input arguments
does not produce undesirable side effects.

An implementation of the RPC protocol machines may treat an
idempotent call request as a non-idempotent call. This is a valid
transformation.

RPC supports maybe semantics and broadcast semantics as special
forms of idempotent operations.

idempotent

Semantics Meaning
The caller neither requires nor receives any response
or fault indication for an operation, even though
there is no guarantee that the operation completed.
An operation with maybe semantics is implicitly
idempotent and must lack output parameters.

maybe

The operation is always broadcast to all host systems
on the local network, rather than delivered to a
specific server system. An operation with broadcast
semantics is implicitly idempotent; broadcast
semantics are supported only by connectionless
protocols.

broadcast

Table 6-1 Execution Semantics

With the RPC communications protocols, a maybe call lacks execution guarantees; an
idempotent call, including broadcast, guarantees that the data for an RPC is received and
processed zero or more times; and an at-most-once call guarantees that the call data is received
and processed at most one time (may be executed partially or zero times). Both idempotent and
at-most-once services guarantee that a sequence of calls in a session are processed in the order of
invocation by the client.

6.1.6 Context Handles

Server application code can store information it needs for a particular client, such as the state of
previous RPCs the client made, as part of a client context. During a series of remote procedure
calls, the client may need to refer to the client context maintained by a specific server instance.
To provide a client with a means of referring to its client context, the client and server pass back
and forth an RPC-specific parameter called a context handle. A context handle is a reference to
the server instance and the client context of a particular client. A context handle ensures that
subsequent RPCs from the client can reach the server instance that is maintaining context for the
client (commonly known as ‘‘stateful’’ servers).

On completing the first procedure in a series, the server returns a context handle to the client.
The context handle identifies the client context that the server uses for subsequent operations.
The client stores the handle and can return it unchanged in subsequent calls to the same server.
Using the handle, the server finds the context and provides it to the called remote procedure.

The server maintains the client context for a client until one of the following occurs:

• The client calls an operation that terminates use of the context.

Part 4 RPC Services and Protocols 299

Client/Server Execution Model Remote Procedure Call Model

• The server crashes.

• Communications are lost and the server provider invokes a context rundown procedure.

For a specification of the context_handle attribute, its usage, and its relation to binding handles,
see Section 4.2.16.6 on page 249.

6.1.7 Threads

Each RPC occurs in the context of a thread. A thread is a single sequential flow of control with
one point of execution at any instant. A thread created and managed by application code is an
application thread.

RPC applications use application threads to issue both RPCs and RPC run-time calls. An RPC
client contains one or more client application threads, each of which may perform one or more
RPCs. (A client application thread may not make any RPC, or zero calls may be performed if a
communications failure was detected.)

In addition, for executing called remote procedures, an RPC server uses one or more call threads
that the RPC run-time system provides. When beginning to listen, the server application thread
specifies the maximum number of concurrent calls it will execute. Single-threaded applications
have a maximum of one call thread. The maximum number of call threads in multi-threaded
applications depends on the design of the application and RPC implementation policy. The RPC
run-time system creates the call threads in the server execution context.

An RPC extends across client and server execution contexts. Therefore, when a client application
thread calls a remote procedure, it becomes part of a logical thread of execution known as an
RPC thread. An RPC thread is a logical construct that encompasses the various phases of an RPC
as it extends across actual threads of execution and the network. After making an RPC, the
calling client application thread becomes part of the RPC thread. Usually, the RPC thread
maintains execution control until the call returns.

The RPC thread of a successful RPC moves through the execution phases illustrated in Figure 6-
1.

 application
 thread

Called
 remote
 procedure

Remote procedure call
Server

Calling
 code

Client

Client

 Call thread

 RPC thread

1 2

3

45

 RPC thread

Figure 6-1 Execution Phases of an RPC Thread

300 X/Open CAE Specification (1994)

Remote Procedure Call Model Client/Server Execution Model

The execution phases of an RPC thread, as shown in Figure 6-1 on page 300, include the
following:

1. The RPC thread begins in the client process, as a client application thread makes an RPC to
its stub; at this point, the client thread becomes part of the RPC thread.

2. The RPC thread extends across the network to the server.

3. The RPC thread extends into a call thread, where the remote procedure executes.

While a called remote procedure is executing, the call thread becomes part of the RPC
thread. When the call finishes executing, the call thread ceases being part of the RPC
thread.

4. The RPC thread then retracts across the network to the client.

5. When the RPC thread arrives at the calling client application thread, the RPC returns any
call results and the client application thread ceases to be part of the RPC thread.

Figure 6-2 shows a server executing remote procedures in its two call threads, while the server
application thread listens.

Calling
 code

Concurrent remote procedure calls

Called
 remote
 procedure

 Call thread

Client

Server

Calling
 code

Called
 remote
 procedure

Client

 Call thread

Maximum concurrent calls = 2

A client application
 thread

A client application
 thread

 thread
The server application

 address
Single

 space

 RPC thread

 RPC thread

Figure 6-2 Concurrent Call Threads Executing in Shared Execution Context

Note: Although a remote procedure can be viewed logically as executing within the exclusive
control of an RPC thread, some parallel activity may occur in both the client and server
that is transparent to the application code.

An RPC server can concurrently execute as many RPCs as it has call threads. When a server is
using all of its call threads, the server application thread may continue listening for incoming

Part 4 RPC Services and Protocols 301

Client/Server Execution Model Remote Procedure Call Model

RPCs. While waiting for a call thread to become available, the RPC server run-time environment
may queue incoming calls. Queuing incoming calls avoids RPCs failing during short-term
congestion. This queue capability for incoming calls is implementation-dependent.

6.1.8 Cancels

A cancel is an asynchronous notification from a cancelling thread to a cancelled thread, generally
used to cancel an operation in progress. The RPC architecture extends the semantics of cancels
to incorporate RPCs.

In the absence of an RPC, both the thread initiating a cancel and the thread to be cancelled must
belong to the same local execution context. In the presence of an RPC, the desired semantic is
that the system should behave as if the remote procedure were local and part of the cancelled
thread’s execution context. That is, if a thread has called a remote procedure, is waiting for the
remote procedure to complete, and is cancelled, its RPC run-time system will handle the cancel
and forward it to the called procedure’s RPC run-time system, where it will locally cancel the
thread running the called procedure.

RPC forces the convention that the ability to cancel asynchronously must be lexically scoped (in
the same lexical unit, such as a function or procedure). Therefore, at the completion of an RPC,
the RPC run-time system will always restore the asynchronous delivery state prior to the call,
regardless of any unbalanced asynchronous cancellability that may exist within the RPC. This
behaviour may be different from the local case, where unbalanced asynchronous cancelability
may not be detected. (For further information on the semantics of threads and cancels, see IEEE
P1003.4a.)

Well-behaved programs must also observe the convention that general cancelability must be
lexically scoped. If the caller is within a general cancelability disabled scope at the time an RPC
is called, RPC will never see the cancel; it will only become visible after the RPC completes and
the caller ends the general cancellability disabled scope.

Well-behaved remote procedures, as well as the RPC system, do not pass their thread identity to
any other (user) threads, and therefore cannot be locally cancelled. There is one exception to this:
if the RPC run-time system ascertains that communications are lost, it cancels the called
procedure to initiate its orderly termination. Therefore, any remote procedure must still protect
its invariants with a suitable general and asynchronous cancellability scope. RPC must provide a
means of specifying that a remote procedure begins (and ends) its execution in a disabled scope
for either general or asynchronous cancellability in order to avoid a race condition between the
beginning of the procedure and establishing the cancellability scopes within the procedure.

Cancels operate on the RPC thread exactly as they would on a local thread, except for an
application-specified cancel time-out period. A cancel time-out period is an optional value that
limits the amount of time the cancelled RPC thread has before it releases control. This timer
allows the caller to guarantee that it can reclaim its resources and continue execution within a
bounded time. The timer may be set to an ‘‘infinite’’ value, in which case the caller will wait
indefinitely until the called procedure returns (usually with a cancelled exception) or
communications are lost. The timer may be set on a per RPC basis.

During an RPC, if its thread is cancelled and the cancel time-out period expires before the call
returns, the calling thread regains control and the call is orphaned at the server. An orphaned
call may continue to execute in the call thread. However, the call thread is no longer part of the
RPC thread, and the orphaned call is unable to return results to the client; the caller does not
know whether or not the called routine has terminated yet, how it may have terminated, or even
if it executed.

302 X/Open CAE Specification (1994)

Remote Procedure Call Model Client/Server Execution Model

While executing as part of an RPC thread, a call thread can be cancelled only by a client
application thread. The local cancel semantics can be guaranteed for all RPCs that do not fail
due to server or communication errors. That is, cancels can be transferred remotely to or from
the called procedures. In the case where an RPC fails due to either server or communication
failures, it is indeterminate whether cancels were preserved, just as it is indeterminate whether
the procedure executed zero or one time.

The RPC architecture specifies neither what causes a cancel, nor what an application does when
cancelled. This is application-specific. Nor does the architecture place any semantics on the
cancel; again the application must decide what it means.

Part 4 RPC Services and Protocols 303

Binding, Addressing and Name Services Remote Procedure Call Model

6.2 Binding, Addressing and Name Services
The following sections cover binding, endpoint addresses and name services.

6.2.1 Binding

Binding expresses the relationship between a client and a server. Binding includes information
that associates the client’s invocation of an RPC with the server’s implementation (that is, the
manager routines) of the call. The binding information identifying a server to a client is called
server binding information. Binding information identifying a client to a server is called the client
binding information.

To make a specific instance of locally maintained binding information available to a given server
or client, the RPC run-time system creates a local reference, called the binding handle. Servers and
clients use binding handles to refer to binding information in RPC run-time calls or remote
procedure calls.

Binding information includes the following components:

Protocol Sequence
The protocol sequence is a valid combination of communications protocols. Each
Protocol sequence typically includes a network protocol, a transport protocol, and an
RPC protocol.

An RPC server specifies to the RPC run-time system the set of protocol sequences to
use when listening for incoming calls.

Network Address Information
The network address provides the complete transport service address information of
the remote entity. Typically, for commonly used network protocol stacks such as
Internet, the targetted entity is determined by nodes or the host system. In these
instances, the network address information includes:

• A node address, which identifies a specific host on a network. The format of the
address depends on the network protocol determined in the protocol sequence.

• An endpoint, which specifies the address of a specific server instance. The format of
the endpoint depends on the network protocol determined in the protocol sequence.
Endpoints are unique for each protocol sequence and for each server listening on a
given network address.

Transfer Syntax
The server must support a transfer syntax that matches one used by the client. For
multi-canonical transfer syntaxes such as NDR, a given sender’s data representation
format must be understood by the receiver.

RPC Protocol Version Numbers
The client and server RPC run-time systems must use compatible versions of the RPC
protocol specified by the client in the protocol sequence. The major version number of
the RPC protocol used by the server must equal the specified major version number.
The minor version number of the RPC protocol used by the server must be greater than
or equal to the client’s specified minor version number.

Object UUID
The object UUID associated with the binding information is optional.

RPC run-time system creates one or more server binding handles for each protocol sequence.
Each server binding handle refers to binding information for a single potential binding. A server
obtains a complete list of its binding handles from its RPC run-time system.

304 X/Open CAE Specification (1994)

Remote Procedure Call Model Binding, Addressing and Name Services

A client obtains a single binding handle or a set of binding handles from its RPC run-time
system. It selects one binding handle for invoking one or a sequence of RPCs to a given server.
Server binding information for each server binding handle on a client contains binding
information for one potential binding.

If the network address in the server binding information on a client refers to a ‘‘host-
addressable’’ network service, it may be partial, lacking an endpoint. A partially bound binding
handle corresponds to a system, but not to a particular server instance. When invoking a remote
procedure call using a partially bound binding handle, a client gets an endpoint either from the
interface specification or from an endpoint map on the server’s system. Adding the endpoint to
the server binding information results in a fully bound binding handle.

6.2.2 Endpoints and the Endpoint Mapper

An endpoint is the address of a specific server instance on a host system. Two types of endpoints
exist: well-known endpoints and dynamic endpoints.

• A well-known endpoint is a preassigned, stable address for a particular server instance. Well-
known endpoints typically are assigned by a central authority responsible for a transport
protocol.

Well-known endpoints can be declared for an RPC interface (in the interface declaration) or
for a server instance.

• A dynamic endpoint is an endpoint that is requested and assigned at run time.

The endpoint mapper is an RPC service that manages dynamic endpoints. The remainder of this
section specifies the services offered by an endpoint mapper, and discusses how the RPC run-
time system uses those services.

The endpoint mapper service may only be applicable to systems that provide ‘‘host-
addressable’’ transport services. The notions of endpoints and well-known endpoints are derived
from the Internet Protocol Suite, but may be applicable to other network protocol stacks as well.
In order to provide for application portability, it is mandatory, when dynamic endpoints are
used, that RPC implementations on systems with these types of transport services comply with
this specification.

An endpoint mapper may be used to help resolve the address of a server. This is typically used
with network addresses that have a small range of values for the local endpoint address (for
example, an IP port) and/or by servers that want to dynamically define an endpoint address.
Typically, in such cases a server exports its node address to the name service. The endpoint
mapper’s endpoint address is well known. The server also registers its interfaces, interface
version and object UUIDs with its local endpoint mapper, along with a dynamically determined
local endpoint address.

An RPC client wishing to use the server will (typically) query the name service to determine the
address, using one of the RPC name service APIs. The address returned includes a value that
signifies the endpoint mapper endpoint, which is a well-known endpoint (see Appendix H).

An erroneous or malicious endpoint mapper implementation can cause denial of service, but
otherwise does not affect the security of the system.

Part 4 RPC Services and Protocols 305

Binding, Addressing and Name Services Remote Procedure Call Model

6.2.2.1 Client Operation

The use of the endpoint mapping service is transparent to client name service operations.

At the client stub to RPC run-time interface, every RPC specifies a primitive binding handle that
includes the server address. If the system-specific endpoint address specified is one of the well-
known endpoint addresses for the endpoint mapping service, and the interface specified is not
the endpoint mapping service interface5, then the endpoint mapping service on the desired
target system is requested to resolve the partially bound server binding handle into a fully
bound server binding handle.

The client run-time system of a connection-oriented RPC issues a call to the endpoint mapping
service on the desired target system prior to the originating call. When the call successfully
completes, the effective endpoint for the binding handle is set to the dynamically determined
value returned by the endpoint mapping service. This endpoint is then used to make the actual
call requested.

The client run-time system of a connectionless RPC issues the first request of the originating call
with a partially bound server binding handle. The endpoint mapping service resolves this
partially bound handle into a fully bound server binding handle and redirects the call. The server
then returns the dynamically determined value directly to the client for use in subsequent
messages.

If the request for resolving the partially bound server binding handle into a fully bound server
binding handle fails, then the originating RPC fails with an error status.

6.2.2.2 Server Operation

The use of an endpoint mapping service is transparent to the call and the server RPC run-time
system with one exception: with a dynamically assigned port, when the server exports binding
information to a name service, the export operations must export a value that signifies the
endpoint mapper service rather than the dynamically assigned port.

6.2.3 NSI Interface

The RPC architecture requires a means to allow clients to discover appropriate servers. This
specification defines the use of a distributed name service to store information about servers,
service groups and configuration profiles. A candidate name service must be able to store all the
object attributes specified here. Multiple name services may satisfy this requirement, but a client
and server can only bind successfully through a name service if they share use of some common
information base.

Each name service object entry consists of a number of attributes. This RPC specification
requires a small number of different name service object attributes. Additional name service
object attributes provided by some name services may be ignored by RPC. Attributes have the
following characteristics:

• They are either single-valued or multi-valued (set-valued).

• A single value or member of a set must support at least 4000 octets.

• There is no architectural limit to the number of elements in a set.

5. This terminates the recursion.

306 X/Open CAE Specification (1994)

Remote Procedure Call Model Binding, Addressing and Name Services

If a redundant value is inserted in the set, a new entry is not made. If a non-existent value is
removed from a set, no error is generated. The order of elements in a set is not defined, and any
order observed is neither significant nor deterministic; that is, implementations may vary, but
applications must not make any assumptions on the ordering.

Different name services may have different syntaxes to represent object names; their object name
syntax is not specified in the RPC specification. The RPC operations that use object names
require the different syntaxes to be explicitly distinguished to avoid ambiguity and to allow the
implementations to interpret the name values properly. Since different name services also may
have different conventions for naming attributes, and since the names of the attributes are not
directly user visible through the RPC services, for each different name service there is a mapping
from the defined class names to name service-specific names.

6.2.3.1 Common Declarations

The following declarations define the name service data types required for RPC:

typedef char class_name_t[31]; /* ISO_LATIN_1 Attribute class name */

typedef struct {
byte major;
byte minor;

} class_version_t;

/* Opaque octet string */
typedef struct {

u_int16 count; /* store little-endian */
[ptr, size_is(count)] byte *value;

} octet_string_t;

/* One layer in a protocol tower */
typedef struct {

octet_string_t protocol_id;
octet_string_t address;

} prot_and_addr_t;

/* A protocol tower */

typedef struct {
u_int16 count; /* store little-endian */
[ptr, size_is(count)] prot_and_addr_t *floors;

} protocol_tower_t;

/*
* Name service names are stored as canonical string names
* according to the rules for the relevant name service.
*/

typedef byte canonical_string_name_t[]; /* Using ASCII encoding */

/* An element within a profile.
* There may be multiple set members for the same interface.
* The UUID NIL with versions 0 indicates the default profile,
* i.e. linkage to a parent profile.
*/

typedef struct {
uuid_t if_uuid; /* store little-endian */
u_int16 if_vers_major; /* store little-endian */
u_int16 if_vers_minor; /* store little-endian */
u_int8 priority; /* legal values are 0

(highest) through 7 */
u_int8 annot_size; /* annotation size */

Part 4 RPC Services and Protocols 307

Binding, Addressing and Name Services Remote Procedure Call Model

u_int16 member_size; /* member size, store
little-endian */

[size_is(annot_size)] byte annotation[]; /* ASCII encoding*/
[size_is(member_size)] canonical_string_name_t member;

} profile_element_t;

Note: The protocol_tower_t data type is encoded using special rules defined in Appendix L.
It is then cast into a byte[] type for use in the tower_octet_string field of the twr_t and
*twr_p_t types, as defined in Appendix N, and used in the end-point mapper interface.

6.2.3.2 Protocol Towers

In order to communicate, the RPC client and server must agree both upon the protocols that
both will employ, and upon the operational parameters of these protocols. In addition, client and
server must possess address information that indicates to each layer of protocol where to deliver
data.

A protocol tower (encoded by the protocol_tower_t data type) is a protocol sequence along with
its related address and protocol-specific information. A protocol sequence is an ordered list of
protocol identifiers. Protocol identifiers are octet strings, each representing a distinct protocol at
some layer.

Addressing and other protocol specific information is affiliated with each protocol identifier in a
protocol tower. The addressing information indicates the access point through which this layer
provides service to the next higher layer protocol in the sequence. Other protocol-specific
information may be included in this field. The interpretation of this address and other
information is protocol-dependent. Typically, a protocol sequence will extend from the network
layer to the application layer.

An RPC client and server must have at least one common protocol tower where the protocol
identifiers (the left-hand sides) match. Otherwise they do not share a common stack of protocols
and cannot communicate.

Table 6-2 shows the generic structure for a protocol tower. It shows three layers to illustrate the
relationships among adjacent layers.

Protocol Identifier for Identifier Value Related Information
Layer i+1 parameters and address
data selecting layer i+2 protocol.

Layer i+1 protocol identifier Layer i+1 value

Layer i parameters and address
data selecting layer i+1 protocol.

Layer i protocol identifier i value

Layer i−1 parameters and address
data selecting layer i protocol.

Layer i−1 protocol identifier i−1 value

Table 6-2 Protocol Tower Structure

6.2.3.3 The server_name Object Attributes

The server_name attributes of a single name service entry describe a single RPC server (that is,
instance) and its protocol and addressing information. Any name service object class may
contain server_name attributes if not otherwise prohibited by the class.

The class RPC_Entry may be used if no other class is applicable.

The hierarchy of protocols and addresses is expressed in terms of a protocol_tower data type.
The server_name object attributes are defined in Table 6-3 on page 309.

308 X/Open CAE Specification (1994)

Remote Procedure Call Model Binding, Addressing and Name Services

Single or
Attribute Name Set Valued Data Type Description

An existing class, or RPC_Entry if
created by RPC.

CDS_Class Single class_name_t

An existing class version of the
class definition or, 1.0 if created by
RPC.

CDS_ClassVersion Single class_version_t

Version 1.0; may already exist.RPC_ClassVersion Single class_version_t
uuid_t, little-endian
order

Optional UUIDs of the referenced
server objects.

RPC_ObjectUUIDs Set

The set of protocol towers for this
server.

CDS_Towers Set protocol_tower_t

Table 6-3 The server_name Object Attributes

The CDS_Towers attribute must encode both the RPC-specific protocol layers, and the
underlying network, transport, session and presentation layers, as applicable. The RPC-specific
layers are ‘‘on top’’ (lowest array subscripts) and are specified in Table 6-4.

Protocol
Identifier for Identifier Format Related Information Comments

Interface,
major version

The minor version,
u_int16, little-endian
order.

Value derived from
encoding algorithm (see
Appendix I).

UUID_type_identifier

Transfer Syntax,
major version

The minor version,
u_int16, little-endian
order.

Value derived from
encoding algorithm (see
Appendix I).

UUID_type_identifier

RPC Protocol and
major version

The minor version
u_int16, little-endian
order.

See Appendix I for
identifier values,
according to RPC protocol
and major version
number.

u_int8

Table 6-4 RPC-specific Protocol Tower Layers

The encoding of the protocol identifier for a particular interface, or for a particular transfer
syntax is specified in Appendix I.

The other layers depend on the particular environment. Appendix I defines protocol identifier
values for common environments. Table 6-5 on page 310 shows an example of a complete tower
for a TCP/IP-based protocol.

Part 4 RPC Services and Protocols 309

Binding, Addressing and Name Services Remote Procedure Call Model

Protocol
Identifier for Identifier Value Related Information Comments

Interface,
major version

Value derived from
encoding algorithm (see
Appendix I).

UUID_type_identifier Minor version

NDR V1.1
Transfer Syntax

Value derived from
encoding algorithm (see
Appendix I).

UUID_type_identifier —

RPC CO protocol,
major version

0b hexadecimal Minor version —

Port address is 16-bit
unsigned integer, big-
endian order.

DOD TCP 07 hexadecimal Port

Host address is 4 octets,
big-endian order.

DOD IP 09 hexadecimal Host address

Table 6-5 Example Protocol Tower

6.2.3.4 The group Object Attributes

A name service group attribute refers to a management defined group of equivalent servers. Any
name service object class may contain a group attribute if not otherwise prohibited by the class.
The class RPC_Entry may be used if no other class is applicable.

Each element of the set RPC_Group is of the data type canonical_string_name_t and represents
the name of another name service object containing either a name service server_name attribute
or another name service group attribute.

The group object attributes are defined in Table 6-6.

Single or
Attribute Name Set Valued Data Type Description

An existing class, or RPC_Entry if
created by RPC.

CDS_Class Single class_name_t

An existing class version of the
class definition or 1.0 if created by
RPC.

CDS_ClassVersion Single class_version_t

Version 1.0; may already exist.RPC_ClassVersion Single class_version_t
The set of server object names or
service group names for this
service_group.

RPC_Group Set canonical_string_name_t

Table 6-6 Service Group Object Attributes

310 X/Open CAE Specification (1994)

Remote Procedure Call Model Binding, Addressing and Name Services

6.2.3.5 The profile Object Attributes

A name service profile attribute refers to a principal or host’s desired server profile. Any name
service object class may contain a profile attribute if not otherwise prohibited by the class. The
class RPC_Entry may be used if no other class is applicable.

Each element of the set attribute RPC_Profile is of the data type profile_element_t and
represents an ordered list of providers for a particular interface (UUID). A profile with the nil
interface UUID indicates the default profile to use if no matching interface is found. Each profile
element contains an ordered list of the names of name service objects containing any
combination of server_name, group and/or profile attributes.

The profile object attributes are defined in Table 6-7.

Single or
Attribute Name Set Valued Data Type Description

An existing class, or RPC_Entry if
created by RPC.

CDS_Class Single class_name_t

An existing class version of the
class definition, or 1.0 if created by
RPC.

CDS_ClassVersion Single class_version_t

RPC_ClassVersion Single class_version_t Version 1.0; may already exist.
The set of providers comprising the
configuration profiles.

RPC_Profile Set profile_element_t

Table 6-7 Configuration Profile Object Attributes

6.2.3.6 Encoding

The encoding of the name service objects may be viewed from three perspectives:

• From the perspective of the RPC API to the name service operations and data types, the
representation is as defined in Section 6.2.3.1 on page 307 to Section 6.2.3.5.

• From the perspective of the name service communications, the encoding is defined by the
network encoding rules of the name service.

• From the perspective of the name service storage elements, the encoding is defined internally
to the name service operation.

6.2.3.7 Name Service Class Values

A name service entry storing RPC attributes uses the class value RPC_Entry if no other class
applies.

Part 4 RPC Services and Protocols 311

Error Handling Model Remote Procedure Call Model

6.3 Error Handling Model
The RPC service detects various classes of unusual or exceptional terminations of an RPC. These
failure cases are either originated in the server application and manager routines, detected and
raised in the server run-time system, or are communications failures detected locally in the client
RPC run-time system.

Fault status conditions (fault PDU) always indicate error conditions that are generated in the
manager routines or server application. The server protocol machine does not process fault
status codes.

Reject status conditions (reject PDU in connectionless protocol, fault PDU in connection-
oriented protocol) usually originate in the protocol machines or the underlying resources
(communications, systems) and may require additional processing such as clean up of resources
at the server protocol machine. The following set of reject messages indicate that a failed call has
not been executed at the RPC server:

• unknown_interface

• unsupported_type

• manager_not_entered

• op_range_error

• who_are_you_failed.

Unless the protocol machine can detect the execution state by some other means (connection-
oriented protocol), none of the other reject and fault conditions can determine whether a call has
already been partially executed.

312 X/Open CAE Specification (1994)

Chapter 7

RPC Service Definition

This chapter specifies the basic operations performed by a Remote Procedure Call (RPC). These
operations, which represent the interaction between the service user and the service provider,
are specified as service primitives.

The service users are represented in the client stub and client application code and in the server
stub, server manager routines and server application code, which provide the appropriate
parameter values and process the results.

The service provider is represented in the RPC run-time system and is specified in the protocol
machines, which generate and receive the events driven by the service primitives.

7.1 Call Representation Data Structure
The call representation data structure is an input parameter to all service primitives described
here. Some information is dynamically generated during the sequence of common service
operations that comprise an RPC.

The call representation data structure contains all of the control information about an individual
RPC. This includes location and interface information. An interface specification and an
operation number define the interface information. Dynamic information includes the transfer
syntax in which the RPC arguments are marshalled, and cancel state information.

An RPC protocol machine may have specific information particular to an RPC. To facilitate this,
the call representation data structure is composed of a common part and a protocol-specific part.
A call handle is provided to the RPC stubs as an opaque pointer to the the call representation data
structure.

7.2 Service Primitives
The tables in this chapter, which specify the parameters that are present in each service
primitive, use the following notation, as described in the ISO TR 8509 standard:

M The parameter is mandatory. It will always be present in the service primitive.

U The parameter is a user option. It need not be provided by the user in the particular
instance of the service primitive.

C The parameter is conditional. It will always be present in that indication-type primitive
if it was present in the corresponding request-type primitive.

(=) When the parameter is present in a particular instance of that indication-type primitive,
it takes the same value it had in the corresponding request-type primitive.

Part 4 RPC Services and Protocols 313

Service Primitives RPC Service Definition

7.2.1 Invoke

The Invoke service primitive is used to invoke an RPC. The Invoke service primitive is service
user-initiated.

Table 7-1 lists the parameters of the Invoke service primitive.

Parameter Name Request Indication
Call_Handle M M
Call_Args U C(=)
Call_Status — M

Table 7-1 Invoke Parameters

The permitted parameter values are as follows:

Call_Handle The call handle that uniquely identifies this RPC.

Call_Args The marshalled call arguments according to the parameters specified in
the interface operation (IDL), if any.

Call_Status A value indicating the status of the operation. For a summary of possible
condition values that this operation can return, refer to Appendix E.

The events and triggering conditions generated by this service primitive are:

START_CALL, TRANSMIT_REQ
The client user issues an RPC and generates the event START_CALL. The
conditional flag TRANSMIT_REQ indicates that there is data in the send
queue (request-type primitive).

RECEIVE_PDU[REQUEST_PDU]
The server provider generates the event RECEIVE_PDU (conditionally
REQUEST_PDU) upon receiving a REQUEST PDU (indication-type
primitive).

RCV_LAST_IN_FRAG
The server provider promotes the requested operation (including input
data, if any) to the server user (server stub and manager routine) for
execution.

314 X/Open CAE Specification (1994)

RPC Service Definition Service Primitives

7.2.2 Result

The Result service primitive is used to return the output and input/output parameters at the
end of a normal execution of the invoked RPC. The Result service primitive is server-user
(server manager routine) initiated.

Table 7-2 lists the parameters of the Result service primitive.

Parameter Name Response Confirmation
Call_Handle M M
Result_Args U C(=)
Call_Status — M

Table 7-2 Result Parameters

The permitted parameter values are as follows:

Call_Handle The call handle that uniquely identifies this RPC.

Result_Args The marshalled output and input/output arguments according to the
parameters specified in the interface operation (IDL), if any.

Call_Status A value indicating the status of the operation. For a summary of possible
condition values that this operation can return, refer to Appendix E.

The events and triggering conditions generated by the Result service primitive are as follows:

PROC_RESPONSE, TRANSMIT_RESP
The server user processed this RPC request and generates the event
PROC_RESPONSE. The conditional flag TRANSMIT_RESP indicates data
in the send queue (response-type primitive).

RECEIVE_PDU[RESPONSE_PDU]
The client provider generates the event RECEIVE_PDU (conditionally
RESPONSE_PDU) upon receiving a response PDU (confirmation-type
primitive).

Part 4 RPC Services and Protocols 315

Service Primitives RPC Service Definition

7.2.3 Cancel

The Cancel service primitive is used to cancel an outstanding RPC. This operation forwards a
client cancel request to the server application thread. If the server application thread does not
return within a caller-specified time, the RPC will fail. Most of this processing is specific to the
associated protocol machines.

Table 7-3 lists the parameters of the Cancel service primitive.

Parameter Name Request Indication
Call_Handle M M

Table 7-3 Cancel Parameters

The permitted parameter value is as follows:

Call_Handle The call handle that uniquely identifies this RPC. The cancel-related data
values and flags are modified appropriately.

The events and actions generated by the Cancel service primitive are:

CLIENT_CANCEL The client user has issued a request to terminate a call in progress. The
event CLIENT_CANCEL is generated.

RCV_CAN_PDU The server provider receives a cancel PDU and generates the event
RCV_CAN_PDU (RECEIVE_PDU, conditionally CANCEL_PDU).

CANCEL_NOTIFY_APP
The server provider notifies the server user about a pending cancel
request.

316 X/Open CAE Specification (1994)

RPC Service Definition Service Primitives

7.2.4 Error

The Error service primitive may be used by the server manager routine to indicate an error in
response to a previous Invoke indication. The Error service primitive is server-user (server
manager routine) initiated.

Table 7-4 lists the parameters of the Error service primitive.

Parameter Name Response Confirmation
Call_Handle M M
Call_Error_Value M M(=)

Table 7-4 Error Parameters

The permitted parameter values are:

Call_Handle The call handle that uniquely identifies this RPC.

Call_Error_Value The marshalled error information.

The events generated by the Error service primitive are as follows:

PROCESSING_FAULT
The server user detected a fault during execution of the requested
operation and raises the event PROCESSING_FAULT.

RCV_FAULT The client provider generates the event RCV_FAULT upon receiving a
fault PDU with fault status code.

Part 4 RPC Services and Protocols 317

Service Primitives RPC Service Definition

7.2.5 Reject

The Reject service primitive indicates that there is a problem with the underlying
communications or the RPC protocol machines. The reject reason (parameter,
Call_Reject_Reason) can indicate the state of a particular RPC and therefore may be evaluated to
determine whether the call has already been executed at the server. The Reject service primitive
is typically server provider-initiated. Some reject reasons such as Op_Range_Error are detected
at the server user and are server user-initiated.

Table 7-5 lists the parameters of the Reject service primitive.

Parameter Name Response Confirmation
Call_Handle M M
Call_Reject_Reason M M(=)

Table 7-5 Reject Parameters

The permitted parameter values are:

Call_Handle The call handle that uniquely identifies this RPC.

Call_Reject_Reason The marshalled reject information. For a summary of which reject status
codes are reported, refer to Section 12.4.4 on page 511.

The events generated by the Reject service primitive are as follows:

PROCESSING_FDNE
The server provider or server user rejects the execution of the requested
operation (FaultDidNotExecute) and raises the event
PROCESSING_FDNE.

RCV_FAULT The client provider generates the event RCV_FAULT upon receiving
either a reject PDU or a fault PDU with a reject status code.

318 X/Open CAE Specification (1994)

Chapter 8

Statechart Specification Language Semantics

The protocol machines included in this document are specified using the modelling technique
proposed by David Harel and implemented by the software engineering tool Statemate (see
Referenced Documents on page xxvi). The behavioural model of protocol machines is
graphically expressed in statecharts and supported by a specific modelling language.

Statemate provides a complete software engineering tool including analyser and simulation,
documenter and prototyper. The definitions provided in this document reflect only a subset of
the Statemate semantics that have actually been used for RPC protocol machine specifications.

The logical semantics of statecharts are based on classical state transition diagrams using the
specification technique of finite state machines. Statecharts introduce a number of significant
extensions to overcome a major drawback of traditional finite state machines, which is their
inherently flat and sequential nature. The complex behaviour of reactive systems such as
protocol machines can be better expressed with statecharts. The most significant extensions are
as follows:

• hierarchy of states

• concurrency between substates

• generation of internal events and broadcast of these within the entire chart.

The RPC protocol specification assumes knowledge of the semantics of traditional finite state
machines. This chapter only describes the statechart extensions.

8.1 The Elements of Statecharts
Similar to state transition diagrams, statecharts describe the following elements:

States States are the static elements in statecharts. The activation and deactivation of
states is externally controlled. States may idle, perform actions or invoke
operations, called activities. Actions that do not themselves cause a change in
state are called static reactions. These may be performed within states when a
trigger is sensed or they may be performed as a state is entered or exited.

States are represented graphically as rounded rectangles.

Triggers Triggers are the dynamic elements in statecharts. Triggers cause state
transitions or static reactions. Events, conditions or a combination of both can
be triggers.

Triggers represented graphically as directed graphs (arrows), connecting two
states.

Events Events signify a precise instant in time; they are edge-
sensitive, comparable to signals and interrupts. Events can
be generated externally to the statechart (primitive events)
or internally. Sources for internally generated events are
actions, timeouts or sensors for detecting the status of
states, activities, conditions and data items. Events may also
be a compound set of other events and conditions.

Part 4 RPC Services and Protocols 319

The Elements of Statecharts Statechart Specification Language Semantics

Events are represented as a alphanumeric labels on
transition lines or in the On field in state definitions.

Conditions Conditions are boolean expressions, valued TRUE or
FALSE, that signify a time span during which the condition
holds. Conditions can be edge or level-sensitive. Conditions
may be primitive elements or compound elements that
express a set of boolean operations such as AND and OR.

Conditions are represented as alphanumeric labels on
transition lines, enclosed in brackets in the form
event[condition], or in the Trigger field in state definitions.

Actions Actions are instantaneous operations and are performed as a result of some
trigger. Changing the value of a condition or data item and invocations of
activities are examples of actions. An action can also be a sequence of actions
that occur simultaneously regardless of the sequence of their appearance.
Logical conditional actions may be expressed based on conditions or on the
occurrence of events.

Actions are represented as alphanumeric labels on the transition lines,
separated by a slash in the form event[condition]/action, or in the Action field in
state definitions. When an action is a sequence of actions, the actions that
make it up are separated by semicolons.

Activities Activities are operations that are performed in a non-zero amount of time.
Activities can be controlled (started or stopped) through actions, and their
status can be monitored.

Activities are not represented graphically in statecharts. They may appear as
part of other element definitions.

Data Items Data items express values of primitive data types such as integer, real or
character string. Their values can be changed through actions and evaluated
in conditions.

Data items are not represented graphically in statecharts. They may appear as
part of other element definitions.

320 X/Open CAE Specification (1994)

Statechart Specification Language Semantics State Hierarchies

8.2 State Hierarchies
Statecharts allow states to be nested to an arbitrarily deep level. Substates are represented
graphically as states (rounded rectangles) within the parent state. Parent states are the
superordinates or higher-level states. This hierarchical decomposition can be viewed as either
clustering of logical groups of states (the bottom-up approach) or as refinement (the top-down
approach).

If one substate is active, all its ancestor states are also active at the same time; and if a state
containing substates (not a basic state) becomes active, one of the substates will also become
active. A substate can transition out to any higher or lower-level state, including its immediate
parent state.

Leaf states in this hierarchical structure are basic states, while all other states, which contain at
least one descendent, are non-basic states. Any valid state transition must always affect a lowest
level basic state or a set of basic states. (For the case of AND decomposition, see Section 8.3.)
The source and target sets of a transition are always defined in terms of basic states.

8.3 Concurrency
Conventional state transition diagrams are purely sequential, because only one state can be
active in the system at any given time. Permissible states can thus be modelled as a logical
exclusive OR (XOR) of the possible states, or by regarding flow control as synchronous.

A state in the hierarchy of statecharts may contain an XOR decomposition of its substates, but
statecharts also permit orthogonality. This is the dual of the XOR decomposition; in essence it is
an AND decomposition. Such orthogonality introduces the notion of concurrency or
asynchronous control.

AND states are multiple states that are active during the same time interval. When transitioning
into one of the states in an AND decomposition, all other states become active simultaneously.
Analogously, if a transition exits out of one of these orthogonal AND states, all other orthogonal
states are deactivated as well. Hence, the concurrent states in an AND decomposition are always
synchronously triggered.

As long as the concurrent states are active, substates in these states behave independently,
asynchronously. Substate transitions do not affect the other active AND states in the system.
However, synchronisation between these can be triggered through events; for example, they can
be internally generated in one of the other AND states.

Orthogonal AND states are represented graphically as rounded rectangles (parent state) divided
by dashed lines.

Part 4 RPC Services and Protocols 321

Graphical Expressions Statechart Specification Language Semantics

8.4 Graphical Expressions
The following sections describe several additional graphic elements that support the semantics
outlined before and provide for de-cluttering of statecharts. They are mainly introduced to
improve the readability of statecharts.

8.4.1 Default Entrances

To prevent non-determinism for transitions into substates and orthogonal AND states, a default
transition line must be applied to all these sets. These default entries determine which states
become active initially unless some other directed transition is valid.

Default entries are represented graphically as a arrows emanating from dots. Default transitions
are usually represented without transition labels.

8.4.2 Conditional Connectors

Condition connectors are syntactical graphic elements that are used to economise on arrows and
declutter the chart. They are represented graphically as circles containing the letter C. Events,
conditions and actions are labelled accordingly on inbound and outbound transition arrows. If
distinct conditions apply to the outbound transition arrows, they must be exclusive in order to
prevent nondeterminism.

8.4.3 Terminal Connectors

Terminal connectors are syntactical graphic elements that are used to express the termination of
a statechart. They are drawn as circles containing the letter T. These T-connectors are considered
as a final state; in particular, they have no exits. Upon entering this connector the statechart
becomes deactivated.

322 X/Open CAE Specification (1994)

Statechart Specification Language Semantics Semantics that Require Special Consideration

8.5 Semantics that Require Special Consideration
In order to determine the exact behaviour of the extended semantics applied to statecharts, the
precise rules and dynamic control characteristics have to be defined. In most cases, knowledge
of the functional behaviour of traditional finite state machines will be sufficient to read and
understand statecharts, but, in particular, the concurrency model and state hierarchies require
familiarity with the concepts described in the following sections:

8.5.1 Implicit Exits and Entrances (Scope of Transitions)

Transition arrows can be drawn between any two states in the system, including a loop back to
the same state. This section defines how a transition — expressed by an arrow or a set of arrows
connected by a conditional connector — is defined and performed. In general, a transition is to
be considered as a compound transition, evaluating all attached events and conditions, and
performing the entire set of effected actions.

In taking a transition from a source to a target, the transition will, in general, pass through
different levels of the state hierarchy. Hence, the question arises as to which non-basic states are
exited and entered in the process of taking a transition. This is especially important due to
actions that may be called for when exiting and entering states.

To analyse this behaviour, the notion of the scope of a transition is introduced. The scope of a
transition is the lowest XOR state in the hierarchy of states that is a proper common ancestor of
all the sources and targets of a transition, including non-basic states that are explicit sources or
targets of transition arrows appearing in the transition.

When a transition is taken, all proper descendants of the scope in which the system resides at the
beginning of the step are exited, and all proper descendants of that scope in which the system
will reside as a result of executing the transition are entered. Thus, the scope is the lowest state
in which the system stays, without exiting and re-entering, when taking the transition.

8.5.2 Conflicting Transitions

Conflicting transitions are those that can lead the system into distinct states. Conflicting
transitions are detected if there is a common state in their source sets; therefore, concurrent
transitions across orthogonal states do not conflict. Multiple transitions that can occur at the
same time step in a given scope have the same priority. Priority is given to the transition with
the higher scope.

Conflicting states at the same priority must resolve non-determinism to be legal. Non-
determinism occurs in cases where several different transitions are enabled at the same step (for
example, a state with multiple outbound transition lines), usually leading to several different
statuses.

8.5.3 Execution Steps and Time

The system described in a statechart changes state and executes actions based on execution
steps. These execution steps determine a sequence of dynamic changes. They are logical
intervals, and are not associated with a particular time. In other words, steps are a series of
snapshots of the system’s situation, where these snapshots represent the status at the given point
of time; changes caused by evaluating a snapshot will be sensed at the next snapshot.

Part 4 RPC Services and Protocols 323

Semantics that Require Special Consideration Statechart Specification Language Semantics

Since statecharts express a reactive system, steps are event-driven, or to be more precise, driven
by triggers: events, conditions or a combination thereof. Asynchronous external triggers can
cause some reactions in the system (for example, state transitions), which in turn may cause an
ordered chain of internal reactions, such as generating events, actions and state transitions as if
they were a series of synchronous steps.

At any given step n, the system evaluates the events that were generated and identifies the
values of data items and conditions that are present at the occurrence of step n. Actions are
carried out simultaneously after an enabling trigger is detected at step n. Action-based
calculations are based on status and values at the beginning of a step. The enabling trigger and
associated actions that lead into a compound transition are taken and completed at step n. All
the changes caused by the execution of a transition (step n) are sensed in the following step.
Analogously, static reactions sensed within a state will be carried out at the next step.

For example, an event that was generated by an action at step n will be sensed only in the
following step n+1. Note that internally generated events have a lifetime of one step only; they
are not remembered beyond step n+1. Similarly, if an action is defined based on entering (or
exiting) a state, or if an activity is to be started within a state, only the step following the
transition into the given state detects these. Note that this does not apply to the notion of
performing an activity throughout a state. In this case, the activity will be started at the transition
step entering the state and respectively deactivated at the exiting step.

The fact that the results of an action are only sensed at the following step implies that a state
cannot be entered and exited at the same step. However, for a self-looping transition, a state can
be exited and reentered in one step.

Note: An action that generates the triggering event for an activity may also modify certain
conditions and data items within the same execution step. The results of the
modification are visible to the invoked activity.

8.5.4 Synchronisation and Race Conditions

Since a transition can perform a set of actions simultaneously in an arbitrary order, and multiple
transitions can be enabled at a single step, due to orthogonal states, race conditions and
synchronisation must be considered.

Race conditions arise when the value of an element (condition or data item) is modified more
than once, or is both modified and used, in a single step.

If an element is both modified and used in the same step, the value that the element had at the
beginning of the step is used to evaluate all expressions that depend on it. A modified result is
never used to evaluate expressions in the same step as the modification. Thus, the race condition
is resolved.

If an element is to be modified multiple times during a single step (for example, by different
assignments to the same data items in concurrent transitions in orthogonal states), the system
cannot resolve this non-determinism and is in an illegal state. The design of the system must
prevent these cases.

As defined in Section 8.5.3 on page 323, the evaluation of the internal chain of reactions follows
the same rules as for detecting and reacting to external events. Actions may generate internal
events, which in turn trigger a next step and cause some actions to be performed, and so forth.
This provides for ordered behaviour, and is used for synchronisation of concurrent state
transitions.

324 X/Open CAE Specification (1994)

Statechart Specification Language Semantics Summary of Language Elements

8.6 Summary of Language Elements
The following sections summarise the language elements used in state charts.

8.6.1 Event Expressions

Table 8-1 shows events that are related to other elements.

Event Occurs when: Notes
en(S) State S is entered. —
ex(S) State S is exited. —

This applies only to the static
reactions field in the state
definition.

entering State is entered.

This applies only to the static
reactions field in the state
definition.

exiting State is exited.

st(A) Activity A is started. —
sp(A) Activity A is stopped. —

The value of data item
expression is changed.

V is a string or numeric expression.ch(V)

The value of condition C
is set to TRUE (from
FALSE).

tr(C) —

The value of condition C
is set to FALSE(from
TRUE).

fs(C) —

rd(V) Data item V is read. —
V is a primitive data item.wr(V) Data item V is written.

N clock units passed from
last time event E occurred.

N is a numeric expression. Unless
noted otherwise, the real timeout
value is implementation or policy-
dependent.

tm(E,N)

Table 8-1 Events Related to Other Elements

Table 8-2 shows compound events.

Event Occurs when:
E has occurred and condition C is
TRUE.

E[C]

not E E did not occur.
E1 and E2 occurred simultaneously.E1 and E2

E1 or E2, or both occurred.E1 or E2

Table 8-2 Compound Events

The operations are presented in descending priority order. Parentheses are used to alter the
evaluation order.

Part 4 RPC Services and Protocols 325

Summary of Language Elements Statechart Specification Language Semantics

8.6.2 Condition Expressions

Table 8-3 shows conditions related to other elements.

Condition TRUE when: Notes
in(S) System is in state S. —
ac(A) Activity A is active. —
hg(A) Activity A is suspended. —

The value of the
expression EXP1 and
EXP2 satisfy the relation
R.

When expressions are numeric, R
may be: =, /=, > or <. When they
are strings, R may be: = or /=.

EXP1 R EXP2

Table 8-3 Conditions Related to Other Elements

Table 8-4 shows compound conditions.

Condition TRUE when:
not C C is not TRUE.

Both C1 and C2 are TRUE.C1 and C2

C1 or C2, or both are TRUE.C1 or C2

Table 8-4 Compound Conditions

The operations are presented in descending priority order. Parentheses are used to alter the
evaluation order.

8.6.3 Action Expressions

Table 8-5 shows actions related to other elements.

Action Performs: Notes
E Generate the event E. E is a primitive event.

Assign TRUE to the
condition C.

tr!(C) C is a primitive.

Assign FALSE to the
condition C.

fs!(C) C is a primitive.

Assign the value of EXP
to the data item V.

V is a primitive (numeric or string)
data item.

V:=EXP

st!(A) Activate the activity A. —
sp!(A) Terminate the activity A. —
sd!(A) Suspend the activity A. —
rs!(A) Resume the activity A. —

Read the value of data
item V.

V is a primitive data item.rd!(V)

Write the value of data
item V.

V is a primitive data item.wr!(V)

Table 8-5 Actions Related to Other Elements

Table 8-6 on page 327 shows compound actions. The compound actions shown can be nested
and combined.

326 X/Open CAE Specification (1994)

Statechart Specification Language Semantics Summary of Language Elements

Action Performs: Notes
Simultaneously perform the actions
A1 and A2.

A1; A2 —

If condition C is TRUE, perform
action A1, otherwise perform A2.

The else part is optional.If C then A1 else A2 end if

If event E occurred when the action
is issued, perform action A1,
otherwise perform A2.

The else part is optional.When E then A1 else A2 end when

Table 8-6 Compound Actions

8.6.4 Data Item Expressions

8.6.4.1 Atomic Numeric Expressions

Atomic numeric expressions may be one of the following:

• a named numeric (integer or real) data item

• a numeric constant, integer or real.

8.6.4.2 Compound Numeric Expressions

The following compound numeric expression may appear in state charts:

• EXP1 ** EXP2 (exponentiation)

• EXP1 * EXP2 (multiplication)

• EXP1 / EXP2 (division)

• EXP1 + EXP2 (addition)

• EXP1 − EXP2 (subtraction)

• +EXP (positive)

• −EXP (negative).

The operations are presented in descending priority order. Parentheses may be used to alter the
evaluation order.

8.6.4.3 String Expressions

String expressions may be one of the following:

• a named string data item.

• a string constant: a sequence of characters between apostrophes (for example, ’ABC’). No
operations on strings exist.

Part 4 RPC Services and Protocols 327

Statechart Specification Language Semantics

328 X/Open CAE Specification (1994)

Chapter 9

RPC Protocol Definitions

DCE RPC supports the run-time API and application stubs by executing its protocol in response
to the events issued by service primitives (see Chapter 7) and events generated by the
underlying network and received RPC PDUs. This results in actions that may generate
corresponding service primitives and the invocation of network services.

The following sections specify the RPC protocol via the statechart (see Chapter 8) descriptive
technique. Implementations must conform to the external behaviour exhibited by this model to
guarantee both interoperability with other implementations and portability of applications using
RPC.

The RPC is designed to operate over a transport layer that offers either a reliable, connection-
oriented service (COTS) or a datagram, connectionless service (CLTS), or both types of services.
Operation of RPC over other protocols and services is not currently defined by this specification.

The details of the RPC protocol differ depending on the selected transport service. The protocols
using COTS and CLTS are described separately in this chapter.

9.1 Conformance
Because RPC will be implemented in a variety of hardware, software and user environments, the
protocol permits latitude in many areas of behaviour.

The protocol machines described in the following sections define this space of allowed
behaviours. Implementation structure and policy need not follow the protocol machine
organisation and defaults. The externally observed behaviour of an implementation, as viewed
from the RPC user interface and the transport interface, must be indistinguishable from some
subset of the allowed behaviours determined as follows:

• An implementation must completely support at least one of the two protocols described.

• For a given protocol, it is not allowed to omit any part of the behaviour specified unless
explicitly noted otherwise.

• The time interval between an input event and the external stimulus that caused the event is
arbitrary, but is subject to two constraints:

— There is a partial ordering such that all events generated by a flow of execution are
delivered in the order of occurrence with respect to other events generated by that flow of
execution.

— Execution of concurrent state machines must be scheduled fairly so that each machine has
equal opportunity to process any pending events and sufficient time to make progress.

Part 4 RPC Services and Protocols 329

RPC Stub to Run-time Protocol Machine Interactions RPC Protocol Definitions

9.2 RPC Stub to Run-time Protocol Machine Interactions
The following sections define the interactions between the protocol machines, which are
implemented in the RPC run-time system, and the RPC stubs, as applicable to both
connectionless (CL) and connection-oriented (CO) protocols.

9.2.1 Client Protocol Machines

The RPC stub generates the event START_CALL to invoke a new call, which is associated with
Call_Handle data. The RPC run-time system dispatches the call, via CO_CLIENT_ALLOC
machine for connection-oriented protocol, to the appropriate instance of the protocol machine.
The run-time system also sets the conditional flags for the requested execution semantics
(IDEMPOTENT, BROADCAST and MAYBE) and the authentication flag AUTH, according to the
Call_Handle data structure. If the security service rpc_c_authn_dce_secret is requested and the
authentication ticket for this call is already available, the conditional flag TICKET also has to be
set to TRUE.

Upon initiating a new RPC session (see Section 6.1.3 on page 298) an instance of a client call
protocol machine is created (CO_CLIENT or CL_CLIENT). If it is a consecutive call within an
already opened association (connection-oriented protocol) or activity (connectionless protocol),
the call is dispatched to the appropriate idling client call machine.

The RPC stub may queue the marshalled call data either in one segment or in chunks of
segments, depending on the call type (for example, whether a pipe data type is opened) and the
local memory management policies. The run-time system detects the availability of data and sets
the conditional flag TRANSMIT_REQ to TRUE if data for at least one PDU fragment is available.
The run-time system resets TRANSMIT_REQ if the queue contains temporarily less than a PDU
fragment of data. The sizes of data segments queued by the stub are not necessarily equivalent
to the sizes of PDU fragments sent by the run-time system.

If the transmit queue only contains data for the last PDU fragment to be sent, the RPC run-time
system sets the conditional flag LAST_IN_FRAG. Note that if the request is to be a single packet
PDU, LAST_IN_FRAG must also be set.

Response data (out parameters) are processed at the RPC run-time system in PDU fragment
granularity. Each inbound data fragment gets buffered and transferred to the stub through the
activity HANDLE_OUT_FRAG. RPC stub implementation policy determines whether it
processes incomplete response data. When the client run-time system has received and buffered
the complete response, it signals the completion and transfers the control to the stub by raising
the event RCV_LAST_OUT_FRAG. Note that the stub must assure that the
HANDLE_OUT_FRAG activity has been completed before acting on this event.

Local cancels are transferred to the RPC run-time system by raising the event
CLIENT_CANCEL. If an issued cancel was detected by the run-time system, it sets the
conditional flag RT_PENDING_CANCEL. To detect cancel requests that may have been issued
for a call before the run-time system started execution, the stub transfers this status by setting
the conditional flag CURRENT_PENDING_CANCEL along with the START_CALL event. The
RT_PENDING_CANCEL status is passed back to the stub after call completion.

If the run-time system terminated the call due to a failure (local or remote), it raises an exception
by calling the activity EXCEPTION. The data item RT_EXCEPTION_TYPE indicates the type of
failure to the stub, using fault and reject status codes. The conditional flag
RT_DID_NOT_EXECUTE further details the execution status of the call (connection-oriented
protocol only).

330 X/Open CAE Specification (1994)

RPC Protocol Definitions RPC Stub to Run-time Protocol Machine Interactions

If a context handle is activated, the stub generates a CONTEXT_ACTIVE event and identifies the
client/server pair for which this context handle is active. A context handle becomes active when
a server returns a value that is not NULL for an RPC context handle parameter. For each context
handle that becomes active, the client stub must generate this event.

If a context handle becomes inactive, the stub generates a CONTEXT_INACTIVE event and
identifies the client/server pair for which this context handle is no longer active. A context
handle becomes inactive when a server returns a NULL value for an RPC context handle
parameter. For each context handle that becomes inactive, the client stub must generate this
event.

9.2.2 Server Protocol Machines

The server call protocol machines (CO_SERVER and CL_SERVER) are instantiated at an RPC
request for a call in a new session, which is a new association for the connection-oriented
protocol or a new activity for the connectionless protocol. If a session has already been
established, the server call machines are idling while waiting to accept new call requests unless a
context rundown was issued.

Request data (in parameters) are processed at the RPC run-time system in PDU fragment
granularity. Each inbound data fragment gets buffered and transferred to the stub through the
activity HANDLE_IN_FRAG. RPC stub implementation policy determines whether it processes
incomplete request data. When the client run-time system has received and buffered the
complete request, it signals the completion and transfers the control to the stub by raising the
event RCV_LAST_IN_FRAG. Note that the stub must assure that the HANDLE_IN_FRAG
activity has been completed before acting on this event.

When the server application procedure is ready to respond to the RPC request with out
parameter data, the stub signals this to the run-time system by raising the event
PROC_RESPONSE. The called application procedure may not have completed at the time of this
event, depending on the call type.

The RPC stub may queue the marshalled call data for the response either in one segment or in
chunks of segments, depending on the call type (for example, whether a pipe data type is
opened) and the local memory management policies. The run-time system detects the
availability of data and sets the conditional flag TRANSMIT_RESP to TRUE if data for at least
one PDU fragment is available. The run-time system resets TRANSMIT_RESP if the queue
contains temporarily less than a PDU fragment of data. The sizes of data segments queued by
the stub are not necessarily equivalent to the sizes of PDU fragments sent by the run-time
system.

If the transmit queue only contains data for the last PDU fragment to be sent, the RPC run-time
system sets the conditional flag LAST_OUT_FRAG. Note that if the request is to be a single
packet PDU, LAST_OUT_FRAG must also be set.

Upon detecting a cancel request issued by the client, the server run-time system starts the
activity CANCEL_NOTIFY_APP to notify the stub that a cancel was issued. The stub returns the
status RETURN_PENDING_CANCEL to the run-time system after processing the cancel request
and terminating the activity CANCEL_NOTIFY_APP.

If the server manager routine rejects the call before execution, the RPC stub signals the run-time
system by raising the event PROCESSING_FDNE. If the stub detected a processing failure
during execution of the request, it signals the run-time system by raising the event
PROCESSING_FAULT.

Part 4 RPC Services and Protocols 331

RPC Stub to Run-time Protocol Machine Interactions RPC Protocol Definitions

If a context handle is activated, the stub generates a CONTEXT_ACTIVE event and identifies the
client/server pair for which this context handle is active. A context handle becomes active when
a server returns a value which is not NULL for an RPC context handle parameter. For each
context handle that becomes active, the server stub must generate this event.

If a context handle becomes inactive, the stub generates a CONTEXT_INACTIVE event and
identifies the client/server pair for which this context handle is no longer active. A context
handle becomes inactive when a server returns a NULL value for an RPC context handle
parameter. For each context handle which becomes inactive, the server stub must generate this
event.

If communications between a client/server pair are lost and context handles were active, the
server protocol machine generates a RUNDOWN_CONTEXT_HANDLES event. For each active
context handle associated with that particular client/server pair, the stub calls the corresponding
<type_id>_rundown routine.

332 X/Open CAE Specification (1994)

RPC Protocol Definitions Connection-oriented Protocol

9.3 Connection-oriented Protocol
The connection-oriented protocol behaviour is characterised by concurrent protocol machines of
the types specified in Chapter 11. The number of instances of each of these types and the
relationships among these instances are dynamic. These relationships and the information
exchanged between these entities can be conceptually decomposed into a four-level hierarchy:
client/server, association group, association and call.

9.3.1 Client/Server

An RPC implementation may function as both a client and a server concurrently. For modelling
purposes, it may be viewed as containing independent client and server state machines. This
corresponds to the client/server model described in Chapter 6.

The client protocol machines support the client interfaces while the server protocol machines
support the server interfaces. Invocation of an RPC may establish relationships between
instances of the client and server protocol machines at each of the lower levels in the hierarchy.

The protocol and service for each RPC is handled by a corresponding pair of client CALL
machine instance and server CALL machine instance. These instances require a communications
channel for exchanging PDUs. This communications channel, shared by a client and server, is
known as an association and is maintained by a corresponding pair of client and server
ASSOCIATION machine instances. A series of RPC calls made from client applications to a
specific server may utilise the same association. Concurrent RPCs from a client to the same
server may take place over different associations. The set of associations between a client and a
server is represented by an association group. Association groups are managed by client and
server association group machines (CO_CLIENT_GROUP and CO_SERVER_GROUP). The
creation and lifetime of these various protocol machines is a function of resource availability, the
relationships described in this section, external events and local system policy.

Each client may have multiple simultaneous relationships of the form described in this section
with multiple servers. Similarly, each server may have multiple simultaneous relationships with
multiple clients. Precise details of these relationships are specified in the following sections.

9.3.2 Association Group

An association group comprises a set of one or more associations (see Section 9.4.3 on page 337
for the definition of association) between a client instance and a server. Each client and server
pair may share multiple association groups, although this only occurs if there are multiple,
distinguishable protocol towers in use concurrently. A server distinguishes among association
groups by using a group identifier, which is unique among the active groups within that server
instance. A client distinguishes among association groups based on the server primary address
(see Section 9.4.3 on page 337) and the group identifier chosen by the server.

Association groups support context handle management and facilitate efficient resource
management.

Part 4 RPC Services and Protocols 333

Connection-oriented Protocol RPC Protocol Definitions

9.3.3 Association

An association represents a communications channel that is shared between a client endpoint
and a server endpoint. Each association is layered on top of a single transport connection such
that associations and transport connections have a one-to-one correspondence. An association
adds a security and presentation context negotiation and some other RPC-specific exchanges to
the underlying connection. Each association is a member of one association group. An
association can support no more than one RPC at a time, including its affiliated cancels. An
association may be serially reused to call any of the interfaces resident at that server’s endpoint.
For each RPC, an association is allocated, the RPC is made, and the association is deallocated
when the RPC completes. Attempting to allocate an association may cause new associations,
transport connections and association groups to be made, if necessary, within local client and
server policy constraints. Local policy also governs the number and lifetime of associations.

9.3.3.1 Association Management Policy

Each implementation may determine its own association management policy for accepting new
associations and disconnecting existing associations subject to the following constraints:

• An association must be maintained while any RPCs are outstanding on it.

• At least one association in an association group must be maintained if one or more context
handles are active between the client and server.

Unusual events (for example, user and management abort requests) may cause associations to
be aborted at any time. However, this is likely to cause a pending RPC to fail.

9.3.3.2 Primary and Secondary Endpoint Addresses

A primary endpoint address may be a well-known endpoint or a dynamic endpoint that is
registered with an endpoint mapper. For the first association established within an association
group, a client specifies the primary endpoint address to request a transport connection to a
server.

If a server supports concurrent RPCs, then the server returns a secondary address to the client.
The secondary address may be the same as the primary address. Whether they differ is a local
implementation-dependent matter.

A client uses this secondary address for subsequent transport connection requests to establish
additional concurrent associations to the same server. Each subsequent association established
using both the secondary address and group identifier of an association group will be directed to
the same server. RPCs on any of the associations within an association group are processed by
the same server.

If the server does not return a secondary address, the client will permit only a single association
for the corresponding association group. The rpc_server_listen() call informs the server RPC run-
time system whether to allow concurrent RPCs to the same server.

The absence of a secondary address is modelled as a null value in this specification.

334 X/Open CAE Specification (1994)

RPC Protocol Definitions Connection-oriented Protocol

9.3.4 Call

After an association has been allocated for an RPC, the CALL protocol machines (see Section 9.4
on page 336) manage the exchange of call data between the client and server. These call
machines handle, in an orderly fashion, events that may cause abnormal termination of an RPC.
The CALL machines indicate to an RPC client application whether the RPC completed
successfully, failed but did not execute, or failed with unknown execution status. Pending
cancels are signalled to the client and server applications, and orphaned RPCs are indicated to
the server applications. Each RPC is identified by a call identifier that is unique for all currently
active RPCs within an association group.

9.3.5 Transport Service Requirements

The DCE RPC CO protocol requires a connection-oriented transport service that guarantees
reliable sequential delivery of data. This means the transport guarantees that when it delivers
data to a transport user, all data previously sent by the remote transport user on that transport
connection has been delivered exactly once, unmodified, and in the order it was presented to the
transport by the remote sender.

The COTS must provide connection establishment and release, full-duplex data transfer,
segmentation and reassembly, flow control and liveness indication.

Part 4 RPC Services and Protocols 335

Connection-oriented Protocol Machines RPC Protocol Definitions

9.4 Connection-oriented Protocol Machines
The moment in time at which each instance of the protocol machines is created depends on the
events that trigger the initial transition into a statechart. Similarly, the lifetime of a protocol
machine instance is determined by events that cause transition to the terminal state. All
machines may be affected by external events. The relationships among instances of these
machines are described in the following sections.

The client protocol for processing RPCs is described by the CO_CLIENT_ALLOC,
CO_CLIENT_GROUP and CO_CLIENT statecharts.

The server protocol for processing RPCs is described by the CO_SERVER_GROUP and
CO_SERVER statecharts.

To avoid race conditions among multiple instances of protocol machines attempting to reference
the same state variables or issue conflicting events, a synchronisation mechanism is required.
The CO_CLIENT_ALLOC protocol machine illustrates how this synchronisation could be
implemented via locking. For simplicity, the other protocol machines merely indicate where
synchronisation is necessary, but do not explicitly include the locking steps.

9.4.1 CO_CLIENT_ALLOC

An instance of the CO_CLIENT_ALLOC protocol machine is created each time a new RPC is
invoked by the Invoke service primitive described in Chapter 7. This attempts either to create a
new association or allocate an existing idle association from the association group indicated by
the binding for the RPC. The machine terminates when either an association is allocated or the
attempt fails.

Behaviour of this machine is affected by the states of, and the events generated by, instances of
the ASSOCIATION protocol machine that correspond to associations within the relevant
association group.

This machine defines the recommended policy for allocating associations to RPCs.
Implementations may choose a different policy for allocating associations and, thus, are not
required to conform to this definition. Any algorithm for retrying failed attempts to allocate an
association must retry no more frequently than specified here.

This protocol machine generates the following events, which are input events for the related
CO_CLIENT machine instance:

• ALLOC_REQ

• CREATE_ASSOCIATION.

9.4.2 CO_CLIENT_GROUP

An instance of the CO_CLIENT_GROUP protocol machine exists for each association group. It is
created upon indication that the first association for this group has been established. It
terminates when the last association in the group is terminated.

Behaviour of this machine is affected by the states of, and the events generated by, one or more
instances of the ASSOCIATION protocol machine that correspond to associations within the
relevant association group.

This machine defines the client management of and the protocol for association groups.
Implementations are required to conform to the defined behaviour.

336 X/Open CAE Specification (1994)

RPC Protocol Definitions Connection-oriented Protocol Machines

9.4.3 CO_CLIENT

The CO_CLIENT statechart defines the protocol machine types for association and call
components. An instance of each of the concurrent protocol machines contained in this
statechart is created when a client attempts to establish a new association. It terminates when
the relevant association is terminated and related termination activities complete. Instances of
the concurrent protocol machines within a CO_CLIENT statechart interact via events and state
variables. Also, events generated by the relevant instances of CO_CLIENT_GROUP and
CO_CLIENT_ALLOC machines affect these protocol machines.

The CO_CLIENT protocol machine generates the following events, which are input events for
the related CO_CLIENT_ALLOC machine instance:

• ALLOC_ASSOC_ACK

• ALLOC_ASSOC_NACK

• CREATE_SUCCESS

• CREATE_FAILED.

The CO_CLIENT protocol machine generates the following events, which are input events for
the related CO_CLIENT_GROUP machine instance:

• CREATE_GROUP

• ADD_TO_GROUP

• REMOVE_FROM_GROUP.

9.4.3.1 ASSOCIATION

For each association, an instance of the ASSOCIATION protocol machine defines the the client
management of, and the protocol for, that association. The contained machine, labeled INIT,
manages the initialisation of an association and the corresponding transport connection.
Implementations are required to conform to the defined behaviour.

9.4.3.2 CONTROL

An instance of the CONTROL machine manages the reassembly and dispatching of incoming
RPC control PDUs for each association. Implementations are required to conform to the
described behaviour.

9.4.3.3 CANCEL

An instance of the CANCEL machine manages cancel requests for an RPC. Implementations are
required to conform to the described behaviour.

9.4.3.4 CALL

For each RPC, an instance of the CALL protocol machine defines the client service and protocol
for that RPC. Implementations are required to conform to the defined behaviour.

The contained machine, labelled DATA, manages the data exchange between the client and
server for the RPC. The machine CONFIRMATION handles the response reception.

Part 4 RPC Services and Protocols 337

Connection-oriented Protocol Machines RPC Protocol Definitions

9.4.4 CO_SERVER_GROUP

An instance of the CO_SERVER_GROUP protocol machine exists for each association group. It
is created upon indication that the first association for this group has been established. It
terminates when the last association in the group is terminated and any context for remaining
context handles can be rundown.

Behaviour of this machine is affected by the states of, and the events generated by, one or more
instances of the ASSOCIATION protocol machine that correspond to associations within the
relevant association group.

This machine defines the server management of, and the protocol for, association groups.
Implementations are required to conform to the defined behaviour.

9.4.5 CO_SERVER

The CO_SERVER statechart defines the protocol machine types for association and call
components. An instance of each concurrent protocol machine contained in the CO_SERVER
statechart is created upon indication that a new transport connection to the server has been
established. It terminates when the relevant association is terminated. Instances of the
concurrent protocol machines within a CO_SERVER statechart interact via events and state
variables. Also, events generated by the relevant CO_SERVER_GROUP machine instance affect
these protocol machines.

The CO_SERVER protocol machine generates the following events, which are input events for
the related CO_SERVER_GROUP machine instance:

• ADD_TO_GROUP
• REMOVE_FROM_GROUP.

9.4.5.1 ASSOCIATION

For each association, an instance of the ASSOCIATION protocol machine defines the server
management of, and the protocol for, that association. Implementations are required to conform
to the defined behaviour.

9.4.5.2 CONTROL

An instance of the CONTROL machine manages the reassembly and dispatching of incoming
RPC control PDUs for each association. Implementations are required to conform to the
described behaviour.

9.4.5.3 CANCEL

An instance of the CANCEL machine manages the cancel protocol and service for an RPC.
Implementations are required to conform to the described behaviour.

9.4.5.4 WORKING

The WORKING machine defines the handling of an RPC by the server, including the orderly
clean up of state after an RPC terminates. The WORKING machine contains the CALL machine.

For each RPC, an instance of the CALL protocol machine defines the server management of, and
the protocol for, that RPC. Implementations are required to conform to the defined behaviour.
The contained machine, labelled DATA, manages the data exchange between the client and
server for the RPC. An instance of the CALL protocol machine is created upon receipt of the first
fragment of an RPC request.

338 X/Open CAE Specification (1994)

RPC Protocol Definitions Connectionless Protocol

9.5 Connectionless Protocol
The connectionless protocol behaviour is characterised by concurrent protocol machines of the
types specified in Chapter 10. The number of instances of each of these types and the
relationships among these instances is dynamic. These relationships and the information
exchanged between these entities can be conceptually decomposed into a three-level hierarchy:
client/server, Activity and Call.

9.5.1 Client/Server

The most fundamental partitioning of the protocol machines is between the client and server
types. This corresponds to the client/server model described in Chapter 6. The client protocol
machines support the client interfaces while the server protocol machines support the server
interfaces. Invocation of an RPC may establish relationships between instances of the client and
server protocol machines.

Each client may have multiple simultaneous relationships with multiple servers. Similarly, each
server may have multiple simultaneous relationships with multiple clients.

9.5.2 Activity

An activity corresponds to a client application instance. Multiple activities may exist
concurrently for each client. Both the client and server distinguish among activities by a UUID
associated with each activity, called the activity identifier. At most one RPC may be in progress
for an activity. A series of RPCs may occur sequentially for each activity.

9.5.3 Call

The protocol machines for an RPC manage the exchange of call data between the client and
server for an activity. These protocol machines handle, in an orderly fashion, events that may
cause abnormal termination of an RPC. The call machines indicate to an RPC client application
whether the RPC completed successfully, failed but did not execute, or failed with unknown
execution status. Pending cancels are signalled to the client and server applications, and
orphaned RPCs are indicated to the server applications. Each RPC is identified by an activity
identifier and a sequence number. Activity identifiers may not be reused. A sequence number
may be reused for a given activity identifier, if the sequence number space is exhausted. If
sequence numbers wrap around and are reused, the implementation must assure that these are
unambiguous. Less than half the space of sequence numbers may be used for concurrently
pending calls.

9.5.4 Maintaining Execution Context and Monitoring Liveness

The execution context of a call is uniquely identified by the client address space identifier (CAS
UUID). This UUID identifies a specific client process instance that is maintaining context with
servers. Execution context is not directly related to activities. Multiple activities may run within
a single execution context. The client and server run-time system implementations maintain a
list of active execution contexts (signalled from the stub by the event CONTEXT_ACTIVE or,
respectively, by CONTEXT_INACTIVE).

The server stub indicates, via condition flag CONTEXT_REQUEST, whether it needs to know the
execution context identifier (RT_CLIENT_EXECUTION_CONTEXT) for the current call.

Run time implementations monitor liveness of maintained execution contexts periodically. The
procedure convc_indy (), as specified in Appendix P, may be used for liveness monitoring.
Compliant implementations must provide the specified conversation manager interface. There
are no guarantees about the time periods of liveness indications by clients (the default for

Part 4 RPC Services and Protocols 339

Connectionless Protocol RPC Protocol Definitions

invocation of convc_indy () is 20 seconds), and it is implementation-specific how this operation is
used to monitor liveness. The server protocol machine generates the event
RUNDOWN_CONTEXT_HANDLES if it determines that it has lost contact with the client (see
also Section 9.3 on page 333).

9.5.5 Serial Numbers

Serial numbers allow data senders to match a fack PDU with the request or response PDU that
induced the fack PDU to be sent. Serial numbers are used according to the following model. The
sender of data maintains a queue of all PDUs that have been sent but not yet acknowledged. The
sender also maintains a current serial number, which is initialised to 0 (zero) when a call begins.
Each time a data (request or response) or ping PDU is sent or resent from the queue, the current
serial number is incremented and inserted into the outgoing data PDU; each PDU in the queue
records the serial number used in the most recent transmission of the PDU. When the receiver of
a data PDU sends a fack PDU in reply, it inserts the serial number of the data PDU into the fack
body. This is the serial number of the PDU that induced the fack.

Upon receiving a fack PDU, the data sender must take the following steps:

1. eliminate from its queue all PDUs that are being acknowledged by the fack PDU

2. decide which, if any, of the remaining data PDUs should be retransmitted.

In implementing the second step, the following policies are recommended. It is possible that
some PDUs that remain in the queue were in transit at the time the fack was generated, and thus
could not have been acknowledged by the fack. It is likely that such PDUs were received after
the fack was generated, and retransmitting them would waste network bandwidth. The
likelihood of such in-transit PDUs increases as network transmission latency increases.

The potentially gratuitous retransmission of data PDUs can be eliminated by considering the
serial number in the fack and the serial numbers on the data PDUs in the transmit queue. In
particular, the data sender should not retransmit any data PDU whose serial number (that is, the
serial number used in the most recent transmission of the data PDU) is greater than the serial
number in the fack PDU.

Note: The recommended policy assumes that the occurrences of spontaneous (network-
induced) re-ordering of PDUs is rare.

Because serial numbers allow a transmission and a reply to be matched up, serial numbers can
be used in the course of estimating the network round trip time (RTT) between sends and
receives. Such an estimate of RTT can be used to control retransmission policy.

9.5.6 Transport Service Requirements

The connectionless protocol requires a connectionless, datagram transport (CLTS). The CLTS
must provide a full-duplex datagram service that delivers transport user data on a best effort
basis. The CLTS may lose, delay, reorder and duplicate transport service data units. Transport
must not misdeliver or modify user data. The CLTS must guarantee that the maximum lifetime
of each transport service data unit is bounded.

340 X/Open CAE Specification (1994)

RPC Protocol Definitions Connectionless Protocol Machines

9.6 Connectionless Protocol Machines
The moment in time at which each instance of the protocol machines is created depends upon
events that trigger transitions from the initial state. The lifetime of a protocol machine instance is
determined by the lifetime of the corresponding activity. All machines may be affected by
external events. The relationships among instances of these machines are described in the
following sections.

The client protocol for processing RPCs is described by the CL_CLIENT statechart.

The server protocol for processing RPCs is described by the CL_SERVER statechart.

9.6.1 RPC Stub to Run Time Protocol Machine Interactions

Since the connectionless RPC protocol machines have to take into account the unreliable nature
of the underlying datagram transport, the RPC run-time system has to handle fragmentation, the
possible delivery of packets out of order, and the reassembly of the entire request or response
data.

In accordance to the semantics of the HANDLE_IN_FRAG and HANDLE_OUT_FRAG
activities, the run-time system buffers out-of-order fragments temporarily and makes received
fragments available to the stub only if they are consecutive (see Section 10.1.1 on page 346 and
Section 10.2.1 on page 377). The RECEIVED_LAST_IN_FRAG and
RECEIVED_LAST_OUT_FRAG events are only generated if the received data is complete; that
is, there are no outstanding fragments.

9.6.2 CL_CLIENT

The CL_CLIENT statechart defines the client protocol machine types for an RPC. An instance of
each of the protocol machines is created when an Invoke service primitive, as defined in Chapter
7, is first generated for an activity. Subsequent Invoke primitives for the same activity are
handled by the same instance of the CL_CLIENT statechart. The lifetime of the protocol
machines corresponds to that of the associated activity. The concurrent protocol machines for an
instance of a CL_CLIENT statechart interact via events and state variables.

9.6.2.1 CONTROL

An instance of the CONTROL machine defines the protocol used to manage the reassembly and
dispatching of received control PDUs for each RPC. Implementations must conform to the
described behaviour.

9.6.2.2 AUTHENTICATION

An instance of the AUTHENTICATION machine manages the authentication service for each
activity. It handles and verifies mutual authentication if a security service is requested for the
associated RPC. It is independent of the underlying authentication protocol and the specific
protection services that are in use. Implementations are required to conform to the described
behaviour.

9.6.2.3 CALLBACK

An instance of the CALLBACK machine defines the protocol used to manage callbacks to the
client for an RPC. Implementations must conform to the described behaviour.

Part 4 RPC Services and Protocols 341

Connectionless Protocol Machines RPC Protocol Definitions

9.6.2.4 PING

An instance of the PING machine defines the protocol used to ascertain liveness of the server for
each RPC. Implementations must conform to the described behaviour.

9.6.2.5 CANCEL

An instance of the CANCEL machine defines the protocol used to manage cancel requests for
each RPC. Implementations must conform to the described behaviour.

9.6.2.6 DATA

An instance of the DATA machine defines the client side of the protocol used to manage the data
exchange between the client and server for each RPC. The contained machines labelled
REQUEST and CONFIRMATION handle the request transmission and response receipt,
respectively. Implementations must conform to the described behaviour.

9.6.3 CL_SERVER

The CL_SERVER statechart defines the server protocol machine types for an RPC. An instance of
each of the protocol machines is created upon indication that an RPC request PDU for a new
activity has been received. Subsequent RPC request PDUs for the same activity are handled by
the same instance of the CL_SERVER statechart. Thus, the lifetime of the protocol machines
corresponds to that of the associated activity. The concurrent protocol machines for an instance
of a CL_SERVER statechart interact via events and state variables.

9.6.3.1 CONTROL

An instance of the CONTROL machine defines the protocol used to manage the reassembly and
dispatching of received control PDUs for each RPC. Implementations must conform to the
described behaviour.

9.6.3.2 AUTHENTICATION

An instance of the AUTHENTICATION machine manages the authentication service for each
activity. It handles and verifies mutual authentication if a security service is requested for the
associated RPC. It is independent of the underlying authentication protocol and the specific
protection services that are in use. Implementations are required to conform to the described
behaviour.

9.6.3.3 CANCEL

An instance of the CANCEL machine defines the protocol used to manage cancels received for
each RPC. Implementations must conform to the described behaviour.

9.6.3.4 WORKING

The WORKING machine defines the handling of an RPC by the server, including the orderly
clean up of state after an RPC terminates. The WORKING machine contains the CALL machine.

For each RPC, an instance of the CALL protocol machine defines the server management of, and
the protocol for, that RPC. The CALL machine is composed of two subordinate machines, DATA
and CALLBACK. An instance of the DATA machine defines the server side of the protocol that is
used to manage the data exchange between the client and server for each RPC. An instance of
the CALLBACK machine defines the protocol used to manage conversation manager callbacks
to the client, enabling servers to enforce at-most-once execution semantics.

342 X/Open CAE Specification (1994)

RPC Protocol Definitions Connectionless Protocol Machines

Implementations are required to conform to the defined behaviour for the WORKING protocol
machine and the protocol machines contained within WORKING.

9.7 Naming Conventions
To provide better readability, many description elements in the protocol machines are named
according to the naming conventions described in the following list. Elements are categorised
into groups by using common prefixes to their names:

CONST_ An implementation-specific or architected constant value, declared as a data
item.

DO_ An action that processes and evaluates PDU contents.

MAX_ A constant that defines a maximum value. A maximum value is either
architected, implementation-specific or application-defined.

PDU_ A data item or condition that represents data fields or flags of a currently
received PDU.

RCV_ A compound event that indicates the receipt of a particular PDU.

RT_ A run-time (protocol machine) internal data item or condition. These are
usually used to preserve state information.

SND_ A data item or condition that represents the values to be sent with the next
PDU (input for activity SEND_PKT).

TIMEOUT_ A constant that defines a timeout value. A timeout value is either architected,
implementation-specific or application-defined.

Part 4 RPC Services and Protocols 343

RPC Protocol Definitions

344 X/Open CAE Specification (1994)

Chapter 10

Connectionless RPC Protocol Machines

This chapter specifies the connectionless RPC protocol as a series of statecharts and
accompanying tables of definitions.

Part 4 RPC Services and Protocols 345

CL_CLIENT Machine Connectionless RPC Protocol Machines

10.1 CL_CLIENT Machine
Figure 10-1 shows the CL_CLIENT machine statechart.

T

CL_CLIENT

C

INIT
WORKING

DATA

REQUEST

GET_TICKET

REQ_WAIT

COMPLETE

CONFIRMATION

AUTHENTICATION

CONF_IDLE

CANCEL

SND_CAN

CAN_IDLE

PING

PING_IDLE

SND_PING

CONTROL

CAUTHENTICATION

CNTL_IDLE

FAULTCOMM_FAIL

[AUTH]

RCV_CNTL_PDU

AUTHENTICATED/CNTL_CALL
FAULTS

CLIENT_CANCEL

CANCEL_REQ

RCV_FRAG_PDU_A

AUTHENTICATED

FETCHED_TICKET

RESEND_REQ

[TICKET or not AUTH]

RCV_FRAG_PDU

LAST_IN_PKT/DO_REQ

TM_WAIT

RESET

RCV_LAST_OUT_FRAG

NO_CONNECTION

ABORT

START_CALL/SETUP_CALL

START_CALL[SESSION]

[not AUTH]/CNTL_CALLNEXT_IN_PKT/DO_REQ

COMPLETE/FINAL

Figure 10-1 CL_CLIENT Statechart

10.1.1 CL_CLIENT Activities

The CL_CLIENT statechart defines the following activities:

Chart: CL_CLIENT

Activity: ABORT_CALL

Description: Flush and discard any further responses for this call. If this activity was
caused by a detected failure, there may be numerous additional packets in the
pipeline. The flush may be lazy, upon subsequent receive processing. Also,
notify the run-time system and stub to reclaim any resources for this call.

Chart: CL_CLIENT

Activity: EXCEPTION

Description: Raise a fault and return to calling routine.

346 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Activity: FETCH_TICKET

Description: Obtains the security context for the RPC session from the security service (that
is, kerberos ticket, if authentication service is rpc_c_authn_dce_secret).

The activity resets the conditional flag TICKET to false at the beginning, and
sets TICKET to true before termination only if the fetch operation succeeded.
FETCH_TICKET is a self-terminating activity.

Chart: CL_CLIENT

Activity: HANDLE_OUT_FRAG

Description: This activity is invoked at each received fragment evaluation of out
parameters for multi-fragmented RPC responses. The HANDLE_OUT_FRAG
activity makes received data of continuous fragments available to the stub for
unmarshalling and the object UUID (RT_OBJ_ID) available to the manager
routine. This does not require a transfer of control from the run-time system
to the stub for each fragment; implementation policy determines when control
is transferred.

In addition, if the client receives a fragment out of order,
HANDLE_OUT_FRAG buffers this fragment temporarily until subsequently
received fragments allow for a consecutive inclusion of these temporarily
buffered fragments. The fragment ordering is determined by the fragment
number (RT_OUT_FRAG_NUM). If previously buffered out of order
fragments are appended to the continuous receive buffer
(RT_OUT_PARAMS), HANDLE_OUT_FRAG must also adjust the state
variable RT_CONT_OUT_FRAG_NUM. HANDLE_OUT_FRAG also
maintains the selective acknowledgement bit masks which are used in the
fack PDU.

Modifications of RT_CONT_OUT_FRAG_NUM must be synchronised with
other actions (DO_OUT_PKT) performed by the protocol machine.

Chart: CL_CLIENT

Activity: RESET_IN_FRAG

Description: This activity is invoked if the protocol machine determines that a set of
fragments needs to be retransmitted. RESET_IN_FRAG resets the values of
SND_FRAG_NUM and RT_IN_FRAG to the beginning of the transmission
queue. Note that the condition LAST_IN_FRAG must also be set
appropriately.

The first fragment in this queue may not have fragment number 0, since other
fragment acknowledgements may have been received, allowing the client to
free previously sent data packets. Run time implementations must keep state
about the acknowledgement of sent fragmented request PDUs.

This activity generates the event RESEND and marks TRANSMIT_REQ as
true to trigger the transitions that actually invoke the appropriate SEND_PKT
activities.

Part 4 RPC Services and Protocols 347

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Activity: SEND_PKT

Description: Prepare a PDU to send to the server, adding the appropriate header
information as necessary. If security services were requested (conditional flag
AUTH is true), apply per-message security services. Send the PDU.

The conditional flags and data items set in the run-time system (with prefix
SND_) provide the appropriate input for generating the PDU data. Note that
actions within the same execution step that started this activity may have
assigned values to the SND_* variables which have to be taken by this
instance of the activity.

After sending a request PDU, the RT_IN_FRAG pointer is incremented
accordingly, to point to the remaining data in the transmit queue.

Note: The SEND_PKT activity may be invoked simultaneously by several
orthogonal states (DATA, CONTROL, CANCEL, and so on). The
run-time system must catch these send requests, buffer these and the
associated data, and perform the sends in sequential order.

Chart: CL_CLIENT

Activity: VERIFY_AUTH

Description: Verify the authentication trailer of PDU and decrypt message if necessary.

This activity takes as input values the PDU header field auth_proto
(authentication protocol specifier: RT_AUTH_SPEC) and the authentication
verifier (PDU trailer: RT_AUTH_VERIFIER).

Depending on the result of the verification, the activity VERIFY_AUTH
generates either the event AUTHENTICATED (success) or DENIED
(authentication failure).

The algorithm applied to this activity is dependent on the security service in
use (determined by RT_AUTH_SPEC). The general evaluation steps for
authentication service rpc_c_authn_dce_secret are as follows (for more details
see Chapter 13):

• Check the protection level applied to the PDU (parameter in
RT_AUTH_VERIFIER) against the protection level for the call (negotiated
security context). If matching, proceed with verification, otherwise raise
DENIED.

• Decrypt the cyphertext portion of the verifier and verify PDUs integrity. If
discrepancies are found, raise DENIED, otherwise raise
AUTHENTICATED and proceed (if privacy protected).

• If privacy protection is requested, decrypt PDU body data.

Note: The VERIFY_AUTH activity may be invoked simultaneously by
several orthogonal states (DATA, CONTROL and CANCEL).
VERIFY_AUTH must not generate the event AUTHENTICATED
unless the entire requested authentication processing is completed. If
VERIFY_AUTH detects an authentication failure and generates the
event DENIED, the protocol machine rejects the RPC call and no

348 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

further processing is required.

10.1.2 CL_CLIENT States

The CL_CLIENT statechart defines the following states:

Chart: CL_CLIENT

State: AUTHENTICATION

Description: Process authentication verification.

Reactions
Trigger Action

[RT_SECURITY_CONTEXT] st!(VERIFY_AUTH)

Chart: CL_CLIENT

State: AUTHENTICATION

Description: Process authentication verification.

Reactions
Trigger Action

[RT_SECURITY_CONTEXT] st!(VERIFY_AUTH)

Chart: CL_CLIENT

State: CANCEL

Description: Processing of requests to terminate a call in progress.

Chart: CL_CLIENT

State: CAN_IDLE

Description: Wait for cancel requests.

Reactions
Trigger Action

IF
CURRENT_PENDING_CANCEL

THEN
tr!(RT_PENDING_CANCEL)

END IF

en(CAN_IDLE)

Part 4 RPC Services and Protocols 349

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

State: CL_CLIENT

Description: Main state for statechart CL_CLIENT.

Reactions
Trigger Action

entering SND_ACTIVITY_ID:=SESSION_ACTIVITY_ID

Chart: CL_CLIENT

State: CNTL_IDLE

Description: Wait for incoming control PDUs.

Reactions
Trigger Action

fs!(FAULT_PDU);
fs!(WORKING_PDU);
fs!(NOCALL_PDU);
fs!(REJECT_PDU);
fs!(FACK_PDU);
fs!(CANCEL_ACK_PDU)
T{
RECEIVE_PDU[PDU_TYPE=FACK
and VALID_PDU_HEADER]

en(CNTL_IDLE)

RECEIVE_PDU[PDU_TYPE=FAULT
and VALID_PDU_HEADER]

tr!(FAULT_PDU)

IF
AUTH

THEN
RT_AUTH_VERIFIER_CNTL:=
PDU_AUTH_VERIFIER

END IF

exiting

RECEIVE_PDU[PDU_TYPE=WORKING
and VALID_PDU_HEADER]

tr!(WORKING_PDU)

RECEIVE_PDU[PDU_TYPE=NOCALL
and VALID_PDU_HEADER]

tr!(NOCALL_PDU)

RECEIVE_PDU[PDU_TYPE=REJECT
and VALID_PDU_HEADER]

tr!(REJECT_PDU)

RECEIVE_PDU[PDU_TYPE=CANCEL_ACK
and VALID_PDU_HEADER]

tr!(CANCEL_ACK_PDU);
RT_RCV_CANCEL_ID:=PDU_CANCEL_ID

RECEIVE_PDU[CNTL_PDU
and VALID_PDU_HEADER]

RCV_CNTL_PDU

350 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

State: COMM_FAIL

Description: Handle communication failures.

Reactions
Trigger Action

RT_EXCEPTION_STATUS:=CONST_COMM_FAILURE;
st!(EXCEPTION);
st!(ABORT_CALL)

en(COMM_FAIL)

Chart: CL_CLIENT

State: COMPLETE

Description: Call completed successfully (If NON_IDEMPOTENT wait for
ACK_TIMEOUT).

Chart: CL_CLIENT

State: CONFIRMATION

Description: Process response data (out parameters) for remote procedure call.

Reactions
Trigger Action

fs!(RESPONSE_ACTIVE);
RT_OUT_PARAMS:=NULL;
RT_OUT_SERIAL_NUM:=-1;
RT_CONT_OUT_FRAG_NUM:=-1;
RT_LAST_OUT_FRAG_NUM:=-1;
fs!(LAST_OUT_FRAG)

en(CONFIRMATION)

Chart: CL_CLIENT

State: CONF_IDLE

Description: Receive response data from server (possibly fragmented).

Part 4 RPC Services and Protocols 351

CL_CLIENT Machine Connectionless RPC Protocol Machines

Reactions
Trigger Action

en(CONF_IDLE)[RESPONSE_ACTIVE and
RT_OUT_FRAG_NUM=RT_CONT_OUT_FRAG_NUM+1]

DO_OUT_PKT;
st!(HANDLE_OUT_FRAG)

en(CONF_IDLE)[RESPONSE_ACTIVE and (not
NO_FACK or NO_FACK and RT_BUF_LIMIT)]

FACK_CALL

en(CONF_IDLE)[RESPONSE_ACTIVE and
RT_OUT_FRAG_NUM/=RT_CONT_OUT_FRAG_NUM+1]

st!(HANDLE_OUT_FRAG)

RECEIVE_PDU[PDU_TYPE=RESPONSE and
VALID_PDU_HEADER and not AUTH]

tr!(RESPONSE_ACTIVE);
DO_RESP;
RCV_FRAG_PDU

RECEIVE_PDU[PDU_TYPE=RESPONSE and
VALID_PDU_HEADER and AUTH]

tr!(RESPONSE_ACTIVE);
DO_RESP;
RCV_FRAG_PDU_A

en(CONF_IDLE)[RESPONSE_ACTIVE and
LAST_OUT_FRAG and
RT_LAST_OUT_FRAG_NUM=
RT_CONT_OUT_FRAG_NUM+1]

RCV_LAST_OUT_FRAG

Chart: CL_CLIENT

State: CONTROL

Description: Process received control PDUs.

Chart: CL_CLIENT

State: DATA

Description: Process RPC call data.

Chart: CL_CLIENT

State: FAULT

Description: Handle faults in processing call.

Reactions
Trigger Action

RT_EXCEPTION_STATUS:=PDU_FAULT_STATUS;
st!(EXCEPTION);
st!(ABORT_CALL)

en(FAULT)[FAULT_PDU]

RT_EXCEPTION_STATUS:=PDU_REJECT_STATUS;
st!(EXCEPTION);
st!(ABORT_CALL)

en(FAULT)[REJECT_PDU]

en(FAULT)[not FAULT_PDU
and not REJECT_PDU]

RT_EXCEPTION_STATUS:=PDU_REJECT_STATUS;
st!(EXCEPTION);
st!(ABORT_CALL)

352 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

State: GET_TICKET

Description: Get authentication ticket from security server (security service-specific).

Activities Throughout:
FETCH_TICKET

Chart: CL_CLIENT

State: INIT

Description: Initial remote procedure call state.

Reactions
Trigger Action
exiting SETUP_CALL

Chart: CL_CLIENT

State: PING

Description: Main state to handle asynchronous ping requests.

Chart: CL_CLIENT

State: PING_IDLE

Description: Wait for expiration of WAIT_TIMEOUT.

Reactions
Trigger Action
exiting RT_PING_COUNT:=0

Chart: CL_CLIENT

State: REQUEST

Description: Process request data (in parameters) for remote procedure call.

Chart: CL_CLIENT

State: REQ_WAIT

Description: Handle fragmented requests to server.

Reactions
Trigger Action

tm(en(REQ_WAIT), TIMEOUT_FRAG) RESEND_IN_FRAGS

en(REQ_WAIT)[not REQUEST_ACTIVE] FIRST_REQ

Part 4 RPC Services and Protocols 353

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

State: SND_CAN

Description: Process cancel requests. Sends cancel PDU.

Reactions
Trigger Action

en(SND_CAN) or CLIENT_CANCEL or
tm(CLIENT_CANCEL, TIMEOUT_CANCEL)

CAN_CALL

Chart: CL_CLIENT

State: SND_PING

Description: Send ping PDU.

Reactions
Trigger Action

en(SND_PING) or
tm(en(SND_PING),
TIMEOUT_PING)

RT_PING_COUNT:=RT_PING_COUNT+1;
SND_SERIAL_NUM:=SND_SERIAL_NUM+1;
SND_REQUEST_TYPE:=PING;
st!(SEND_PKT)

Chart: CL_CLIENT

State: WORKING

Description: Main working state for call instance.

10.1.3 CL_CLIENT Events

The CL_CLIENT statechart defines the following events:

Chart: CL_CLIENT

Event: ABORT

Description: RPC session (same activity UUID) has terminated.

Definition: st(ABORT_CALL) or sp(FETCH_TICKET)[not
TICKET]

Chart: CL_CLIENT

Event: AUTHENTICATED

Description: Authentication processing completed successfully.

354 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Event: CANCEL_REQ

Description: Events which cause a transition into an active cancel state.

Definition: CLIENT_CANCEL or [RT_PENDING_CANCEL] or
tm(CLIENT_CANCEL, TIMEOUT_CANCEL)

Chart: CL_CLIENT

Event: CLIENT_CANCEL

Description: The client has issued a request to terminate a call.

Chart: CL_CLIENT

Event: COMPLETE

Description: RPC completed (with success or fault).

Definition: (en(COMPLETE)[not NON_IDEMPOTENT] or
en(CONFIRMATION)[MAYBE] or TM_ACK) and not
NO_CONNECTION and not FAULTS

Chart: CL_CLIENT

Event: DENIED

Description: Authentication failure detected.

The VERIFY_AUTH activity generates this event if either the integrity check
failed or the requested protection level for authentication services does not
match.

Chart: CL_CLIENT

Event: FAULTS

Description: Received a fault or reject PDU or a PDU with wrong authentication verifier.

Definition: (RCV_FAULT or DENIED) and not NO_CONNECTION

Chart: CL_CLIENT

Event: FETCHED_TICKET

Description: Client fetched a valid Ticket Granting Ticket.

Definition: sp(FETCH_TICKET)[TICKET]

Part 4 RPC Services and Protocols 355

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Event: LAST_IN_PKT

Description: Statechart internal event: last packet of fragmented request.

Definition: [TRANSMIT_REQ and LAST_IN_FRAG and BURST and
REQUEST_ACTIVE] or
en(CNTL_IDLE)[TRANSMIT_REQ and FACK_PDU
and LAST_IN_FRAG and IN_FRAG_NUM_EQ and
REQUEST_ACTIVE]

Chart: CL_CLIENT

Event: NEXT_IN_PKT

Description: Statechart internal event: intermediate packet of fragmented request.

Definition: [TRANSMIT_REQ and not LAST_IN_FRAG and BURST
and REQUEST_ACTIVE] or
en(CNTL_IDLE)[TRANSMIT_REQ and FACK_PDU
and not LAST_IN_FRAG and IN_FRAG_NUM_EQ and
REQUEST_ACTIVE]

Chart: CL_CLIENT

Event: NO_CONNECTION

Description: Detected communications failure due to timeout events or excessive retries.

Definition: tm(en(CONFIRMATION),
TIMEOUT_BROADCAST)[BROADCAST] or
[in(SND_PING) and
RT_PING_COUNT>MAX_PINGS] or
[RT_REQUEST_COUNT>MAX_REQUESTS]

Chart: CL_CLIENT

Event: RCV_CNTL_PDU

Description: Received one of the control PDUs with valid header.

Chart: CL_CLIENT

Event: RCV_FAULT

Description: Received a fault or reject PDU. Generated in CNTL_CALL action.

Chart: CL_CLIENT

Event: RCV_FRAG_PDU

Description: Received a response PDU for a non-authenticated call.

356 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Event: RCV_FRAG_PDU_A

Description: Received a response PDU for an authenticated call.

Chart: CL_CLIENT

Event: RCV_LAST_OUT_FRAG

Description: Received last fragment of response PDU and signalled completion to stub.

The last fragment of a multi-fragmented response or a single packet response
was received. RCV_LAST_OUT_FRAG signals that the complete response
data is available to the stub for unmarshalling.

Chart: CL_CLIENT

Event: RECEIVE_PDU

Description: Received a PDU from server.

Chart: CL_CLIENT

Event: RESEND

Description: Statechart internal event that triggers a resend of previously sent request
PDUs.

Chart: CL_CLIENT

Event: RESEND_REQ

Description: Resend the request if no fault was detected.

Definition: RESEND and not NO_CONNECTION and not FAULTS

Chart: CL_CLIENT

Event: RESET

Description: Reset ping processing after receiving an acknowledge from server.

Definition: en(CNTL_IDLE)[WORKING_PDU] or
en(CONF_IDLE) or ex(CONFIRMATION)

Chart: CL_CLIENT

Event: START_CALL

Description: Client has initiated an RPC and allocated the data (INVOKE service
primitive). The AUTH conditional flag is initialised by the run-time system to
reflect the requested security context.

Part 4 RPC Services and Protocols 357

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Event: TM_ACK

Description: Timeout for sending an acknowledge PDU for non-idempotent calls.

Definition: tm(ex(CONFIRMATION),
TIMEOUT_ACK)[NON_IDEMPOTENT]

Chart: CL_CLIENT

Event: TM_WAIT

Description: Timeout for receiving a response PDU.

Definition: tm(en(CONF_IDLE) or
en(PING_IDLE)[in(CONF_IDLE)],
TIMEOUT_WAIT)

10.1.4 CL_CLIENT Conditions

The CL_CLIENT statechart defines the following conditions:

Chart: CL_CLIENT

Condition: AUTH

Description: Statechart internal flag: indicates that call is authenticated.

Chart: CL_CLIENT

Condition: BOOT_TIME_EQ

Description: Statechart internal flag.

Definition: SND_BOOT_TIME=PDU_BOOT_TIME or
SND_BOOT_TIME=0

Chart: CL_CLIENT

Condition: BROADCAST

Description: Statechart internal flag: broadcast call semantic.

Chart: CL_CLIENT

Condition: BURST

Description: Run time internal flag set if no fack is expected before sending next fragment.
This flag is used by RPC run-time implementations to optimise the frequency
of fragmented outbound packets.

The algorithms used to optimise traffic and avoid congestion are
implementation-specific. The protocol machine waits for incoming fack PDUs
if burst mode is off. The next outbound fragment is triggered by an inbound
fack PDU.

Run time implementations are responsible for setting the corresponding
nofack flags in the PDU header.

358 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Condition: CANCEL_ACK_PDU

Description: Statechart internal flag: received cancel_ack PDU.

Chart: CL_CLIENT

Condition: CNTL_PDU

Description: Statechart internal flag: control PDUs to be received.

Definition: PDU_TYPE=FAULT or PDU_TYPE=WORKING or
PDU_TYPE=NOCALL or PDU_TYPE=REJECT or
PDU_TYPE=FACK

Chart: CL_CLIENT

Condition: CURRENT_PENDING_CANCEL

Description: Cancel pending state passed from stub during initialisation of call.

Chart: CL_CLIENT

Condition: FACK_PDU

Description: Statechart internal flag: received fack PDU.

Chart: CL_CLIENT

Condition: FAULT_PDU

Description: Statechart internal flag: received fault PDU.

Chart: CL_CLIENT

Condition: IDEMPOTENT

Description: Statechart internal flag: idempotent call.

Chart: CL_CLIENT

Condition: IN_FRAG_NUM_EQ

Description: Statechart internal flag: received frag at server and last sent frag are equal.

This condition verifies the fragment number that was received in a fack PDU.
(See Chapter 12 for details.)

Definition: SND_FRAG_NUM=PDU_FRAG_NUM

Part 4 RPC Services and Protocols 359

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Condition: IN_FRAG_NUM_NE

Description: Statechart internal flag: received frag at server and last sent frag are not equal.

This condition verifies the fragment number that was received in a fack PDU.
(See Chapter 12 for details.)

Definition: SND_FRAG_NUM/=PDU_FRAG_NUM

Chart: CL_CLIENT

Condition: LAST_IN_FRAG

Description: Statechart internal flag: last in fragment or non-frag in packet ready to send.

This flag is set by the run-time system if the transmit queue contains the last
fragment (see also Section 9.3 on page 333).

Chart: CL_CLIENT

Condition: LAST_OUT_FRAG

Description: Statechart internal flag: last out fragment or non-frag out packet received.

Chart: CL_CLIENT

Condition: MAYBE

Description: Statechart internal flag: maybe call.

Chart: CL_CLIENT

Condition: NOCALL_PDU

Description: Statechart internal flag: received nocall PDU.

Chart: CL_CLIENT

Condition: NON_IDEMPOTENT

Description: Statechart internal flag: non-idempotent (at-most-once) call.

Definition: not IDEMPOTENT and not BROADCAST and not MAYBE

Chart: CL_CLIENT

Condition: NO_FACK

Description: Statechart internal flag: received PDU with nofack flag true.

360 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Condition: PDU_FRAG

Description: PDU flag fragment.

Chart: CL_CLIENT

Condition: PDU_LAST_FRAG

Description: PDU flag lastfrag.

Chart: CL_CLIENT

Condition: PDU_NO_FACK

Description: PDU flag nofack.

Chart: CL_CLIENT

Condition: REJECT_PDU

Description: Statechart internal flag: received reject PDU.

Chart: CL_CLIENT

Condition: REQUEST_ACTIVE

Description: Statechart internal flag: send request has started.

Chart: CL_CLIENT

Condition: RESPONSE_ACTIVE

Description: Statechart internal flag: indicates availability of response data.

Chart: CL_CLIENT

Condition: RT_BUF_LIMIT

Description: Statechart internal flag: buffer limit reached for out packets.

The conditional flag RT_BUF_LIMIT triggers the generation of a fack PDU
which requests the sender of data fragments to readjust the transmission rate.

It is a mechanism to indicate internal buffer limits (overflow) for avoidance of
congestions and retransmissions. Since recipients may not evaluate the fack
body data in a certain way, implementations must not rely on changes in the
transmission rate. This indication is an advisory.

Run time implementations are responsible for setting the RT_BUF_LIMIT flag,
according to its policies.

Part 4 RPC Services and Protocols 361

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Condition: RT_PENDING_CANCEL

Description: Statechart internal: cancel pending state at server’s provider.

Chart: CL_CLIENT

Condition: RT_SECURITY_CONTEXT

Description: Statechart internal flag: set true if security context for call has been
established.

Chart: CL_CLIENT

Condition: SEQ_NUM_GTE

Description: Statechart internal flag: received sequence number ≥ initial call sequence
number.

Definition: PDU_SEQ_NUM>=RT_SEQ_NUM

Chart: CL_CLIENT

Condition: SESSION

Description: Verify that call request is for same session (activity UUID matches).

Definition: SND_ACTIVITY_ID=SESSION_ACTIVITY_ID

Chart: CL_CLIENT

Condition: SND_FRAG

Description: Statechart internal flag: header flag frag of next fragments to be sent.

Chart: CL_CLIENT

Condition: SND_LAST_FRAG

Description: Statechart internal flag: header flag lastfrag for PDU to be sent.

Chart: CL_CLIENT

Condition: TICKET

Description: The authentication ticket is valid (not expired or about to expire).

The authentication ticket from the call’s client principal to the server’s
principal is valid. The particular ticket depends on the client/server pair of
principals, and may be different for different RPCs.

Note that implementations may cache unexpired tickets, even across process
invocations or system reboots. Therefore, this condition predicate may be
maintained external to the RPC run-time system.

362 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Condition: TRANSMIT_REQ

Description: One or more fragments queued for transmission of request data.

This flag indicates that one or more request fragment(s) are queued in a run-
time internal buffer and ready to be transmitted. In conjunction with the
BURST flag and possibly expected fack PDUs, an event for transmitting the
next fragment will be generated.

The run-time system internally sets this flag to true after the stub initially
provided data in the transmit queue, sufficient for at least the first PDU
fragment to be transmitted. The protocol machine resets this flag if it has
detected and taken an event for sending the next fragment in the queue. The
run-time system sets this flag again after completion of a SEND_PKT activity
if the transmit queue contains enough data for the next PDU fragment to be
transmitted.

Chart: CL_CLIENT

Condition: VALID_PDU_HEADER

Description: Pre-evaluation of PDU header (before authentication processing).

Definition: PDU_ACTIVITY_ID=SESSION_ACTIVITY_ID and
PDU_AUTH_SPEC=RT_AUTH_SPEC and
SEQ_NUM_GTE and BOOT_TIME_EQ and
PDU_VERSION_NUM=CL_VERSION_NUM_V20

Chart: CL_CLIENT

Condition: WORKING_PDU

Description: Statechart internal flag: received working PDU.

10.1.5 CL_CLIENT Actions

The CL_CLIENT statechart defines the following actions:

Chart: CL_CLIENT

Action: CAN_CALL

Description: Set up cancel PDU to be sent.

Definition: INCR_CANCEL_ID;
SND_REQUEST_TYPE:=CANCEL;
st!(SEND_PKT)

Part 4 RPC Services and Protocols 363

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Action: CNTL_CALL

Description: Reactions on received control PDUs.

Definition: IF
CANCEL_ACK_PDU and
RT_RCV_CANCEL_ID>RT_CANCEL_ID

THEN
RT_CANCEL_ID:=RT_RCV_CANCEL_ID

END IF;
IF
FACK_PDU or NOCALL_PDU and
PDU_FACK_BODY/=NULL

THEN
EVAL_FACK_BODY

END IF;
IF
WORKING_PDU

THEN
RT_WAIT_COUNT:=RT_WAIT_COUNT+1

END IF;
IF
NOCALL_PDU or FACK_PDU and
IN_FRAG_NUM_NE

THEN
RESEND_IN_FRAGS

END IF;
IF
FAULT_PDU or REJECT_PDU

THEN
RCV_FAULT

END IF

Chart: CL_CLIENT

Action: DO_OUT_PKT

Description: Append received response PDU body data to internal buffer.

Definition: RT_CONT_OUT_FRAG_NUM:=RT_CONT_OUT_FRAG_NUM+1;
RT_OUT_PARAMS:=RT_OUT_PARAMS+RT_BODY

Chart: CL_CLIENT

Action: DO_REQ

Description: Send last in fragment to server.

Definition: fs!(TRANSMIT_REQ);
IF
LAST_IN_FRAG

THEN
tr!(SND_LAST_FRAG)

ELSE

364 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

fs!(SND_LAST_FRAG)
END IF;
SND_FRAG_NUM:=SND_FRAG_NUM+1;
SND_SERIAL_NUM:=SND_SERIAL_NUM+1;
RT_REQUEST_COUNT:=0;
RT_WAIT_COUNT:=0;
SND_IN_PARAMS:=RT_IN_FRAG;
SND_REQUEST_TYPE:=REQUEST;
st!(SEND_PKT)

Chart: CL_CLIENT

Action: DO_RESP

Description: Evaluate response PDU header.

Definition: RT_BODY:=PDU_BODY;
RT_OUT_FRAG_NUM:=PDU_FRAG_NUM;
RT_OUT_SERIAL_NUM:=PDU_SERIAL_NUM;
IF
AUTH

THEN
RT_AUTH_VERIFIER_CALL:=PDU_AUTH_VERIFIER

END IF;
IF
PDU_NO_FACK

THEN
tr!(NO_FACK)

ELSE
fs!(NO_FACK)

END IF;
IF
PDU_LAST_FRAG or not PDU_FRAG

THEN
tr!(LAST_OUT_FRAG);
RT_LAST_OUT_FRAG_NUM:=PDU_FRAG_NUM

END IF

Chart: CL_CLIENT

Action: EVAL_FACK_BODY

Description: Invoke implementation-specific activity to evaluate fack PDU body data.

This action reads the fack PDU body data according to the PDU specification.
It is RPC run-time system implementation-specific how this data will be
evaluated and used for subsequent fragmented transmissions. Note that this
action also handles nocall PDUs that have body data, equivalent to fack PDU
body data.

Definition: rd!(PDU_FACK_BODY)

Part 4 RPC Services and Protocols 365

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Action: FACK_CALL

Description: Send fack PDU if nofack flag is false or receiver has buffer full condition.

Definition: SND_IN_PARAMS:=RT_FACK_BODY;
SND_REQUEST_TYPE:=FACK;
st!(SEND_PKT)

Chart: CL_CLIENT

Action: FINAL

Description: Send ack PDU to server (for non-idempotent calls only).

Definition: WHEN
TM_ACK

THEN
SND_REQUEST_TYPE:=ACK;
st!(SEND_PKT)

END WHEN

Chart: CL_CLIENT

Action: FIRST_REQ

Description: Set up and send first request PDU.

If the request is non-fragmented (single PDU), the actual send activity will be
performed through the LAST_REQ action.

Definition: tr!(REQUEST_ACTIVE);
SND_FRAG_NUM:=0;
RT_IN_FRAG:=RT_IN_PARAMS;
SND_SEQ_NUM:=RT_SEQ_NUM;
SND_IF_ID:=RT_IF_ID;
SND_IF_VERSION:=RT_IF_VERSION;
SND_OBJ_ID:=RT_OBJ_ID;
SND_OP_NUM:=RT_OP_NUM;
SND_AUTH_SPEC:=RT_AUTH_SPEC;
RT_WAIT_COUNT:=0;
IF
not LAST_IN_FRAG

THEN
fs!(TRANSMIT_REQ);
tr!(SND_FRAG);
SND_IN_PARAMS:=RT_IN_PARAMS;
SND_REQUEST_TYPE:=REQUEST;
st!(SEND_PKT)

ELSE
fs!(SND_FRAG)

END IF

366 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Action: INCR_CANCEL_ID

Description: Increment cancel_id (implementation-specific algorithm).

Definition: RT_CANCEL_ID:=RT_CANCEL_ID+1

Chart: CL_CLIENT

Action: INIT_CANCEL_ID

Description: Initialise the cancel_id to be sent in the 1st request (implementation-specific).

Definition: RT_CANCEL_ID:=0;
RT_RCV_CANCEL_ID:=0

Chart: CL_CLIENT

Action: RESEND_IN_FRAGS

Description: Perform a resend of previously sent request fragments.

Definition: fs!(TRANSMIT_REQ);
RT_REQUEST_COUNT:=RT_REQUEST_COUNT+1;
st!(RESET_IN_FRAG)

Chart: CL_CLIENT

Action: SETUP_CALL

Description: Set up and initialise call data.

Definition: fs!(REQUEST_ACTIVE);
RT_SEQ_NUM:=RT_SEQ_NUM+1;
RT_REQUEST_COUNT:=0;
fs!(SND_LAST_FRAG);
SND_SERIAL_NUM:=0;
INIT_CANCEL_ID;
fs!(RT_PENDING_CANCEL)

10.1.6 CL_CLIENT Data-Items

The CL_CLIENT statechart defines the following data items:

Chart: CL_CLIENT

Data Item: ACK

Description: Constant: PDU type ack.

Definition: 7

Part 4 RPC Services and Protocols 367

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Data Item: CANCEL

Description: Constant: PDU type cancel.

Definition: 8

Chart: CL_CLIENT

Data Item: CANCEL_ACK

Description: Constant: PDU type cancel_ack.

Definition: 10

Chart: CL_CLIENT

Data Item: CL_VERSION_NUM_V20

Description: Constant: RPC protocol version 2.0 version number.

Definition: 4

Chart: CL_CLIENT

Data Item: CONST_COMM_FAILURE

Description: Reject status code.

Chart: CL_CLIENT

Data Item: FACK

Description: Constant: PDU type fack.

Definition: 9

Chart: CL_CLIENT

Data Item: FAULT

Description: Constant: PDU type fault.

Definition: 3

Chart: CL_CLIENT

Data Item: MAX_PINGS

Description: Constant for max numbers of unacknowledged pings.

368 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Data Item: MAX_REQUESTS

Description: Constant for maximum numbers of requests that should be sent per call.

Chart: CL_CLIENT

Data Item: NOCALL

Description: Constant: PDU type nocall.

Definition: 5

Chart: CL_CLIENT

Data Item: PDU_ACTIVITY_ID

Description: PDU header field: act_id.

Chart: CL_CLIENT

Data Item: PDU_AUTH_SPEC

Description: PDU header field: auth_proto.

Chart: CL_CLIENT

Data Item: PDU_AUTH_VERIFIER

Description: PDU trailer: authentication verifier (authentication protocol-specific).

Chart: CL_CLIENT

Data Item: PDU_BODY

Description: Array of PDU body data.

Chart: CL_CLIENT

Data Item: PDU_BOOT_TIME

Description: PDU header field: server_boot (value of zero at first request from client).

Chart: CL_CLIENT

Data Item: PDU_CANCEL_ID

Description: cancel_id of received cancel_ack PDU body data.

Part 4 RPC Services and Protocols 369

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Data Item: PDU_FACK_BODY

Description: Body information of fack PDU (implementation-dependent).

Chart: CL_CLIENT

Data Item: PDU_FAULT_STATUS

Description: Fault status associated with the fault PDU body.

Chart: CL_CLIENT

Data Item: PDU_FRAG_NUM

Description: PDU header field: fragnum.

Chart: CL_CLIENT

Data Item: PDU_REJECT_STATUS

Description: Reject status code associated with reject PDU body.

Chart: CL_CLIENT

Data Item: PDU_SEQ_NUM

Description: PDU header field: seqnum.

Chart: CL_CLIENT

Data Item: PDU_SERIAL_NUM

Description: PDU header field: serial_hi.

Chart: CL_CLIENT

Data Item: PDU_TYPE

Description: PDU header field: ptype.

Chart: CL_CLIENT

Data Item: PDU_VERSION_NUM

Description: PDU header field: rpc_vers.

Chart: CL_CLIENT

Data Item: PING

Description: Constant: PDU type ping.

Definition: 1

370 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Data Item: REJECT

Description: Constant: PDU type reject.

Definition: 6

Chart: CL_CLIENT

Data Item: REQUEST

Description: Constant: PDU type request.

Definition: 0

Chart: CL_CLIENT

Data Item: RESPONSE

Description: Constant: PDU type response.

Definition: 2

Chart: CL_CLIENT

Data Item: RT_AUTH_SPEC

Description: Statechart internal: authentication protocol specifier used in current call.

Chart: CL_CLIENT

Data Item: RT_AUTH_VERIFIER_CALL

Description: Statechart internal: received authentication trailer (verifier) for response PDU.

Chart: CL_CLIENT

Data Item: RT_AUTH_VERIFIER_CNTL

Description: Received authentication trailer (verifier) for control PDU.

Chart: CL_CLIENT

Data Item: RT_BODY

Description: Statechart internal: temporarily buffered response PDU body data.

Chart: CL_CLIENT

Data Item: RT_CANCEL_ID

Description: Statechart internal: cancel_id as received with cancel_ack PDU.

Part 4 RPC Services and Protocols 371

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Data Item: RT_CONT_OUT_FRAG_NUM

Description: Statechart internal: last fragment number of continuously buffered out block.

Chart: CL_CLIENT

Data Item: RT_EXCEPTION_STATUS

Description: Statechart internal: status value passed to exception handler.

Chart: CL_CLIENT

Data Item: RT_FACK_BODY

Description: Statechart internal: body data for fack PDU.

Chart: CL_CLIENT

Data Item: RT_IF_ID

Description: Statechart internal: buffered interface UUID of RPC.

Chart: CL_CLIENT

Data Item: RT_IF_VERSION

Description: Statechart internal: buffered interface version of RPC.

Chart: CL_CLIENT

Data Item: RT_IN_FRAG

Description: Statechart internal pointer to data to be sent in next request PDU.

The SEND_PKT activity increments this pointer after a request PDU was sent.

Chart: CL_CLIENT

Data Item: RT_IN_PARAMS

Description: Statechart internal: buffered array of reassembled input data.

RT_IN_PARAMS is the queue of transmit data provided by the stub. A
possible segmentation of this queue is not equivalent to the sizes of PDU
fragments sent by the run-time system (SEND_PKT) activity.

The RT_IN_FRAG variable is a pointer data type that points to the to be
transmitted data fragment within this RT_IN_PARAMS queue.

372 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Data Item: RT_LAST_OUT_FRAG_NUM

Description: Fragment number of last out fragment of remote procedure call.

Chart: CL_CLIENT

Data Item: RT_OBJ_ID

Description: Statechart internal: buffered object UUID of RPC.

Chart: CL_CLIENT

Data Item: RT_OP_NUM

Description: Statechart internal: buffered operation number of RPC.

Chart: CL_CLIENT

Data Item: RT_OUT_FRAG_NUM

Description: Statechart internal: fragnum of currently received response PDU.

Chart: CL_CLIENT

Data Item: RT_OUT_PARAMS

Description: Buffered array of unfragmented output data.

Chart: CL_CLIENT

Data Item: RT_OUT_SERIAL_NUM

Description: Serial number of sent fragment.

Chart: CL_CLIENT

Data Item: RT_PING_COUNT

Description: Counter for transmitted ping PDUs per WAIT cycle.

Chart: CL_CLIENT

Data Item: RT_RCV_CANCEL_ID

Description: Statechart internal: received cancel identifier.

Chart: CL_CLIENT

Data Item: RT_REQUEST_COUNT

Description: The number of times a request PDU has been sent for the current fragment.

Part 4 RPC Services and Protocols 373

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Data Item: RT_SEQ_NUM

Description: Sequence number of call: determined by the run-time system
(implementation-specific).

The SETUP_CALL action increments this sequence number for every new
instance of a call. Implementations may choose a different algorithm,
complying to the definition of sequence numbers as specified in Section 12.5
on page 512.

Chart: CL_CLIENT

Data Item: RT_WAIT_COUNT

Description: Statechart internal: counter to determine the length of wait in REQ_WAIT
state.

Chart: CL_CLIENT

Data Item: SESSION_ACTIVITY_ID

Description: Statechart internal: activity UUID of current RPC (passed from stub).

Chart: CL_CLIENT

Data Item: SND_ACTIVITY_ID

Description: Activity UUID of current RPC.

Chart: CL_CLIENT

Data Item: SND_AUTH_SPEC

Description: Authentication specifier used for current RPC.

Chart: CL_CLIENT

Data Item: SND_BOOT_TIME

Description: Boot time value promoted to SEND_PKT activity.

Chart: CL_CLIENT

Data Item: SND_FRAG_NUM

Description: Fragment number of PDU to be sent.

374 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_CLIENT Machine

Chart: CL_CLIENT

Data Item: SND_IF_ID

Description: Interface UUID of current RPC.

Chart: CL_CLIENT

Data Item: SND_IF_VERSION

Description: Interface version number of current RPC.

Chart: CL_CLIENT

Data Item: SND_IN_PARAMS

Description: PDU body data promoted to SEND_PKT activity.

Chart: CL_CLIENT

Data Item: SND_OBJ_ID

Description: Object UUID of current RPC.

Chart: CL_CLIENT

Data Item: SND_OP_NUM

Description: Operation number of current RPC.

Chart: CL_CLIENT

Data Item: SND_REQUEST_TYPE

Description: PDU type to be sent.

Chart: CL_CLIENT

Data Item: SND_SEQ_NUM

Description: Sequence number of current RPC.

Chart: CL_CLIENT

Data Item: SND_SERIAL_NUM

Description: Serial number of PDU to be sent.

Chart: CL_CLIENT

Data Item: TIMEOUT_ACK

Description: Timeout value for how long the client will wait before sending an ack PDU.

Part 4 RPC Services and Protocols 375

CL_CLIENT Machine Connectionless RPC Protocol Machines

Chart: CL_CLIENT

Data Item: TIMEOUT_BROADCAST

Description: Timeout value for how long the client will wait for response to a broadcast
PDU.

Chart: CL_CLIENT

Data Item: TIMEOUT_CANCEL

Description: Timeout value for cancel requests.

Sets the lower bound on the time to wait before timing out after forwarding a
cancel PDU to the server. The default of this timeout value is set to one second
(refer to Appendix K.) Applications may set a different value via the
rpc_mgmt_set_cancel_timeout RPC API.

Chart: CL_CLIENT

Data Item: TIMEOUT_FRAG

Description: Timeout value for wait for a fack PDU after a request PDU (no nofack) sent.

Chart: CL_CLIENT

Data Item: TIMEOUT_PING

Description: Timeout value for how long to wait for response to a ping PDU.

Chart: CL_CLIENT

Data Item: TIMEOUT_WAIT

Description: Timeout value for how long the client will wait for a response.

Chart: CL_CLIENT

Data Item: WORKING

Description: Constant: PDU type working.

Definition: 4

376 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

10.2 CL_SERVER Machine
Figure 10-2 shows the CL_SERVER machine statechart.

T

CL_SERVER

WORKING

C

CALL

DATA

C

INDICATION

REPLYING

PROCESS_REQ

AUTHENTICATION

REPLIED

CALLBACK

CHK_SEC_CNTXT

WAIT_WAY

WAY_IDLE

INIT

CONTROL

C

CNTL_IDLE

AUTHENTICATION

CANCEL

CAUTHENTICATION

CAN_IDLE

RCV_CAN_PDU

[AUTH]

SEND_RESPONSE/FIRST_REPLY

[not LAST_OUT_FRAG]

AUTHENTICATED

LAST_OUT_PKT/DO_REPLY

RCV_FRAG_PDU_A

RCV_FRAG_PDU

RCV_LAST_IN_FRAG

PROC_FAULT/ERROR_CALL

NEXT_OUT_PKT/DO_REPLY

COMPLETE/FINAL

SEND_RESPONSE[IDEMPOTENT and LAST_OUT_FRAG]/FIRST_REPLY

AUTHENTICATED/PROCESS_CAN

[not AUTH]/PROCESS_CAN

RCV_NEXT_CALL/SETUP_CALL

RESEND/DO_REPLY

[LAST_OUT_FRAG]

[PDU_AUTH_SPEC=0]

[PDU_AUTH_SPEC/=0]

[LOST]

CB_COMPLETES[not AUTH]

CB_COMPLETES[AUTH]

[RT_SECURITY_CONTEXT]

ABORT

RCV_CNTL_PDU

[AUTH]

[not AUTH]/CNTL_CALL

AUTHENTICATED/CNTL_CALL

RCV_REQ_PDU/SETUP_CALL

Figure 10-2 CL_SERVER Statechart

10.2.1 CL_SERVER Activities

The CL_SERVER statechart defines the following activities:

Chart: CL_SERVER

Activity: ABORT_CALL

Description: Flush and discard any further received packets for this call. If this activity was
caused by a detected failure, there may be numerous additional packets in the
pipeline. The flush may be lazy, upon subsequent receive processing. Also,
notify the run-time system and stub to reclaim any resources for this call.

Part 4 RPC Services and Protocols 377

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Activity: CANCEL_NOTIFY_APP

Description: This activity notifies the manager routine of the RPC application about the
cancel request issued by the client.

CANCEL_NOTIFY_APP activity terminates after acknowledgement from the
stub. The stub sets the RETURN_PENDING_CANCEL flag appropriately.

Chart: CL_SERVER

Activity: HANDLE_IN_FRAG

Description: This activity is invoked at each received fragment evaluation of in parameters
for multi-fragmented RPC requests.

The HANDLE_IN_FRAG activity makes received data of continuous
fragments available to the stub for unmarshalling and passes the object UUID
(RT_OBJ_ID) to the manager routine. This does not require a transfer of
control from the run-time system to the stub for each fragment;
implementation policy determines when control is transferred.

In addition, if the server receives a fragment out of order,
HANDLE_IN_FRAG buffers this fragment temporarily until subsequently
received fragments allow for a consecutive inclusion of these temporarily
buffered fragments. The fragment ordering is determined by the fragment
number (RT_IN_FRAG_NUM). If previously buffered out of order fragments
are appended to the continuous receive buffer (RT_IN_PARAMS),
HANDLE_IN_FRAG must also adjust the state variable
RT_CONT_IN_FRAG_NUM. HANDLE_IN_FRAG also maintains the
selective acknowledgement bit masks which are used in the fack PDU.

Modifications of RT_CONT_IN_FRAG_NUM must be synchronised with
other actions (DO_IN_PKT) performed by the protocol machine.

Chart: CL_SERVER

Activity: RESET_OUT_FRAG

Description: This activity is invoked if the protocol machine determines that a set of
fragments needs to be retransmitted. RESET_OUT_FRAG resets the values of
SND_FRAG_NUM and RT_OUT_FRAG to the beginning of the transmission
queue. Note that the condition LAST_OUT_FRAG must also be set
appropriately.

The first fragment in this queue may not fragment number 0, since other
fragment acknowledgements may have been received, allowing the server to
free previously sent data packets. Implementations must keep state about the
acknowledgement of sent fragmented response PDUs.

This activity generates the event RESEND and marks TRANSMIT_RESP as
true to trigger the transitions that actually invoke the appropriate SEND_PKT
activities.

378 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Activity: SEND_PKT

Description: Prepare a PDU to send to the client, adding the appropriate header
information as necessary. If security services were requested (conditional flag
AUTH is true), apply per-message security services. Send the PDU.

The conditional flags and data items set in the run-time system (with prefix
SND_) provide the appropriate input for generating the PDU data. Note that
actions within the same execution step that started this activity may have
assigned values to the SND_* variables which have to be taken by this
instance of the activity.

After sending a response PDU, the RT_OUT_FRAG pointer is incremented
accordingly, to point to the remaining data in the transmit queue.

Note: The SEND_PKT activity may be invoked simultaneously by several
orthogonal states (WORKING, CONTROL, CANCEL, and so on).
The run-time system must catch these send requests, buffer these and
the associated data, and perform the sends in sequential order.

Chart: CL_SERVER

Activity: SEND_WAY

Description: Set up and perform the conversation manager remote procedure call
conv_who_are_you () (specified in Appendix P). Conversation manager
operations enable servers to enforce at-most-once execution semantics.

The server invokes this activity when it does not have a record of the client’s
call sequence number.

There are three cases in which a server will have no record of a client’s
sequence number:

• when the request is the first request from the client

• when the request is a duplicate and the server has executed the original
request, but due to a crash, the server has not sent a response and has lost
all information about the client

• when the request is a duplicate, the server has executed the original
request, and the server has sent a response, but due to a delay in the client
acknowledgement, the server has discarded all information about the
client.

Input parameters for this call are:

h The primitive call handle.

actuid This is SND_ACTIVITY_ID, passed from the protocol
machine; the activity UUID of the current outstanding
request. In implementations that support multiple
simultaneous client requests, this value is used to identify
the client about whose request the server is querying.

boot_time This is SYS_BOOT_TIME, passed from the protocol
machine; the server’s boot time.

Part 4 RPC Services and Protocols 379

CL_SERVER Machine Connectionless RPC Protocol Machines

Output parameters are:

seq This is passed as PARAM_CB_SEQ_NUM to the protocol
machine: the sequence number that the client associates
with its current outstanding request.

st This is passed as PARAM_CB_STATUS to the protocol
machine; the status information returned by the operation.
This may be one of:

CONST_RPC_S_OK Operation succeeded.

CONST_YOU_CRASHED The server has crashed and
rebooted since establishing
communication with the
client.

CONST_BAD_ACT_ID The activity UUID was
wrong.

The client of the initiating RPC acts as server for an idempotent call with the
same activity identifier (that is, a CL_SERVER protocol machine gets
instantiated). The client (now acting as server) sets the received server
boot_time (SYS_BOOT_TIME) in the client protocol machine
(SND_BOOT_TIME). If the client subsequently receives a conversation
manager request whose SYS_BOOT_TIME is later than the stored
SND_BOOT_TIME, the client knows that the server has crashed and rebooted
and sends a status CONST_YOU_CRASHED in its response.

Chart: CL_SERVER

Activity: SEND_WAY2

Description: SEND_WAY2 supersedes SEND_WAY and is called only if the server stub
signals that it requires the execution context of the current call and if the run-
time protocol machine has not obtained this state information yet. This
activity performs the conv_who_are_you2 () remote procedure call (specified in
Appendix P).

The additional output parameter is:

cas_uuid This is passed as PARAM_CLIENT_EXECUTION_CONTEXT to
the protocol machine: a UUID that uniquely identifies the
execution context (address space) of the calling client. This
information is needed for servers that maintain client context
state.

Note: If the RPC is an authenticated call, the run-time system should have
the execution context information already, since
PARAM_CLIENT_EXECUTION_CONTEXT is carried as out
parameter of the SEND_WAYAUTH activity.

380 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Activity: SEND_WAYAUTH

Description: SEND_WAYAUTH supersedes SEND_WAY and SEND_WAY2 and is called
only for authenticated RPC requests (conditional flag AUTH is true) that do
not use a previously established security context (RT_SECURITY_CONTEXT
condition is false). This activity performs the conv_who_are_you_auth () remote
procedure call (specified in Appendix P).

The additional input parameters are:

in_len This is SND_CB_IN_LEN, passed from the protocol
machine; the length in bytes of SND_CB_IN_DATA.

in_data This is SND_CB_IN_DATA, passed from the protocol
machine; An array of bytes issued to the client as an
authentication challenge.

Contents of in_data are determined by the authentication
protocol used. Encodings for the protocol
dce_c_rpc_authn_protocol_krb5 are specified in Chapter 13.

out_max_len This is SND_CB_OUT_MAX_LEN, passed from the
protocol machine; the maximum length in bytes of the array
to be returned in PARAM_CB_OUT_DATA.

The additional output parameters are:

out_len This is passed as PARAM_CB_OUT_LEN to the protocol
machine; the length in bytes of PARAM_CB_OUT_DATA.

out_data This is passed as PARAM_CB_OUT_DATA to the protocol
machine; an array of bytes returned to the server as an
authentication response.

Contents of out_data are determined by the authentication
protocol used. Encodings for
dce_c_rpc_authn_protocol_krb5 protocol are specified in
Chapter 13.

The client of the initiating RPC (now acting as server) verifies the received
challenge message and sets (if succeeded) the condition flag
RT_SECURITY_CONTEXT in the client protocol machine to true, otherwise it
sets RT_SECURITY_CONTEXT to false and raises the event DENIED.

Chart: CL_SERVER

Activity: VERIFY_AUTH

Description: Verify the authentication trailer of PDU and decrypt message if necessary.

This activity takes as input values the PDU header field auth_proto
(authentication protocol specifier: RT_AUTH_SPEC) and the authentication
verifier (PDU trailer: RT_AUTH_VERIFIER).

Depending on the result of the verification, the activity VERIFY_AUTH
generates either the event AUTHENTICATED (success) or DENIED
(authentication failure).

Part 4 RPC Services and Protocols 381

CL_SERVER Machine Connectionless RPC Protocol Machines

The algorithm applied to this activity is dependent on the security service in
use (determined by RT_AUTH_SPEC). The general evaluation steps for
authentication service rpc_c_authn_dce_secret are as follows (for more details
see Chapter 13):

• Check the protection level applied to the PDU (parameter in
RT_AUTH_VERIFIER) against the protection level for the call (negotiated
security context). If matching, proceed with verification, otherwise raise
DENIED.

Note that bind requests are used for negotiating the security context.
Therefore, the protection level will not be verified for these PDUs; this
verification takes only place for actual call PDUs.

• Decrypt the cyphertext portion of the verifier and verify PDUs integrity. If
discrepancies are found, raise DENIED, otherwise raise
AUTHENTICATED and proceed (if privacy protected).

• If privacy protection is requested, decrypt PDU body data.

Note: The VERIFY_AUTH activity may be invoked simultaneously by
several orthogonal states (WORKING, CONTROL and CANCEL).
VERIFY_AUTH must not generate the event AUTHENTICATED
unless the entire requested authentication processing is completed. If
VERIFY_AUTH detects an authentication failure and generates the
event DENIED, the protocol machine rejects the RPC and no further
processing is required.

Chart: CL_SERVER

Activity: VERIFY_AUTH_CONTEXT

Description: Verifies the results of the conversation manager callback (SEND_WAYAUTH)
according to the authentication protocol used.

This activity evaluates the returned parameter PARAM_CB_OUT_DATA
(PARAM_CB_OUT_LEN), containing the authentication response. It sets the
condition flag RT_SECURITY_CONTEXT to true if verification succeeded or
raises DENIED if verification failed.

10.2.2 CL_SERVER States

The CL_SERVER statechart defines the following states:

Chart: CL_SERVER

State: AUTHENTICATION

Description: Process authentication verification.

Reactions
Trigger Action

[RT_SECURITY_CONTEXT] st!(VERIFY_AUTH)

382 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

State: AUTHENTICATION

Description: Process authentication verification.

Reactions
Trigger Action

[RT_SECURITY_CONTEXT] st!(VERIFY_AUTH)

Chart: CL_SERVER

State: AUTHENTICATION

Description: Process authentication verification.

Reactions
Trigger Action

[RT_SECURITY_CONTEXT] st!(VERIFY_AUTH)

Chart: CL_SERVER

State: CALL

Description: Processing a remote procedure call request.

Reactions
Trigger Action

RT_IN_PARAMS:=NULL;
RT_CONT_IN_FRAG_NUM:=-1

entering

IF
PDU_IDEMPOTENT

THEN
tr!(IDEMPOTENT)

END IF

entering

IF
PDU_MAYBE

THEN
tr!(MAYBE)

END IF

entering

IF
PDU_BROADCAST

THEN
tr!(BROADCAST)

END IF

entering

IF
SEQ_NUM_GT

THEN
RT_SEQ_NUM:=PDU_SEQ_NUM

END IF

entering

Part 4 RPC Services and Protocols 383

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

State: CALLBACK

Description: Processing of conversation manager callback procedures.

Chart: CL_SERVER

State: CANCEL

Description: Processing of client requests to terminate the call in progress.

The reaction within this state senses the termination of the
CANCEL_NOTIFY_APP activity as cancel acknowledgement from the server
manager routine. The manager routine also sets the
RETURN_PENDING_CANCEL flag appropriately.

Reactions
Trigger Action

fs!(SND_PENDING_CANCEL);
RT_CANCEL_ID:=0

entering

IF
RETURN_PENDING_CANCEL

THEN
tr!(SND_PENDING_CANCEL)

END IF;
CANACK_CALL

sp(CANCEL_NOTIFY_APP)

Chart: CL_SERVER

State: CAN_IDLE

Description: Waits for cancel requests.

Reactions
Trigger Action

IF
AUTH

THEN
RT_AUTH_VERIFIER_CAN:=PDU_AUTH_VERIFIER

END IF

exiting

Chart: CL_SERVER

State: CHK_SEC_CNTXT

Description: Verify the security context negotiated through SEND_WAYAUTH callback.

Activities Throughout:
VERIFY_AUTH_CONTEXT

384 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Reactions
Trigger Action

ex(CHK_SEC_CNTXT)

fs!(CONTEXT_REQUEST);
RT_CLIENT_EXECUTION_CONTEXT:=
PARAM_CLIENT_EXECUTION_CONTEXT

[RT_SECURITY_CONTEXT]

Chart: CL_SERVER

State: CL_SERVER

Description: Main state for statechart CL_SERVER.

Chart: CL_SERVER

State: CNTL_IDLE

Description: Waits for incoming control PDUs.

Reactions
Trigger Action

RECEIVE_PDU[PDU_TYPE=ACK
and VALID_PDU_HEADER]

tr!(ACK_PDU)

RECEIVE_PDU[PDU_TYPE=FACK
and VALID_PDU_HEADER]

tr!(FACK_PDU)

RECEIVE_PDU[PDU_TYPE=PING
and VALID_PDU_HEADER]

tr!(PING_PDU)

IF
AUTH

THEN
RT_AUTH_VERIFIER_CNTL:=
PDU_AUTH_VERIFIER

END IF

exiting

fs!(ACK_PDU);
fs!(FACK_PDU);
fs!(PING_PDU)

en(CNTL_IDLE)

RECEIVE_PDU[CNTL_PDU
and VALID_PDU_HEADER]

RCV_CNTL_PDU

Chart: CL_SERVER

State: CONTROL

Description: Processing received control PDUs.

Part 4 RPC Services and Protocols 385

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

State: DATA

Description: Processing the data PDUs for remote procedure call.

Reactions
Trigger Action

SND_SERIAL_NUM:=0;
RT_REPLY_COUNT:=0

en(DATA)

Chart: CL_SERVER

State: INDICATION

Description: Handles incoming RPC request fragments.

Reactions
Trigger Action

en(INDICATION)[not NO_FACK or not
LAST_IN_FRAG and RT_BUF_LIMIT
and NO_FACK]

FACK_CALL

en(INDICATION)[not LAST_IN_FRAG and
RT_IN_FRAG_NUM=RT_CONT_IN_FRAG_NUM+1]

DO_IN_PKT;
st!(HANDLE_IN_FRAG)

en(INDICATION)[not LAST_IN_FRAG and
RT_IN_FRAG_NUM/=RT_CONT_IN_FRAG_NUM+1]

st!(HANDLE_IN_FRAG)

RECEIVE_PDU[PDU_TYPE=REQUEST and
VALID_PDU_HEADER and not AUTH]

DO_REQ;
RCV_FRAG_PDU

RECEIVE_PDU[PDU_TYPE=REQUEST and
VALID_PDU_HEADER and AUTH]

DO_REQ;
RCV_FRAG_PDU_A

en(INDICATION)[LAST_IN_FRAG and
RT_LAST_IN_FRAG_NUM=
RT_CONT_IN_FRAG_NUM+1]

st!(HANDLE_IN_FRAG);
RCV_LAST_IN_FRAG

Chart: CL_SERVER

State: INIT

Description: Initial call state. Waits for request from client.

Reactions
Trigger Action

RECEIVE_PDU[PDU_TYPE=REQUEST
and not BOOT_TIME_EQ]

REJECT_CALL

tm(en(WORKING), TIMEOUT_IDLE) st!(ABORT_CALL)

386 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

State: PROCESS_REQ

Description: Promotes completely received request to manager routine (RPC stub).

Reactions
Trigger Action

entering RT_OUT_PARAMS:=NULL

Chart: CL_SERVER

State: REPLIED

Description: Terminal state for at-most-once calls.

Reactions
Trigger Action

tm(en(REPLIED), TIMEOUT_RESEND) RESEND_OUT_FRAGS

Chart: CL_SERVER

State: REPLYING

Description: Handles fragmented reply to client.

Reactions
Trigger Action

tm(en(REPLYING), TIMEOUT_RESEND) RESEND_OUT_FRAGS

Chart: CL_SERVER

State: WAIT_WAY

Description: Invoke conversation manager and wait for response.

Reactions
Trigger Action

en(WAIT_WAY) DO_CALLBACK

ex(WAIT_WAY)[not AUTH
and CONTEXT_REQUEST]

fs!(CONTEXT_REQUEST);
RT_CLIENT_EXECUTION_CONTEXT:=
PARAM_CLIENT_EXECUTION_CONTEXT

Chart: CL_SERVER

State: WAY_IDLE

Description: Idle unless new conversation manager request.

Part 4 RPC Services and Protocols 387

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

State: WORKING

Description: Main working state for call instance.

Reactions
Trigger Action

fs!(BROADCAST);
fs!(MAYBE);
fs!(IDEMPOTENT);
fs!(LAST_IN_FRAG)

en(WORKING)

10.2.3 CL_SERVER Events

The CL_SERVER statechart defines the following events:

Chart: CL_SERVER

Event: ABORT

Description: RPC session (same activity UUID) has terminated.

Definition: st(ABORT_CALL)

Chart: CL_SERVER

Event: AUTHENTICATED

Description: Authentication processing completed successfully.

Chart: CL_SERVER

Event: AUTHENTICATED_RES

Description: Authentication for cancel PDU successful (request already processed).

Definition: AUTHENTICATED[in(CANCEL.AUTHENTICATION)
and (in(REPLYING) or in(REPLIED))]

Chart: CL_SERVER

Event: CB_COMPLETES

Description: Callback completes successfully: the conversation manager callback has
completed.

Definition: (sp(SEND_WAY) or
sp(SEND_WAYAUTH))[PARAM_CB_STATUS=CONST_RPC_S_OK]

388 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Event: CB_FAULT

Description: Callback completes: client detected mismatch in sequence numbers.

Definition: (sp(SEND_WAY) or
sp(SEND_WAYAUTH))[RT_SEQ_NUM/=PARAM_CB_SEQ_NUM]

Chart: CL_SERVER

Event: CB_REJECT

Description: Callback completes: client detected wrong activity identifier or a server boot
time error.

Definition: (sp(SEND_WAY) or
sp(SEND_WAYAUTH))[PARAM_CB_STATUS=CONST_YOU_CRASHED
or PARAM_CB_STATUS=CONST_BAD_ACT_ID]

Chart: CL_SERVER

Event: COMPLETE

Description: RPC completed (with success or fault).

Definition: sp(SEND_PKT)[SND_REPLY_TYPE=CANCEL_ACK]
or CB_FAULT or CB_REJECT or
PROCESSING_FAULT[IDEMPOTENT or BROADCAST or MAYBE]
or COMPLETE_CLEAR or COMPLETE_FREE
or en(REPLIED)[LAST_OUT_FRAG and IDEMPOTENT]
or DENIED

Chart: CL_SERVER

Event: COMPLETE_CLEAR

Description: Ready to clear out parameters.

Definition: PROCESSING_FDNE[IDEMPOTENT] or
[(in(REPLYING) or in(REPLIED)) and
RT_REPLY_COUNT>MAX_REPLIES] or
AUTHENTICATED_RES or
en(CNTL_IDLE)[ACK_PDU and NON_IDEMPOTENT]

Chart: CL_SERVER

Event: COMPLETE_FREE

Description: Ready to free activity record for requesting client.

Definition: PROC_RESPONSE[MAYBE] or
PROCESSING_FDNE[BROADCAST or MAYBE] or
[AUTH and TICKET_EXP]

Part 4 RPC Services and Protocols 389

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Event: DENIED

Description: Authentication failure detected.

The VERIFY_AUTH activity generates this event if either the integrity check
failed or the requested protection level for authentication services does not
match.

Chart: CL_SERVER

Event: LAST_OUT_PKT

Description: Statechart internal event: last fragment of fragmented response.

Definition: [TRANSMIT_RESP and LAST_OUT_FRAG and BURST]
or en(CNTL_IDLE)[TRANSMIT_RESP and
FACK_PDU and LAST_OUT_FRAG and
OUT_FRAG_NUM_EQ]

Chart: CL_SERVER

Event: NEXT_OUT_PKT

Description: Statechart internal event: intermediate fragment of fragmented response

Definition: [TRANSMIT_RESP and not LAST_OUT_FRAG and
BURST] or en(CNTL_IDLE)[TRANSMIT_RESP and
FACK_PDU and not LAST_OUT_FRAG and
OUT_FRAG_NUM_EQ]

Chart: CL_SERVER

Event: PROCESSING_FAULT

Description: Execution of procedure failed. Returned from called procedure (stub).

Chart: CL_SERVER

Event: PROCESSING_FDNE

Description: Stub (manager routine) or run-time system rejected RPC request.

The call did not execute.

Chart: CL_SERVER

Event: PROC_FAULT

Description: Cannot execute or fault returned from called procedure (stub).

Definition: PROCESSING_FAULT or PROCESSING_FDNE[not
BROADCAST and not MAYBE]

390 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Event: PROC_RESPONSE

Description: Call returned from called procedure (server manager routine).

This event indicates that the called application procedure is ready to response
to the RPC request and has provided out parameter data in the
RT_OUT_PARAMS queue. The processing of the application procedure may
not have been completed and more out parameter data may to be queued
(sensed by the TRANSMIT_RESP and LAST_OUT_FRAG condition flags).

Chart: CL_SERVER

Event: RCV_CAN_PDU

Description: Received cancel PDU with valid header.

Definition: RECEIVE_PDU[PDU_TYPE=CANCEL and
VALID_PDU_HEADER and
PDU_CANCEL_VERSION=CONST_CANCEL_VERSION
and in(DATA)]

Chart: CL_SERVER

Event: RCV_CNTL_PDU

Description: Received one of the control PDUs (ack, fack or ping) with valid header.

Chart: CL_SERVER

Event: RCV_FRAG_PDU

Description: Received PDU for nonauthenticated fragmented requests with valid header.

Chart: CL_SERVER

Event: RCV_FRAG_PDU_A

Description: Received PDU for authenticated fragmented request with valid header.

Chart: CL_SERVER

Event: RCV_LAST_IN_FRAG

Description: Received last fragment of request PDU and callback completed (for at-most-
once).

All fragments of a multi-fragmented request are received or a single packet
request was received. RCV_LAST_IN_FRAG signals that the complete request
data is available to the stub for unmarshalling, and it transfers the control
from the run-time system to the stub for processing the RPC request.

Part 4 RPC Services and Protocols 391

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Event: RCV_NEXT_CALL

Description: Receive next remote procedure call with same activity ID.

Definition: RCV_REQ_PDU[in(REPLIED)]

Chart: CL_SERVER

Event: RCV_REQ_PDU

Description: Received request PDU (first packet for fragmented requests) with valid
header.

Definition: RECEIVE_PDU[PDU_TYPE=REQUEST and
(PDU_FRAG and PDU_FRAG_NUM=0 or not
PDU_FRAG) and SEQ_NUM_GT and BOOT_TIME_EQ
and PDU_VERSION_NUM=CL_VERSION_NUM_V20]

Chart: CL_SERVER

Event: RECEIVE_PDU

Description: Received a PDU from client.

Chart: CL_SERVER

Event: RESEND

Description: Statechart internal event that triggers a resend of complete reply PDUs.

Chart: CL_SERVER

Event: SEND_RESPONSE

Description: Called procedure provided out parameters to be sent.

Definition: PROC_RESPONSE[not MAYBE]

10.2.4 CL_SERVER Actions

The CL_SERVER statechart defines the following actions:

Chart: CL_SERVER

Action: CANACK_CALL

Description: Set up cancel_ack PDU to be sent.

The body data of this cancel acknowledgement message consists of:

• CONST_CANCEL_VERSION (that is, version number 0)

• RT_CANCEL_ID

• RT_PENDING_CANCEL.

(See also the PDU encoding of cancel_ack.)

392 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Definition: SND_REPLY_TYPE:=CANCEL_ACK;
st!(SEND_PKT)

Chart: CL_SERVER

Action: CNTL_CALL

Description: Reactions on received control PDUs.

Definition: IF
PING_PDU

THEN
PING_CALL

END IF;
IF
FACK_PDU

THEN
EVAL_FACK_BODY;
IF

in(REPLYING) and OUT_FRAG_NUM_NE or
in(REPLIED) and SEQ_NUM_LE

THEN
RESEND_OUT_FRAGS

END IF
END IF

Chart: CL_SERVER

Action: DO_CALLBACK

Description: Initialise and start activity SEND_WAY (conversation manager callback
procedure).

Definition: SND_ACTIVITY_ID:=RT_ACTIVITY_ID;
SND_AUTH_SPEC:=RT_AUTH_SPEC;
IF
not AUTH and not CONTEXT_REQUEST or AUTH
and RT_SECURITY_CONTEXT

THEN
st!(SEND_WAY)

END IF;
IF
not AUTH and CONTEXT_REQUEST

THEN
st!(SEND_WAY2)

END IF;
IF
AUTH and not RT_SECURITY_CONTEXT

THEN
st!(SEND_WAYAUTH)

END IF

Part 4 RPC Services and Protocols 393

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Action: DO_IN_PKT

Description: Append received request PDU body data to internal buffer.

Definition: RT_CONT_IN_FRAG_NUM:=RT_CONT_IN_FRAG_NUM+1;
RT_IN_PARAMS:=RT_IN_PARAMS+RT_BODY

Chart: CL_SERVER

Action: DO_REPLY

Description: Send out fragment to requesting client.

Definition: fs!(TRANSMIT_RESP);
IF
LAST_OUT_FRAG

THEN
tr!(SND_LAST_FRAG)

ELSE
fs!(SND_LAST_FRAG)

END IF;
SND_FRAG_NUM:=SND_FRAG_NUM+1;
SND_SERIAL_NUM:=SND_SERIAL_NUM+1;
SND_OUT_PARAMS:=RT_OUT_FRAG;
SND_REPLY_TYPE:=RESPONSE;
st!(SEND_PKT)

Chart: CL_SERVER

Action: DO_REQ

Description: Evaluate request PDU header.

Definition: RT_BODY:=PDU_BODY;
RT_IN_FRAG_NUM:=PDU_FRAG_NUM;
RT_IN_SERIAL_NUM:=PDU_SERIAL_NUM;
IF
PDU_AUTH_SPEC/=0

THEN
RT_AUTH_VERIFIER_CALL:=PDU_AUTH_VERIFIER

END IF;
IF
PDU_NO_FACK or PDU_FRAG

THEN
tr!(NO_FACK)

ELSE
fs!(NO_FACK)

END IF;
IF
PDU_LAST_FRAG or not PDU_FRAG

THEN
tr!(LAST_IN_FRAG);
RT_LAST_IN_FRAG_NUM:=PDU_FRAG_NUM

END IF

394 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Action: ERROR_CALL

Description: Set up error PDU (fault or reject) to be sent.

Definition: WHEN
PROCESSING_FAULT[not BROADCAST and not
MAYBE]

THEN
RT_OUT_PARAMS:=SND_FAULT_STATUS;
SND_REPLY_TYPE:=FAULT;
st!(SEND_PKT)

ELSE
WHEN

PROCESSING_FDNE[not BROADCAST and
not MAYBE]

THEN
RT_OUT_PARAMS:=SND_REJECT_STATUS;
SND_REPLY_TYPE:=REJECT;
st!(SEND_PKT)

END WHEN
END WHEN

Chart: CL_SERVER

Action: EVAL_FACK_BODY

Description: Invoke implementation-specific activity to evaluate fack body data.

This action reads the fack PDU body data according to the PDU specification.
It is RPC run-time implementation-specific how this data will be evaluated
and used for subsequent fragmented transmissions.

Definition: rd!(PDU_FACK_BODY)

Chart: CL_SERVER

Action: FACK_CALL

Description: Send fack PDU if nofack flag is false or receiver has buffer full condition.

Definition: SND_OUT_PARAMS:=RT_FACK_BODY;
SND_REPLY_TYPE:=FACK;
st!(SEND_PKT)

Chart: CL_SERVER

Action: FINAL

Description: Perform final actions for RPC.

Definition: WHEN
COMPLETE_CLEAR

THEN
RT_OUT_PARAMS:=NULL

END WHEN;

Part 4 RPC Services and Protocols 395

CL_SERVER Machine Connectionless RPC Protocol Machines

WHEN
COMPLETE_FREE

THEN
st!(ABORT_CALL)

END WHEN;
WHEN
DENIED

THEN
SND_OUT_PARAMS:=CONST_NCA_S_INVALID_CHKSUM;
SND_REPLY_TYPE:=REJECT;
st!(SEND_PKT)

END WHEN;
WHEN
CB_REJECT

THEN
SND_OUT_PARAMS:=PARAM_CB_STATUS;
SND_REPLY_TYPE:=REJECT;
st!(SEND_PKT)

END WHEN

Chart: CL_SERVER

Action: FIRST_REPLY

Description: Initialise and send first reply PDU.

Definition: fs!(TRANSMIT_RESP);
IF
LAST_OUT_FRAG

THEN
fs!(SND_FRAG);
tr!(SND_LAST_FRAG)

ELSE
tr!(SND_FRAG);
fs!(SND_LAST_FRAG)

END IF;
SND_SEQ_NUM:=RT_SEQ_NUM;
SND_IF_ID:=RT_IF_ID;
SND_IF_VERSION:=RT_IF_VERSION;
SND_OBJ_ID:=RT_OBJ_ID;
SND_OP_NUM:=RT_OP_NUM;
SND_ACTIVITY_ID:=RT_ACTIVITY_ID;
SND_AUTH_SPEC:=RT_AUTH_SPEC;
SND_BOOT_TIME:=RT_BOOT_TIME;
RT_OUT_FRAG:=RT_OUT_PARAMS;
SND_OUT_PARAMS:=RT_OUT_PARAMS;
SND_FRAG_NUM:=0;
SND_REPLY_TYPE:=RESPONSE;
st!(SEND_PKT)

396 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Action: NO_CALL

Description: Set up nocall PDU to be sent.

Definition: SND_OUT_PARAMS:=RT_FACK_BODY;
SND_REPLY_TYPE:=NOCALL;
st!(SEND_PKT)

Chart: CL_SERVER

Action: PING_CALL

Description: Actions in response to a ping PDU call.

Definition: IF
BOOT_TIME_EQ

THEN
IF

in(INIT) or (in(INDICATION) or
in(DATA.AUTHENTICATION)) and
SEQ_NUM_EQ or SEQ_NUM_GT

THEN
NO_CALL

END IF;
IF

in(PROCESS_REQ) and SEQ_NUM_EQ
THEN

SND_REPLY_TYPE:=WORKING;
st!(SEND_PKT)

END IF;
IF

(in(REPLYING) or in(REPLIED)) and
SEQ_NUM_LE

THEN
RESEND_OUT_FRAGS

END IF
ELSE
SND_OUT_PARAMS:=CONST_WRONG_BOOT_TIME;
SND_REPLY_TYPE:=REJECT;
st!(SEND_PKT)

END IF

Chart: CL_SERVER

Action: PROCESS_CAN

Description: Process cancel request (signal manager routine).

Definition: IF
PDU_CANCEL_ID>RT_CANCEL_ID

THEN
RT_CANCEL_ID:=PDU_CANCEL_ID

END IF;
IF

Part 4 RPC Services and Protocols 397

CL_SERVER Machine Connectionless RPC Protocol Machines

in(DATA) and not in(REPLYING) and not
in(REPLIED)

THEN
st!(CANCEL_NOTIFY_APP)

END IF;
IF
in(REPLYING) or in(REPLIED)

THEN
tr!(SND_PENDING_CANCEL);
CANACK_CALL

END IF

Chart: CL_SERVER

Action: REJECT_CALL

Description: Perform a reject call.

Definition: IF
not BOOT_TIME_EQ

THEN
SND_OUT_PARAMS:=CONST_WRONG_BOOT_TIME

ELSE
SND_OUT_PARAMS:=CONST_UNSPEC_REJECT

END IF;
SND_REPLY_TYPE:=REJECT;
st!(SEND_PKT)

Chart: CL_SERVER

Action: RESEND_OUT_FRAGS

Description: Perform a resend of previously sent response PDUs.

Definition: fs!(TRANSMIT_RESP);
RT_REPLY_COUNT:=RT_REPLY_COUNT+1;
IF
SND_FRAG

THEN
fs!(LAST_OUT_FRAG)

END IF;
st!(RESET_OUT_FRAG)

Chart: CL_SERVER

Action: SETUP_CALL

Description: Set up call data at first call’s request PDU.

Definition: RT_CLIENT_EXECUTION_CONTEXT:=NULL;
fs!(CONTEXT_REQUEST);
tr!(NO_FACK);
RT_ACTIVITY_ID:=PDU_ACTIVITY_ID;
RT_SEQ_NUM:=PDU_SEQ_NUM;
RT_IF_ID:=PDU_IF_ID;

398 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

RT_IF_VERSION:=PDU_IF_VERSION;
RT_OBJ_ID:=PDU_OBJ_ID;
RT_OP_NUM:=PDU_OP_NUM;
RT_AUTH_SPEC:=PDU_AUTH_SPEC;
IF
PDU_AUTH_SPEC/=0

THEN
RT_AUTH_VERIFIER_CALL:=PDU_AUTH_VERIFIER
tr!(AUTH)

ELSE
fs!(AUTH)

END IF

10.2.5 CL_SERVER Conditions

The CL_SERVER statechart defines the following conditions:

Chart: CL_SERVER

Condition: ACK_PDU

Description: Statechart internal flag: received PDU type ack.

Chart: CL_SERVER

Condition: AUTH

Description: Statechart internal flag: false if PDU auth_id = 0; true otherwise.

Chart: CL_SERVER

Condition: BOOT_TIME_EQ

Description: Statechart internal flag.

Definition: PDU_BOOT_TIME=SYS_BOOT_TIME or
PDU_BOOT_TIME=0 and (RT_IN_FRAG_NUM=0 or
not PDU_FRAG)

Chart: CL_SERVER

Condition: BROADCAST

Description: Statechart internal flag: broadcast call semantic.

Chart: CL_SERVER

Condition: BURST

Description: Run time internal flag set if no fack is expected before sending next fragment.

This flag is used by run-time implementations to optimise the frequency of
fragmented outbound packets.

The algorithms used to optimise traffic and avoid congestion are
implementation-specific. The protocol machine (state RESP_WAIT) waits for
inbound fack PDUs if burst mode is off. The next outbound fragment is

Part 4 RPC Services and Protocols 399

CL_SERVER Machine Connectionless RPC Protocol Machines

triggered by an inbound fack PDU. Implementations are responsible for
setting the corresponding nofack flags in the PDU header.

Chart: CL_SERVER

Condition: CNTL_PDU

Description: Statechart internal flag: control PDUs to be received.

Definition: PDU_TYPE=ACK or PDU_TYPE=PING or
PDU_TYPE=FACK

Chart: CL_SERVER

Condition: CONTEXT_REQUEST

Description: Stub requests client’s execution context for which it has no record.

Chart: CL_SERVER

Condition: FACK_PDU

Description: Statechart internal flag: received PDU type fack.

Chart: CL_SERVER

Condition: IDEMPOTENT

Description: Statechart internal flag: idempotent call.

Chart: CL_SERVER

Condition: LAST_IN_FRAG

Description: Statechart internal flag: last in fragment or non-frag in packet received.

Chart: CL_SERVER

Condition: LAST_OUT_FRAG

Description: Statechart internal flag: last out fragment or non-frag out packet ready to send.

This flag is set by the run-time system if the transmit queue contains the last
fragment (see also Section 9.3 on page 333).

Chart: CL_SERVER

Condition: LOST

Description: Statechart internal: server boot time = 0 or client’s context or cached sequence
number lost.

Definition: (PDU_BOOT_TIME=0 or SEQ_NUM_LOST) and
NON_IDEMPOTENT or AUTH and not
RT_SECURITY_CONTEXT or CONTEXT_REQUEST and
RT_CLIENT_EXECUTION_CONTEXT=NULL

400 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Condition: MAYBE

Description: Statechart internal flag: maybe call.

Chart: CL_SERVER

Condition: NON_IDEMPOTENT

Description: Statechart internal flag: non-idempotent (at-most-once) call.

Definition: not IDEMPOTENT and not BROADCAST and not MAYBE

Chart: CL_SERVER

Condition: NO_FACK

Description: Statechart internal flag: received PDU with nofack flag true.

Chart: CL_SERVER

Condition: OUT_FRAG_NUM_EQ

Description: Statechart internal flag: received fragment number at client and last sent
fragment number are equal.

This condition verifies the fragment number that was received in a fack PDU.
(See Chapter 12 for details.)

Definition: SND_FRAG_NUM=PDU_FRAG_NUM

Chart: CL_SERVER

Condition: OUT_FRAG_NUM_NE

Description: Statechart internal flag: received fragment number at client and last sent
fragment number are not equal.

This condition verifies the fragment number that was received in a fack PDU.
(See Chapter 12 for details.)

Definition: SND_FRAG_NUM/=PDU_FRAG_NUM

Chart: CL_SERVER

Condition: PDU_BROADCAST

Description: PDU flag broadcast.

Part 4 RPC Services and Protocols 401

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Condition: PDU_FRAG

Description: PDU flag frag.

Chart: CL_SERVER

Condition: PDU_IDEMPOTENT

Description: PDU flag idempotent.

Chart: CL_SERVER

Condition: PDU_LAST_FRAG

Description: PDU flag lastfrag.

Chart: CL_SERVER

Condition: PDU_MAYBE

Description: PDU flag maybe.

Chart: CL_SERVER

Condition: PDU_NO_FACK

Description: PDU flag nofack.

Chart: CL_SERVER

Condition: PING_PDU

Description: Statechart internal flag: received PDU type ping.

Chart: CL_SERVER

Condition: RETURN_PENDING_CANCEL

Description: Cancel pending state returned from stub after processing the cancel request.

Chart: CL_SERVER

Condition: RT_BUF_LIMIT

Description: Statechart internal flag: buffer limit reached for in packets.

The conditional flag RT_BUF_LIMIT triggers the generation of a fack PDU
which requests the sender of data fragments to readjust the transmission rate.

This is a mechanism to indicate internal buffer limits (overflow) for avoidance
of congestion and retransmissions. Since recipients may evaluate fack body
data in an implementation-dependent way, implementations must not rely on
changes in the transmission rate. This indication is an advisory.

Run-time implementations are responsible for setting the RT_BUF_LIMIT flag
according to their own policies.

402 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Condition: RT_SECURITY_CONTEXT

Description: Security context associated with call activity UUID is set up and valid.

Chart: CL_SERVER

Condition: SEQ_NUM_EQ

Description: Statechart internal flag: received sequence number equals cached sequence
number.

Definition: PDU_SEQ_NUM=RT_SEQ_NUM

Chart: CL_SERVER

Condition: SEQ_NUM_GT

Description: Statechart internal flag: received sequence number > cached sequence number.

Definition: PDU_SEQ_NUM>RT_SEQ_NUM

Chart: CL_SERVER

Condition: SEQ_NUM_LE

Description: Statechart internal flag: received sequence number ≤ cached sequence number.

Definition: PDU_SEQ_NUM<=RT_SEQ_NUM

Chart: CL_SERVER

Condition: SEQ_NUM_LOST

Description: Statechart internal flag: cached sequence number invalid.

Definition: RT_SEQ_NUM=0

Chart: CL_SERVER

Condition: SND_FRAG

Description: Statechart internal flag: header flag frag of fragments to be sent.

Chart: CL_SERVER

Condition: SND_LAST_FRAG

Description: Statechart internal flag: header flag lastfrag for PDU to be sent.

Part 4 RPC Services and Protocols 403

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Condition: SND_PENDING_CANCEL

Description: Cancel pending state for current call at server.

Chart: CL_SERVER

Condition: TICKET_EXP

Description: Statechart internal flag: ticket expired.

Definition: SYS_TIME>GRACE_PERIOD+PDU_EXP_TIME

Chart: CL_SERVER

Condition: TRANSMIT_RESP

Description: One or more fragments queued for transmission of response data.

This flag indicates that one or more response fragments are queued in a run-
time internal buffer and ready to be transmitted. In conjunction with the
BURST flag and possibly expected fack PDUs, an event for transmitting the
next fragment will be generated.

The run-time system internally sets this flag (true) after the stub initially
provides data in the transmit queue, sufficient for at least the first PDU
fragment to be transmitted. The protocol machine resets this flag if it has
detected and taken an event for sending the next fragment in the queue.

The run-time system sets this flag again after completion of a SEND_PKT
activity if the transmit queue contains enough data for the next PDU fragment
to be transmitted.

Chart: CL_SERVER

Condition: VALID_PDU_HEADER

Description: Pre-evaluation of PDU header (before authentication processing).

Definition: PDU_ACTIVITY_ID=RT_ACTIVITY_ID and
PDU_AUTH_SPEC=RT_AUTH_SPEC and SEQ_NUM_EQ
and BOOT_TIME_EQ and
PDU_VERSION_NUM=CL_VERSION_NUM_V20

10.2.6 CL_SERVER Data-Items

The CL_SERVER statechart defines the following data items:

Chart: CL_SERVER

Data Item: ACK

Description: Constant: PDU type ack.

Definition: 7

404 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Data Item: CANCEL

Description: Constant: PDU type cancel.

Definition: 8

Chart: CL_SERVER

Data Item: CANCEL_ACK

Description: Constant: PDU cancel_ack.

Definition: 10

Chart: CL_SERVER

Data Item: CL_VERSION_NUM_V20

Description: Constant: RPC protocol version 2.0 version number.

Definition: 4

Chart: CL_SERVER

Data Item: CONST_BAD_ACT_ID

Description: Reject status code for WAY callback. The encoding is specified in Appendix P.

Chart: CL_SERVER

Data Item: CONST_CANCEL_VERSION

Description: Supported version number for cancel PDU body data.

Definition: 0

Chart: CL_SERVER

Data Item: CONST_NCA_S_INVALID_CHKSUM

Description: Constant: reject status code nca_s_invalid_chksum.

Chart: CL_SERVER

Data Item: CONST_RPC_S_OK

Description: Constant: status code for successful completion of WAY callback.

Definition: 0

Part 4 RPC Services and Protocols 405

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Data Item: CONST_UNSPEC_REJECT

Description: Constant: unspecified reject status code (0x1C000009).

Chart: CL_SERVER

Data Item: CONST_WRONG_BOOT_TIME

Description: Reject status code.

Chart: CL_SERVER

Data Item: CONST_YOU_CRASHED

Description: Reject status code for WAY callback. Specified in Appendix P.

Chart: CL_SERVER

Data Item: FACK

Description: Constant: PDU type fack.

Definition: 9

Chart: CL_SERVER

Data Item: FAULT

Description: Constant: PDU type fault.

Definition: 3

Chart: CL_SERVER

Data Item: GRACE_PERIOD

Description: Grace period on server after ticket expiration (implementation-specific).

Chart: CL_SERVER

Data Item: MAX_REPLIES

Description: Maximum number of times a response PDU should be resent.

Chart: CL_SERVER

Data Item: NOCALL

Description: Constant: PDU type nocall.

Definition: 5

406 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Data Item: PARAM_CB_OUT_DATA

Description: Callback out parameter: the returned authentication response as array of
bytes.

Chart: CL_SERVER

Data Item: PARAM_CB_OUT_LEN

Description: Callback out parameter: length of received PARAM_CB_OUT_DATA field.

Chart: CL_SERVER

Data Item: PARAM_CB_SEQ_NUM

Description: Callback out parameter: sequence number.

Chart: CL_SERVER

Data Item: PARAM_CB_STATUS

Description: Callback out parameter: status.

Chart: CL_SERVER

Data Item: PARAM_CLIENT_EXECUTION_CONTEXT

Description: Callback out parameter: client address space UUID (execution context).

Chart: CL_SERVER

Data Item: PDU_ACTIVITY_ID

Description: PDU header field: act_id.

Chart: CL_SERVER

Data Item: PDU_AUTH_SPEC

Description: PDU header field: auth_proto.

Chart: CL_SERVER

Data Item: PDU_AUTH_VERIFIER

Description: PDU trailer: authentication verifier (authentication protocol-specific).

Part 4 RPC Services and Protocols 407

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Data Item: PDU_BODY

Description: Array of PDU body data.

Chart: CL_SERVER

Data Item: PDU_BOOT_TIME

Description: PDU header field: server_boot. Zero at first request from client.

Chart: CL_SERVER

Data Item: PDU_CANCEL_ID

Description: cancel_id of received cancel PDU body data.

Chart: CL_SERVER

Data Item: PDU_CANCEL_VERSION

Description: Version number (vers) of cancel PDUs body data format (currently supported
version 0).

Chart: CL_SERVER

Data Item: PDU_EXP_TIME

Description: Ticket expiration time transmitted in the authentication verifier.

Chart: CL_SERVER

Data Item: PDU_FACK_BODY

Description: Body information of fack PDU (implementation-dependent).

Chart: CL_SERVER

Data Item: PDU_FRAG_NUM

Description: PDU header field: frag_num.

Chart: CL_SERVER

Data Item: PDU_IF_ID

Description: PDU header field: if_id.

408 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Data Item: PDU_IF_VERSION

Description: PDU header field: if_vers.

Chart: CL_SERVER

Data Item: PDU_OBJ_ID

Description: PDU header field: object.

Chart: CL_SERVER

Data Item: PDU_OP_NUM

Description: PDU header field: opnum.

Chart: CL_SERVER

Data Item: PDU_SEQ_NUM

Description: PDU header field: seqnum.

Chart: CL_SERVER

Data Item: PDU_SERIAL_NUM

Description: PDU header field: serial_hi.

Chart: CL_SERVER

Data Item: PDU_TYPE

Description: PDU header field: ptype.

Chart: CL_SERVER

Data Item: PDU_VERSION_NUM

Description: PDU header field: rpc_vers.

Chart: CL_SERVER

Data Item: PING

Description: Constant: PDU type ping.

Definition: 1

Part 4 RPC Services and Protocols 409

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Data Item: REJECT

Description: Constant: PDU type reject.

Definition: 6

Chart: CL_SERVER

Data Item: REQUEST

Description: Constant: PDU type request.

Definition: 0

Chart: CL_SERVER

Data Item: RESPONSE

Description: Constant: PDU type response.

Definition: 2

Chart: CL_SERVER

Data Item: RT_ACTIVITY_ID

Description: Statechart internal: activity UUID of current RPC.

Chart: CL_SERVER

Data Item: RT_AUTH_SPEC

Description: Statechart internal: authentication protocol specifier received and used in call.

Chart: CL_SERVER

Data Item: RT_AUTH_VERIFIER_CALL

Description: Statechart internal: authentication verifier received in CALL state.

Chart: CL_SERVER

Data Item: RT_AUTH_VERIFIER_CAN

Description: Authentication verifier received for cancel PDU.

Chart: CL_SERVER

Data Item: RT_AUTH_VERIFIER_CNTL

Description: Authentication verifier received for control PDU.

410 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Data Item: RT_BODY

Description: Statechart internal: temporarily buffered request PDU body data.

Chart: CL_SERVER

Data Item: RT_BOOT_TIME

Description: Statechart internal: boot time of server system.

Chart: CL_SERVER

Data Item: RT_CANCEL_ID

Description: Statechart internal: identifier for received cancel request with highest count.

Chart: CL_SERVER

Data Item: RT_CLIENT_EXECUTION_CONTEXT

Description: The UUID uniquely identifying the execution context (address space) of the
client.

Chart: CL_SERVER

Data Item: RT_CONT_IN_FRAG_NUM

Description: Statechart internal: last fragment number of continuously buffered in block.

Chart: CL_SERVER

Data Item: RT_FACK_BODY

Description: Statechart internal: body data for fack PDU.

The run-time implementation must ensure that fack and nocall PDU body
data is generated in accordance with the specifications given in Chapter 12.

Chart: CL_SERVER

Data Item: RT_IF_ID

Description: Statechart internal: buffered interface UUID of RPC.

Chart: CL_SERVER

Data Item: RT_IF_VERSION

Description: Statechart internal: buffered interface version of RPC.

Part 4 RPC Services and Protocols 411

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Data Item: RT_IN_FRAG_NUM

Description: Statechart internal: fragment number of currently received request PDU.

Chart: CL_SERVER

Data Item: RT_IN_PARAMS

Description: Statechart internal: buffered array of reassembled input data.

Chart: CL_SERVER

Data Item: RT_IN_SERIAL_NUM

Description: Statechart internal: serial number of previously received fragment.

Chart: CL_SERVER

Data Item: RT_LAST_IN_FRAG_NUM

Description: Fragment number of last in fragment of remote procedure call.

Chart: CL_SERVER

Data Item: RT_OBJ_ID

Description: Statechart internal: buffered object UUID of RPC.

Chart: CL_SERVER

Data Item: RT_OP_NUM

Description: Statechart internal: buffered operation number of RPC.

Chart: CL_SERVER

Data Item: RT_OUT_FRAG

Description: Statechart internal pointer to data to be sent in next response PDU.

The SEND_PKT activity increments this pointer after a response PDU was
sent.

Chart: CL_SERVER

Data Item: RT_OUT_PARAMS

Description: Buffered array of unfragmented output data.

RT_OUT_PARAMS is the queue of transmit data provided by the stub. A
possible segmentation of this queue is not equivalent to the sizes of PDU
fragments sent by the run-time system (SEND_PKT) activity.

The RT_OUT_FRAG variable is a pointer data type that points to the to be
transmitted data fragment within this RT_IN_PARAMS queue.

412 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Data Item: RT_REPLY_COUNT

Description: Counter for transmitted replies.

Chart: CL_SERVER

Data Item: RT_SEQ_NUM

Description: Sequence number of previously received PDU.

Chart: CL_SERVER

Data Item: SND_ACTIVITY_ID

Description: Activity UUID to be sent.

Chart: CL_SERVER

Data Item: SND_AUTH_SPEC

Description: Authentication specifier to be sent.

Chart: CL_SERVER

Data Item: SND_BOOT_TIME

Description: Boot time to be sent.

Chart: CL_SERVER

Data Item: SND_CB_IN_DATA

Description: Callback in parameter: the authentication challenge as an array of bytes.

Chart: CL_SERVER

Data Item: SND_CB_IN_LEN

Description: Callback in parameter: the length of SND_CB_IN_DATA parameter.

Chart: CL_SERVER

Data Item: SND_CB_OUT_MAX_LEN

Description: Callback in parameter: the maximum length for the out field
PARAM_CB_OUT_DATA.

Part 4 RPC Services and Protocols 413

CL_SERVER Machine Connectionless RPC Protocol Machines

Chart: CL_SERVER

Data Item: SND_FAULT_STATUS

Description: Fault status associated with the fault PDU body represented as NDR unsigned
long.

Chart: CL_SERVER

Data Item: SND_FRAG_NUM

Description: Fragment number of PDU to be sent.

Chart: CL_SERVER

Data Item: SND_IF_ID

Description: Interface UUID to be sent.

Chart: CL_SERVER

Data Item: SND_IF_VERSION

Description: Interface version number to be sent.

Chart: CL_SERVER

Data Item: SND_OBJ_ID

Description: Object UUID to be sent.

Chart: CL_SERVER

Data Item: SND_OP_NUM

Description: Operation number to be sent.

Chart: CL_SERVER

Data Item: SND_OUT_PARAMS

Description: PDU body data promoted to SEND_PKT activity.

Chart: CL_SERVER

Data Item: SND_REJECT_STATUS

Description: Reject status code associated with reject PDU body represented as NDR type.

414 X/Open CAE Specification (1994)

Connectionless RPC Protocol Machines CL_SERVER Machine

Chart: CL_SERVER

Data Item: SND_REPLY_TYPE

Description: PDU type to be sent.

Chart: CL_SERVER

Data Item: SND_SEQ_NUM

Description: Sequence number of PDU to be sent.

Chart: CL_SERVER

Data Item: SND_SERIAL_NUM

Description: Serial number of PDU to be sent.

Chart: CL_SERVER

Data Item: SYS_BOOT_TIME

Description: Boot time of server system: an implementation-specific value.

Chart: CL_SERVER

Data Item: SYS_TIME

Description: Secure reference time of local system

Chart: CL_SERVER

Data Item: TIMEOUT_IDLE

Description: Timeout value for keeping client’s activity record.

Chart: CL_SERVER

Data Item: TIMEOUT_RESEND

Description: Timeout value for retransmitting a response PDU.

Chart: CL_SERVER

Data Item: WORKING

Description: Constant: PDU type working.

Definition: 4

Part 4 RPC Services and Protocols 415

Connectionless RPC Protocol Machines

416 X/Open CAE Specification (1994)

Chapter 11

Connection-oriented RPC Protocol Machines

This chapter specifies the connection-oriented RPC protocol as a series of statecharts and
accompanying tables of definitions.

Part 4 RPC Services and Protocols 417

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

11.1 CO_CLIENT Machine
Figure 11-1 shows the CO_CLIENT machine statechart.

T

CO_CLIENT

WORKING

ASSOCIATION
ASSOC_DONE

ALLOCATED

INIT

INIT_WAIT

CONN_WAIT

ASSOC_OPEN

CALL

FAULT

CALL_IDLE

DATA

CONFIRMATION

CONF_IDLE

AUTHENTICATION

REQ_WAIT STUB_WAIT
CANCEL

CAN_IDLE

SND_CAN

CONTROL

CAUTHENTICATION

CNTL_IDLE

[CHECK_AUTH]

RCV_CNTL_PDU
DENIED

CLIENT_CANCEL[in(DATA)]

AUTHENTICATED

RCV_FRAG_PDU_A

RCV_FRAG_PDU

RCV_FAULT

LAST_IN_PKT/LAST_REQ

DEALLOC_ASSOC

ex(DATA)

CONN_ACK/INIT_ASSOC

OPEN_ASSOC/MAKE_AVAIL

CLOSE/END_ASSOC

ALLOC_REQ

NO_CONNECTION/REMOVE_FROM_GROUP

[TRANSMIT_REQ]

NEXT_IN_PKT/NEXT_REQ

COMPLETE/FINAL

ALLOC_ASSOC_ACK

CREATE_ASSOCIATION

DEALLOC_ASSOC[not SHUTDOWN_OK or not SHUTDOWN_REQUESTED]

AUTHENTICATED/CNTL_CALL

[not CHECK_AUTH]/CNTL_CALL

Figure 11-1 CO_CLIENT Statechart

11.1.1 CO_CLIENT Activities

The CO_CLIENT statechart defines the following activities:

Chart: CO_CLIENT

Activity: ABORT_RECEIVE

Description: Flush and discard any further responses for this call. There may be numerous
additional packets in the pipeline. The flush may be lazy, upon subsequent
receive processing. Also, notify the run-time system and stub to reclaim any
resources for this call.

418 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Activity: ABORT_SEND

Description: Discontinue any further transmission of request data for the current call, to the
best extent possible. Some error condition has caused a fault.

Chart: CO_CLIENT

Activity: DEQUEUE_CANCEL

Description: If there is a pending cancel timeout for this call, dequeue it.

Chart: CO_CLIENT

Activity: EXCEPTION

Description: Raise a fault and return to calling routine.

Chart: CO_CLIENT

Activity: HANDLE_OUT_FRAG

Description: This activity is invoked at each received fragment evaluation of out
parameters for multi-fragmented RPC responses.

The HANDLE_OUT_FRAG activity makes received data of the next fragment
available to the stub for unmarshaling and the object UUID (RT_OBJ_ID)
available to the manager routine. This does not require a transfer of control
from the run-time system to the stub for each fragment; implementation
policy determines when control is transferred.

Chart: CO_CLIENT

Activity: SEND_PKT

Description: Prepare a PDU to send to the server, adding the appropriate header
information as necessary. If security services were requested (conditional flag
AUTH is true), apply per-message security services. Send the PDU.

The conditional flags and data items set in the run-time system (with prefix
SND_) provide the appropriate input for generating the PDU data. Note that
actions within the same execution step that started this activity may have
assigned values to the SND_* variables which have to be taken by this
instance of the activity.

After sending a request PDU, the RT_IN_FRAG pointer is incremented
accordingly, to point to the remaining data in the transmit queue.

Note: The SEND_PKT activity may be invoked simultaneously by several
orthogonal states (DATA, CONTROL, CANCEL, and so on). The
run-time system must catch these send requests, buffer these and the
associated data, and perform the sends in sequential order.

Part 4 RPC Services and Protocols 419

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Activity: SET_PRES_CONTEXT

Description: Set the negotiated presentation context (from
RT_SERVER_PRES_CONTEXT_LIST) and save the security credentials for
this call.

This activity sets the conditional flag PRES_SEC_CONTEXT_SUPPORTED
true on success, otherwise false. The selected presentation context identifier is
assigned to the data item RT_PRES_CONTEXT_ID for use in subsequent
messages.

Chart: CO_CLIENT

Activity: VERIFY_AUTH

Description: Verify the authentication trailer of PDU and decrypt message if necessary.

This activity takes as input values the PDU header field auth_proto
(RT_AUTH_SPEC) and the authentication verifier (RT_AUTH_VERIFIER).

Depending on the result of the verification, the activity VERIFY_AUTH
generates either the event AUTHENTICATED (success) or DENIED
(authentication failure).

The algorithm applied to this activity is dependent on the security service in
use (determined by RT_AUTH_SPEC). The general evaluation steps for
authentication service rpc_c_authn_dce_secret are as follows (for more details
see Chapter 13):

• Check the protection level applied to the PDU (parameter in
RT_AUTH_VERIFIER) against the protection level for the call (negotiated
security context). If matching, proceed with verification, otherwise raise
DENIED.

• Decrypt the cyphertext portion of the verifier and verify the PDU’s
integrity. If discrepancies are found, raise DENIED, otherwise raise
AUTHENTICATED and proceed (if privacy protected).

• If privacy protection is requested, decrypt PDU body data.

Note: The VERIFY_AUTH activity may be invoked simultaneously by
several orthogonal states (DATA, CONTROL and CANCEL).
VERIFY_AUTH must not generate the event AUTHENTICATED
unless the entire requested authentication processing is completed. If
VERIFY_AUTH detects an authentication failure and generates the
event DENIED, the protocol machine rejects the RPC call and no
further processing is required.

420 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

11.1.2 CO_CLIENT States

The CO_CLIENT statechart defines the following states:

Chart: CO_CLIENT

State: ALLOCATED

Description: An association is allocated for current call.

Reactions
Trigger Action

SND_PRES_CONTEXT_LIST:=
DESIRED_CONTEXT_LIST;

SND_REQUEST_TYPE:=ALTER_CONTEXT;
st!(SEND_PKT)

ALTER_CONTEXT_REQ

IF
PRES_SEC_CONTEXT_SUPPORTED

THEN
ALLOC_ASSOC_ACK

ELSE
ALTER_CONTEXT_REQ

END IF

en(ALLOCATED)

IF
PRES_SEC_CONTEXT_SUPPORTED

THEN
ALLOC_ASSOC_ACK

ELSE
ALLOC_ASSOC_NAK;
DEALLOC_ASSOC

END IF

CHECK_CONTEXT

RCV_SHUTDOWN or
RESOURCES_SCARCE

tr!(SHUTDOWN_REQUESTED)

MARK_ASSOC;
CHECK_CONTEXT

RCV_ALTER_CONTEXT_RESP

Chart: CO_CLIENT

State: ASSOCIATION

Description: Main state for an association.

Chart: CO_CLIENT

State: ASSOC_DONE

Description: Waiting for outstanding call machinery to complete.

Part 4 RPC Services and Protocols 421

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

State: ASSOC_OPEN

Description: Association available for call.

Reactions
Trigger Action

(RCV_SHUTDOWN or RESOURCES_SCARCE)
[not SHUTDOWN_OK]

tr!(SHUTDOWN_REQUESTED)

Chart: CO_CLIENT

State: AUTHENTICATION

Description: Process authentication verification.

Activities Throughout:
VERIFY_AUTH

Chart: CO_CLIENT

State: CALL

Description: Processing a remote procedure call request.

Chart: CO_CLIENT

State: CALL_IDLE

Description: Initial remote procedure call state.

Reactions
Trigger Action

RT_CANCEL_COUNT:=0;
RT_RCV_CANCEL_COUNT:=0;
tr!(RT_DID_NOT_EXECUTE)

en(CALL_IDLE)

Chart: CO_CLIENT

State: CANCEL

Description: Processing of requests to terminate call in progress.

422 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Reactions
Trigger Action

RT_EXCEPTION_STATUS:=
CONST_RPC_S_CANCEL_TIMEOUT;

st!(EXCEPTION)

tm(CLIENT_CANCEL, TIMEOUT_CANCEL)

tm(CLIENT_CANCEL,
TIMEOUT_CANCEL)[in(STUB_WAIT)]

DEALLOC_ASSOC

tm(CLIENT_CANCEL,
TIMEOUT_CANCEL)[in(REQ_WAIT)]

DEALLOC_ASSOC;
ORPHANED_CALL;
st!(ABORT_SEND)

tm(CLIENT_CANCEL,
TIMEOUT_CANCEL)[in(CONFIRMATION)]

DEALLOC_ASSOC;
ORPHANED_CALL;
st!(ABORT_RECEIVE)

Chart: CO_CLIENT

State: CAN_IDLE

Description: Waits for cancel requests and handles cancel timeouts if pending cancel
request.

Reactions
Trigger Action

IF
CURRENT_PENDING_CANCEL

THEN
tr!(RT_PENDING_CANCEL)

ELSE
fs!(RT_PENDING_CANCEL)

END IF

en(CAN_IDLE)

Part 4 RPC Services and Protocols 423

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

State: CNTL_IDLE

Description: Waits for incoming control PDUs.

Reactions
Trigger Action

fs!(FAULT_PDU);
fs!(BIND_ACK_PDU);
fs!(BIND_NAK_PDU);
fs!(SHUTDOWN_PDU);
fs!(ALTER_CONTEXT_RESP_PDU)

en(CNTL_IDLE)

RECEIVE_PDU[PDU_TYPE=FAULT
and VALID_PDU_HEADER]

tr!(FAULT_PDU);
RT_RCV_CANCEL_COUNT:=
PDU_CANCEL_COUNT;

IF
PDU_PENDING_CANCEL

THEN
tr!(RT_RCV_PENDING_CANCEL)

ELSE
fs!(RT_RCV_PENDING_CANCEL)

END IF

RECEIVE_PDU[PDU_TYPE=BIND_ACK
and VALID_PDU_HEADER]

tr!(BIND_ACK_PDU)

IF
AUTH

THEN
RT_AUTH_VERIFIER_CNTL:=
PDU_AUTH_VERIFIER;

RT_AUTH_LENGTH_CNTL:=
PDU_AUTH_SPEC

END IF

exiting

RECEIVE_PDU[PDU_TYPE=BIND_NAK
and VALID_PDU_HEADER]

tr!(BIND_NAK_PDU)

RECEIVE_PDU[PDU_TYPE=SHUTDOWN
and VALID_PDU_HEADER]

tr!(SHUTDOWN_PDU)

RECEIVE_PDU[PDU_TYPE=
ALTER_CONTEXT_RESP
and VALID_PDU_HEADER]

tr!(ALTER_CONTEXT_RESP_PDU)

RECEIVE_PDU[CNTL_PDU
and VALID_PDU_HEADER]

RCV_CNTL_PDU

RECEIVE_PDU[CNTL_PDU
and not VALID_FRAG_SIZE]

RCV_FRAG_SIZE_TOO_LARGE

Chart: CO_CLIENT

State: CONFIRMATION

Description: Processing response data (out params) for remote procedure call.

424 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Reactions
Trigger Action

fs!(RESPONSE_ACTIVE);
RT_OUT_PARAMS:=NULL

en(CONFIRMATION)

en(CONFIRMATION)[MAYBE] DEALLOC_ASSOC

Chart: CO_CLIENT

State: CONF_IDLE

Description: Receive response data from server (possibly fragmented).

Reactions
Trigger Action

RECEIVE_PDU[PDU_TYPE=RESPONSE
and VALID_PDU_HEADER
and not AUTH]

tr!(RESPONSE_ACTIVE);
DO_RESP;
RCV_FRAG_PDU

RECEIVE_PDU[PDU_TYPE=RESPONSE
and VALID_PDU_HEADER and AUTH]

tr!(RESPONSE_ACTIVE);
DO_RESP;
RCV_FRAG_PDU_A

RECEIVE_PDU[PDU_TYPE=RESPONSE
and not VALID_FRAG_SIZE]

RCV_FRAG_SIZE_TOO_LARGE

en(CONF_IDLE)[RESPONSE_ACTIVE
and LAST_OUT_FRAG]

RCV_LAST_OUT_FRAG

DO_OUT_PKT;
st!(HANDLE_OUT_FRAG)

en(CONF_IDLE)[RESPONSE_ACTIVE]

Chart: CO_CLIENT

State: CONN_WAIT

Description: Request transport connection and wait for response.

Reactions
Trigger Action

en(CONN_WAIT) REQUEST_CONN

Chart: CO_CLIENT

State: CONTROL

Description: Processing received control PDUs.

Chart: CO_CLIENT

State: CO_CLIENT

Description: Main state for client association and call.

The CO_CLIENT_ALLOC machine creates this state by generating the
CREATE_ASSOCIATION event.

Part 4 RPC Services and Protocols 425

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

State: DATA

Description: Processing RPC call data.

Reactions
Trigger Action

en(DATA) fs!(REQUEST_ACTIVE)

Chart: CO_CLIENT

State: FAULT

Description: Handling fault PDU responses.

Reactions
Trigger Action

DEALLOC_ASSOC;
IF

PDU_DID_NOT_EXECUTE
THEN

tr!(RT_DID_NOT_EXECUTE)
END IF;
RT_RCV_CANCEL_COUNT:=PDU_CANCEL_COUNT;
RT_EXCEPTION_STATUS:=PDU_FAULT_STATUS;
st!(EXCEPTION);
IF

in(REQ_WAIT)
THEN

st!(ABORT_SEND)
END IF;
IF

in(CONFIRMATION)
THEN

st!(ABORT_RECEIVE)
END IF

en(FAULT)

Chart: CO_CLIENT

State: INIT

Description: Initial state for new association. Initialise state variables.

Reactions
Trigger Action

fs!(SHUTDOWN_REQUESTED);
fs!(WAIT_FOR_GROUP);
IF

GROUP_EXISTS
THEN

SND_ASSOC_GROUP_ID:=RT_ASSOC_GROUP_ID
ELSE

SND_ASSOC_GROUP_ID:=NULL
END IF

en(INIT)

426 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

State: INIT_WAIT

Description: Wait for server’s response to bind request.

Reactions
Trigger Action

CREATE_GROUP;
tr!(WAIT_FOR_GROUP)

RCV_BIND_ACK[not GROUP_EXISTS]

Chart: CO_CLIENT

State: REQ_WAIT

Description: Handles fragmented requests to server.

Reactions
Trigger Action

en(REQ_WAIT)[not REQUEST_ACTIVE] FIRST_REQ

ex(REQ_WAIT)[not LAST_IN_FRAG] fs!(SND_FIRST_FRAG)

Chart: CO_CLIENT

State: SND_CAN

Description: Processes cancel requests. Sends cancel PDU.

Reactions
Trigger Action

en(SND_CAN) or
CLIENT_CANCEL

CAN_CALL;
RT_CANCEL_COUNT:=RT_CANCEL_COUNT+1

Chart: CO_CLIENT

State: STUB_WAIT

Description: Wait until stub calls with first fragment.

Chart: CO_CLIENT

State: WORKING

Description: Main working state for call instance.

Part 4 RPC Services and Protocols 427

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

11.1.3 CO_CLIENT Events

The CO_CLIENT statechart defines the following events:

Chart: CO_CLIENT

Event: ABORT_ASSOC_REQ

Description: Client run-time system requested termination of association (typically local
error).

Chart: CO_CLIENT

Event: ADD_TO_GROUP

Description: Signal group to add this association. Generated by an association in this
group.

Association must check that the instance of the CO_CLIENT_ALLOC machine
which initiated this association has not terminated. If it has terminated, then
the ASSOCIATION machine must lock the group before issuing this event to
avoid possible race conditions.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_GROUP.

Chart: CO_CLIENT

Event: ALLOC_ASSOC_ACK

Description: Association allocated and may be used for call.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_ALLOC.

Chart: CO_CLIENT

Event: ALLOC_ASSOC_NAK

Description: Unable to allocate association because requested context not supported.

Generated in chart CO_CLIENT and sensed in CO_CLIENT_ALLOC.

Chart: CO_CLIENT

Event: ALLOC_REQ

Description: A client requested allocation of an association.

For efficiency, choose the association which has either or both a presentation
context and a security context matching those requested for the call.

Event is generated by CO_CLIENT_ALLOC and sensed by CO_CLIENT.

428 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Event: ALTER_CONTEXT_REQ

Description: The run-time system has requested an additional presentation context
negotiation. The AUTH conditional flag is updated by the run-time system to
reflect the requested security context.

Chart: CO_CLIENT

Event: AUTHENTICATED

Description: Authentication processing completed successfully.

Chart: CO_CLIENT

Event: CHECK_CONTEXT

Description: Check whether desired context is supported. Internally generated.

Chart: CO_CLIENT

Event: CLIENT_CANCEL

Description: The client has issued an RPC cancel request call.

Generated by the Cancel service primitive.

Chart: CO_CLIENT

Event: CLOSE

Description: Compound events to terminate association.

Definition: ABORT_ASSOC_REQ or CONN_NAK or
NO_CONNECTION[not in(DATA)] or
RCV_BIND_NAK or RCV_ALTER_CONTEXT_REJECT
or DEALLOC_ASSOC[in(ASSOC_DONE) or
SHUTDOWN_OK and SHUTDOWN_REQUESTED] or
(RCV_SHUTDOWN or
RESOURCES_SCARCE)[SHUTDOWN_OK] or
RCV_FRAG_SIZE_TOO_LARGE[not in(DATA)] or
[in(ASSOC_DONE) and in(CALL_IDLE)] or
DENIED[in(INIT_WAIT)]

Chart: CO_CLIENT

Event: COMPLETE

Description: RPC call completed (with success or fault).

Definition: (RCV_LAST_OUT_FRAG or DEALLOC_ASSOC or
DENIED[not SHUTDOWN_PDU] or NO_CONNECTION
or RCV_FRAG_SIZE_TOO_LARGE) and not
RCV_FAULT

Part 4 RPC Services and Protocols 429

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Event: CONN_ACK

Description: Transport connection was established. Generated by underlying transport.

Chart: CO_CLIENT

Event: CONN_NAK

Description: Transport connection request failed. Generated by transport service.

Chart: CO_CLIENT

Event: CREATE_ASSOCIATION

Description: This event, generated internally, creates the CO_CLIENT machine. The
presentation context and security context are passed to the association along
with this event. The AUTH conditional flag is initialised by the run-time
system to reflect the requested security context.

Event is generated by CO_CLIENT_ALLOC and sensed by CO_CLIENT.

Chart: CO_CLIENT

Event: CREATE_FAILED

Description: Failed to create a new association.

Event is generated by CO_CLIENT or CO_CLIENT_ALLOC and sensed by
CO_CLIENT_ALLOC.

Chart: CO_CLIENT

Event: CREATE_GROUP

Description: Triggers creation of the association group. If this event is issued to a group
that already exists, then it has no effect.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_GROUP.

Chart: CO_CLIENT

Event: CREATE_SUCCESS

Description: A new association was successfully created.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_ALLOC.

Chart: CO_CLIENT

Event: DEALLOC_ASSOC

Description: Deallocation of association requested. Generated internally.

430 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Event: DENIED

Description: Authentication failure detected.

The VERIFY_AUTH activity generates this event if either the integrity check
failed or the requested protection level for authentication services does not
match.

Chart: CO_CLIENT

Event: DISCONN_REQ

Description: Request termination of transport/session connection. Generated internally.

Chart: CO_CLIENT

Event: LAST_IN_PKT

Description: Statechart internal event: last packet of fragmented request.

Definition: [TRANSMIT_REQ and LAST_IN_FRAG and
REQUEST_ACTIVE]

Chart: CO_CLIENT

Event: MARK_ASSOC

Description: Save status of association for RPC user and/or update presentation context
set.

Because the association may terminate, the status, such as reason for
termination, must be preserved for return to RPC user by the stub. This event
is generated internally to CO_CLIENT.

Chart: CO_CLIENT

Event: NEXT_IN_PKT

Description: Statechart internal event: intermediate packet of fragmented request.

Definition: [TRANSMIT_REQ and not LAST_IN_FRAG and
REQUEST_ACTIVE]

Chart: CO_CLIENT

Event: NO_CONNECTION

Description: Notification that the underlying transport connection terminated.

Generated externally by the underlying transport service.

Part 4 RPC Services and Protocols 431

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Event: OPEN_ASSOC

Description: Open the association for use by a call.

Definition: RCV_BIND_ACK[GROUP_EXISTS] or
[GROUP_EXISTS and WAIT_FOR_GROUP]

Chart: CO_CLIENT

Event: RCV_ALTER_CONTEXT_REJECT

Description: Received an alter_context_resp PDU marking a security integrity failure.

This failure is indicated by the data item PDU_AUTH_VALUE_SUB_TYPE set
to CONST_SUB_TYPE_INVALID_CHECKSUM. This event is generated in the
CNTL_CALL action (CO_CLIENT chart).

Chart: CO_CLIENT

Event: RCV_ALTER_CONTEXT_RESP

Description: Received an alter_context_resp PDU. Generated in CNTL_CALL action.

Chart: CO_CLIENT

Event: RCV_BIND_ACK

Description: Receive a bind_ack PDU. Generated in CNTL_CALL action.

Chart: CO_CLIENT

Event: RCV_BIND_NAK

Description: Received a bind_nak PDU. Generated in CNTL_CALL action (CO_CLIENT
chart).

Chart: CO_CLIENT

Event: RCV_CNTL_PDU

Description: Received one of the control PDUs with valid header.

Chart: CO_CLIENT

Event: RCV_FAULT

Description: Received a valid fault PDU. Generated in CNTL_CALL action.

432 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Event: RCV_FRAG_PDU

Description: Received a response PDU for a non-authenticated call.

Chart: CO_CLIENT

Event: RCV_FRAG_PDU_A

Description: Received a response PDU for an authenticated call.

Chart: CO_CLIENT

Event: RCV_FRAG_SIZE_TOO_LARGE

Description: The received PDU exceeded the maximum allowed fragment size.

Chart: CO_CLIENT

Event: RCV_LAST_OUT_FRAG

Description: Received last fragment response PDU. Signal completion to stub.

The last fragment of a multi-fragmented response or a single packet response
was received. RCV_LAST_OUT_FRAG signals that the complete response
data is available to the stub for unmarshaling.

Chart: CO_CLIENT

Event: RCV_SHUTDOWN

Description: Shutdown indication was received from the server. Generated in
CNTL_CALL action.

Chart: CO_CLIENT

Event: RECEIVE_PDU

Description: Received a PDU from server.

Chart: CO_CLIENT

Event: REMOVE_FROM_GROUP

Description: Remove association from this group.

To avoid a race condition which could result from multiple simultaneous
events, the association machine must lock the group before generating the
REMOVE_FROM_GROUP event and release the lock only after the event has
been processed by the group machine.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_GROUP.

Part 4 RPC Services and Protocols 433

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Event: REQUEST_CONN

Description: Request a new transport connection. If not null, use secondary address.

Chart: CO_CLIENT

Event: RESOURCES_SCARCE

Description: Requests shutdown of association. Externally generated.

Resource management is implementation-specific. This event is generated by
the implementation resource management policy when it is necessary to
reclaim idle associations. It is recommended that idle associations be
maintained for better performance.

11.1.4 CO_CLIENT Actions

The CO_CLIENT statechart defines the following actions:

Chart: CO_CLIENT

Action: CAN_CALL

Description: Set up the cancel PDU to be sent.

Definition: SND_REQUEST_TYPE:=CANCEL;
st!(SEND_PKT)

Chart: CO_CLIENT

Action: CNTL_CALL

Description: Reactions on received control PDUs. Generates respective RCV_* events.

Definition: IF
FAULT_PDU

THEN
RCV_FAULT;
IF

RT_CANCEL_COUNT/=RT_RCV_CANCEL_COUNT
THEN

tr!(RT_PENDING_CANCEL)
ELSE

IF
RT_RCV_PENDING_CANCEL

THEN
tr!(RT_PENDING_CANCEL)

ELSE
fs!(RT_PENDING_CANCEL)

END IF
END IF

END IF;
IF

BIND_ACK_PDU
THEN

434 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

RCV_BIND_ACK;
RT_SERVER_PRES_CONTEXT_LIST:=PDU_P_RESULT_LIST;
st!(SET_PRES_CONTEXT);
IF

PDU_MAX_RCV_FRAG_SIZE/=0
THEN

SND_MAX_XMIT_FRAG_SIZE:=PDU_MAX_RCV_FRAG_SIZE
END IF;
IF

PDU_MAX_XMIT_FRAG_SIZE/=0
THEN

SND_MAX_RCV_FRAG_SIZE:=PDU_MAX_XMIT_FRAG_SIZE
END IF

END IF;
IF

ALTER_CONTEXT_RESP_PDU
THEN

IF
PDU_AUTH_VALUE_SUB_TYPE=

CONST_SUB_TYPE_INVALID_CHECKSUM
THEN

RCV_ALTER_CONTEXT_REJECT
ELSE

RCV_ALTER_CONTEXT_RESP;
RT_SERVER_PRES_CONTEXT_LIST:=

RT_SERVER_PRES_CONTEXT_LIST
+PDU_P_RESULT_LIST;
st!(SET_PRES_CONTEXT)

END IF
END IF;
IF

BIND_NAK_PDU
THEN

RCV_BIND_NAK
END IF;
IF

SHUTDOWN_PDU
THEN

RCV_SHUTDOWN
END IF

Chart: CO_CLIENT

Action: DO_OUT_PKT

Description: Append received response PDU body data to internal buffer.

Definition: RT_OUT_PARAMS:=RT_OUT_PARAMS+RT_BODY

Part 4 RPC Services and Protocols 435

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Action: DO_RESP

Description: Evaluate response PDU header.

Definition: RT_BODY:=PDU_BODY;
IF

AUTH
THEN

RT_AUTH_VERIFIER_CALL:=PDU_AUTH_VERIFIER;
RT_AUTH_LENGTH_CALL:=PDU_AUTH_SPEC

END IF;
IF

PDU_LAST_FRAG
THEN

tr!(LAST_OUT_FRAG);
IF

PDU_CANCEL_COUNT/=RT_CANCEL_COUNT
THEN

tr!(RT_PENDING_CANCEL)
ELSE

IF
PDU_PENDING_CANCEL

THEN
tr!(RT_PENDING_CANCEL)

ELSE
fs!(RT_PENDING_CANCEL)

END IF
END IF;
RT_RCV_CANCEL_COUNT:=PDU_CANCEL_COUNT

END IF

Chart: CO_CLIENT

Action: END_ASSOC

Description: Notification that association has been closed.

Definition: MARK_ASSOC;
IF

in(INIT)
THEN

CREATE_FAILED
END IF;
WHEN

not NO_CONNECTION
THEN

DISCONN_REQ
END WHEN;
IF

in(ASSOC_OPEN) or in(ALLOCATED)
THEN

REMOVE_FROM_GROUP
END IF

436 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Action: FINAL

Description: Perform final actions for RPC call.

Definition: st!(DEQUEUE_CANCEL);
WHEN

RCV_LAST_OUT_FRAG
THEN

DEALLOC_ASSOC
END WHEN;
WHEN

DENIED
THEN

RT_EXCEPTION_STATUS:=CONST_NCA_S_INVALID_CHKSUM
END WHEN;
WHEN

NO_CONNECTION
THEN

RT_EXCEPTION_STATUS:=CONST_RPC_S_COMM_FAILURE;
DEALLOC_ASSOC

END WHEN;
WHEN

RCV_FRAG_SIZE_TOO_LARGE
THEN

RT_EXCEPTION_STATUS:=RT_NCA_S_PROTO_ERROR
END WHEN;
WHEN

DENIED or NO_CONNECTION or
RCV_FRAG_SIZE_TOO_LARGE

THEN
st!(EXCEPTION);
IF

not in(STUB_WAIT)
THEN

IF
in(REQ_WAIT)

THEN
st!(ABORT_SEND)

ELSE
st!(ABORT_RECEIVE)

END IF
END IF

END WHEN

Part 4 RPC Services and Protocols 437

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Action: FIRST_REQ

Description: Set up and send first request PDU.

If the request is non-fragmented (single PDU), the actual send activity will be
performed through the LAST_REQ action.

Definition: tr!(REQUEST_ACTIVE);
tr!(SND_FIRST_FRAG);
RT_IN_FRAG:=RT_IN_PARAMS;
SND_IN_PARAMS:=RT_IN_PARAMS;
SND_PRES_CONTEXT_ID:=RT_PRES_CONTEXT_ID;
IF

RT_OBJ_ID/=NULL
THEN

SND_OBJ_ID:=RT_OBJ_ID
ENDIF;
SND_CALL_ID:=RT_CALL_ID;
SND_OP_NUM:=RT_OP_NUM;
IF

not LAST_IN_FRAG
THEN

fs!(TRANSMIT_REQ);
fs!(RT_DID_NOT_EXECUTE);
fs!(SND_LAST_FRAG);
SND_REQUEST_TYPE:=REQUEST;
st!(SEND_PKT)

END IF

Chart: CO_CLIENT

Action: INIT_ASSOC

Description: Initiate an association. Create bind PDU and send it.

Definition: SND_PRES_CONTEXT_LIST:=DESIRED_CONTEXT_LIST;
SND_IF_ID:=RT_IF_ID;
SND_IF_VERSION:=RT_IF_VERSION;
SND_MAX_RCV_FRAG_SIZE:=RT_MAX_RCV_FRAG_SIZE;
SND_MAX_XMIT_FRAG_SIZE:=RT_MAX_XMIT_FRAG_SIZE;
SND_REQUEST_TYPE:=BIND;
st!(SEND_PKT)

Chart: CO_CLIENT

Action: LAST_REQ

Description: Send last in fragment to server.

Definition: fs!(TRANSMIT_REQ);
fs!(RT_DID_NOT_EXECUTE);
tr!(SND_LAST_FRAG);
SND_IN_PARAMS:=RT_IN_FRAG;
SND_REQUEST_TYPE:=REQUEST;

438 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

st!(SEND_PKT)

Chart: CO_CLIENT

Action: MAKE_AVAIL

Description: Make the association available for a call.

Definition: CREATE_SUCCESS;
ADD_TO_GROUP

Chart: CO_CLIENT

Action: NEXT_REQ

Description: Send next in fragment to server.

Definition: fs!(TRANSMIT_REQ);
SND_IN_PARAMS:=RT_IN_FRAG;
SND_REQUEST_TYPE:=REQUEST;
st!(SEND_PKT)

Chart: CO_CLIENT

Action: ORPHANED_CALL

Description: Set up orphaned PDU to be sent.

Definition: SND_REQUEST_TYPE:=ORPHANED;
st!(SEND_PKT)

11.1.5 CO_CLIENT Conditions

The CO_CLIENT statechart defines the following conditions:

Chart: CO_CLIENT

Condition: ALTER_CONTEXT_RESP_PDU

Description: Statechart internal flag: received PDU type alter_context_resp.

Chart: CO_CLIENT

Condition: AUTH

Description: Statechart internal flag: indicates that call is authenticated.

Chart: CO_CLIENT

Condition: BIND_ACK_PDU

Description: Statechart internal flag: received PDU type bind_ack.

Part 4 RPC Services and Protocols 439

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Condition: BIND_NAK_PDU

Description: Statechart internal flag: received PDU type bind_nak.

Chart: CO_CLIENT

Condition: CHECK_AUTH

Description: Verify authentication if requested (not required for shutdown and bind_nak
PDUs).

Definition: AUTH and (not PDU_TYPE=SHUTDOWN and not
PDU_TYPE=BIND_NAK)

Chart: CO_CLIENT

Condition: CNTL_PDU

Description: Statechart internal flag: to be received control PDUs.

Definition: PDU_TYPE=FAULT or PDU_TYPE=BIND_ACK or
PDU_TYPE=BIND_NAK or PDU_TYPE=SHUTDOWN or
PDU_TYPE=ALTER_CONTEXT_RESP

Chart: CO_CLIENT

Condition: CURRENT_PENDING_CANCEL

Description: Cancel pending state passed from stub during initialisation of call.

Chart: CO_CLIENT

Condition: FAULT_PDU

Description: Statechart internal flag: received PDU type fault.

Chart: CO_CLIENT

Condition: GROUP_EXISTS

Description: The group to which this association belongs exists.

Definition: in(CO_CLIENT_GROUP:CO_CLIENT_GROUP)

Chart: CO_CLIENT

Condition: LAST_IN_FRAG

Description: Statechart internal flag: last in fragment or non-frag in packet ready to send.

This flag is set if the transmit queue contains the last fragment (see also
Section 9.3 on page 333).

440 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Condition: LAST_OUT_FRAG

Description: Statechart internal flag: last out fragment or non-frag out packet received.

Chart: CO_CLIENT

Condition: MAYBE

Description: Statechart internal flag: maybe call.

Chart: CO_CLIENT

Condition: PDU_DID_NOT_EXECUTE

Description: fault PDU header flag PFC_DID_NOT_EXECUTE.

Chart: CO_CLIENT

Condition: PDU_LAST_FRAG

Description: Header flag PFC_LAST_FRAG.

Chart: CO_CLIENT

Condition: PDU_PENDING_CANCEL

Description: Header flag PFC_PENDING_CANCEL in received response or fault PDU.

Chart: CO_CLIENT

Condition: PRES_SEC_CONTEXT_SUPPORTED

Description: The presentation and security contexts for the call are in the negotiated set.

Both the negotiated presentation context and the security credentials are
saved by the SET_PRES_SEC_CONTEXT activity.

Chart: CO_CLIENT

Condition: REQUEST_ACTIVE

Description: Statechart internal flag: send request has started.

Chart: CO_CLIENT

Condition: RESPONSE_ACTIVE

Description: Statechart internal flag: indicates availability of response data.

Part 4 RPC Services and Protocols 441

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Condition: RT_DID_NOT_EXECUTE

Description: Run time internal: the call has not been executed yet by the server manager.

This flag is common state shared between the stub and the run-time system.
The stub must initialise this to true. The run-time system updates this flag. If
a call fails, the stub may check this flag to ascertain whether it may safely retry
the call when exactly-once semantics were requested.

Chart: CO_CLIENT

Condition: RT_PENDING_CANCEL

Description: Statechart internal flag: cancel pending state at server.

Chart: CO_CLIENT

Condition: RT_RCV_PENDING_CANCEL

Description: Statechart internal: holds received pending cancel state.

Chart: CO_CLIENT

Condition: SHUTDOWN_OK

Description: Shutdown of association allowed.

Association must lock group when checking these state variables.

Definition: ASSOC_COUNT>1 or ACTIVE_CONTEXT_COUNT=0

Chart: CO_CLIENT

Condition: SHUTDOWN_PDU

Description: Statechart internal flag: received PDU type shutdown.

Chart: CO_CLIENT

Condition: SHUTDOWN_REQUESTED

Description: Orderly shutdown of association requested.

Chart: CO_CLIENT

Condition: SND_FIRST_FRAG

Description: Statechart internal flag: header flag (PFC_FIRST_FRAG) of next frag to be sent.

442 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Condition: SND_LAST_FRAG

Description: Statechart internal flag: header flag (PFC_LAST_FRAG) of next buffered
fragment.

Chart: CO_CLIENT

Condition: TRANSMIT_REQ

Description: One or more fragments are queued for transmission of request data.

This flag indicates that one or more request fragment(s) are queued in a run-
time internal buffer and ready to be transmitted.

The run-time system internally sets this flag (true) after the stub initially
provides data in the transmit queue, sufficient for at least the first PDU
fragment to be transmitted. The protocol machine resets this flag if it has
detected and taken an event for sending the next fragment in the queue. The
run-time system sets this flag again after completion of a SEND_PKT activity
if the transmit queue contains enough data for the next PDU fragment to be
transmitted.

Chart: CO_CLIENT

Condition: VALID_FRAG_SIZE

Description: Evaluation whether received PDU exceeds size limit.

Definition: PDU_FRAG_LENGTH<=RT_MAX_RCV_FRAG_SIZE

Chart: CO_CLIENT

Condition: VALID_PDU_HEADER

Description: Pre-evaluation of PDU header (before authentication processing).

Definition: PDU_CALL_ID=RT_CALL_ID and
PDU_VERSION_NUM=CO_VERSION_NUM_V20 and
PDU_VERSION_NUM_MINOR=CO_VERSION_NUM_V20_MINOR
and VALID_FRAG_SIZE

Chart: CO_CLIENT

Condition: WAIT_FOR_GROUP

Description: Indicates association is waiting for group to be created.

Part 4 RPC Services and Protocols 443

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

11.1.6 CO_CLIENT Data-Items

The CO_CLIENT statechart defines the following data items:

Chart: CO_CLIENT

Data Item: ACTIVE_CONTEXT_COUNT

Description: Number of active context handles for group. State variable of
CO_CLIENT_GROUP.

Chart: CO_CLIENT

Data Item: ALTER_CONTEXT

Description: Constant: PDU type alter_context.

Definition: 14

Chart: CO_CLIENT

Data Item: ALTER_CONTEXT_RESP

Description: Constant: PDU type alter_context_resp.

Definition: 15

Chart: CO_CLIENT

Data Item: ASSOC_COUNT

Description: Number of associations in group. State variable of CO_CLIENT_GROUP.

Must lock group before accessing this state variable to avoid race conditions.

Chart: CO_CLIENT

Data Item: BIND

Description: Constant: PDU type bind.

Definition: 11

Chart: CO_CLIENT

Data Item: BIND_ACK

Description: Constant: PDU type bind_ack.

Definition: 12

444 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Data Item: BIND_NAK

Description: Constant: PDU type bind_nak.

Definition: 13

Chart: CO_CLIENT

Data Item: CANCEL

Description: Constant: PDU type cancel.

Definition: 18

Chart: CO_CLIENT

Data Item: CONST_NCA_S_INVALID_CHKSUM

Description: Constant: fault status code nca_s_invalid_chksum.

Chart: CO_CLIENT

Data Item: CONST_RPC_S_CANCEL_TIMEOUT

Description: Constant: fault status code rpc_s_cancel_timeout.

Chart: CO_CLIENT

Data Item: CONST_RPC_S_COMM_FAILURE

Description: Constant: fault status code rpc_s_comm_failure.

Chart: CO_CLIENT

Data Item: CONST_SUB_TYPE_INVALID_CHECKSUM

Description: Value indicating a security integrity failure (invalid checksum).

The value dce_c_cn_dce_sub_type_invalid_checksum, which is encoded in
the sub_type field of the auth_value member of the authentication verifier.
(See Chapter 13.)

Definition: 2

Chart: CO_CLIENT

Data Item: CO_VERSION_NUM_V20

Description: Constant: RPC protocol version 2.0 major version number.

Definition: 5

Part 4 RPC Services and Protocols 445

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Data Item: CO_VERSION_NUM_V20_MINOR

Description: Constant: RPC protocol minor version number.

Chart: CO_CLIENT

Data Item: DESIRED_CONTEXT_LIST

Description: Presentation context determined by stub.

This is the presentation context required for the call. Its value is determined by
the stub from the interface definition and transfer syntaxes. See the section on
PDU encodings for details of this context.

Chart: CO_CLIENT

Data Item: FAULT

Description: Constant: PDU type fault.

Definition: 3

Chart: CO_CLIENT

Data Item: ORPHANED

Description: Constant: PDU type orphaned.

Definition: 19

Chart: CO_CLIENT

Data Item: PDU_AUTH_SPEC

Description: PDU header field auth_length.

Chart: CO_CLIENT

Data Item: PDU_AUTH_VALUE_SUB_TYPE

Description: The value of the sub_type field of the auth_value member of the
authentication verifier as received in an alter_context_resp PDU. (See Chapter
13.)

Chart: CO_CLIENT

Data Item: PDU_AUTH_VERIFIER

Description: PDU trailer: authentication verifier (authentication protocol-specific).

446 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Data Item: PDU_BODY

Description: Array of PDU body data.

Chart: CO_CLIENT

Data Item: PDU_CALL_ID

Description: PDU header field call_id.

Chart: CO_CLIENT

Data Item: PDU_CANCEL_COUNT

Description: Received cancel_count value in response or fault PDU header.

Chart: CO_CLIENT

Data Item: PDU_FAULT_STATUS

Description: Constant: fault status code.

Chart: CO_CLIENT

Data Item: PDU_FRAG_LENGTH

Description: PDU header field frag_length.

Chart: CO_CLIENT

Data Item: PDU_MAX_RCV_FRAG_SIZE

Description: PDU header field max_recv_frag.

Chart: CO_CLIENT

Data Item: PDU_MAX_XMIT_FRAG_SIZE

Description: PDU header field max_xmit_frag.

Chart: CO_CLIENT

Data Item: PDU_P_RESULT_LIST

Description: PDU header field: p_result_list in bind_ack and alter_context_resp PDUs.

Chart: CO_CLIENT

Data Item: PDU_TYPE

Description: PDU header field PTYPE.

Part 4 RPC Services and Protocols 447

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Data Item: PDU_VERSION_NUM

Description: PDU header field rpc_vers.

Chart: CO_CLIENT

Data Item: PDU_VERSION_NUM_MINOR

Description: PDU header field rpc_vers_minor.

Chart: CO_CLIENT

Data Item: REQUEST

Description: Constant: PDU type request.

Definition: 0

Chart: CO_CLIENT

Data Item: RESPONSE

Description: Constant: PDU type response.

Definition: 2

Chart: CO_CLIENT

Data Item: RT_ASSOC_GROUP_ID

Description: Group ID for newly created association. Defined in CO_CLIENT_GROUP.

Chart: CO_CLIENT

Data Item: RT_AUTH_LENGTH_CALL

Description: Statechart internal: authentication length field received in CALL state.

Chart: CO_CLIENT

Data Item: RT_AUTH_LENGTH_CNTL

Description: Statechart internal: authentication length field received in CONTROL state.

Chart: CO_CLIENT

Data Item: RT_AUTH_VERIFIER_CALL

Description: Received authentication trailer (verifier) for request PDU.

448 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Data Item: RT_AUTH_VERIFIER_CNTL

Description: Received authentication trailer (verifier) for control PDU.

Chart: CO_CLIENT

Data Item: RT_BODY

Description: Statechart internal: temporarily buffered response PDU body data.

Chart: CO_CLIENT

Data Item: RT_CALL_ID

Description: Statechart internal: call identifier of current RPC call.

Chart: CO_CLIENT

Data Item: RT_CANCEL_COUNT

Description: Statechart internal counter: number of cancel requests sent.

Chart: CO_CLIENT

Data Item: RT_EXCEPTION_STATUS

Description: Statechart internal: status value passed to exception handler.

Chart: CO_CLIENT

Data Item: RT_IF_ID

Description: Statechart internal: received interface UUID of call.

Chart: CO_CLIENT

Data Item: RT_IF_VERSION

Description: Statechart internal: received interface version number.

Chart: CO_CLIENT

Data Item: RT_IN_FRAG

Description: Statechart internal pointer to data to be sent in next request PDU.

The SEND_PKT activity increments this pointer after a request PDU is sent.

Part 4 RPC Services and Protocols 449

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Data Item: RT_IN_PARAMS

Description: Statechart internal: buffered array of reassembled input data.

RT_IN_PARAMS is the queue of transmit data provided by the stub. A
possible segmentation of this queue is not equivalent to the sizes of PDU
fragments sent by the run-time system (SEND_PKT) activity.

The RT_IN_FRAG variable is a pointer data type that points to the to be
transmitted data fragment within this RT_IN_PARAMS queue.

Chart: CO_CLIENT

Data Item: RT_MAX_RCV_FRAG_SIZE

Description: Maximum size of a fragment the receiver is able to handle.

The minimum value of this fragment size is determined by the architected
value MustRcvFragSize (refer to Section 12.6.2 on page 522).

Implementations may support larger fragment sizes that are subject to
negotiation with the server. This value is set internally by run-time
implementations.

Chart: CO_CLIENT

Data Item: RT_MAX_XMIT_FRAG_SIZE

Description: Maximum size of a fragment the sender is able to handle.

The minimum value of this fragment size is determined by the architected
value MustRcvFragSize (refer to Section 12.6.2 on page 522).

Implementations may support larger fragment sizes that are subject to
negotiation with the server. This value is set internally by run-time
implementations.

Chart: CO_CLIENT

Data Item: RT_NCA_S_PROTO_ERROR

Description: Constant: fault status code nca_s_proto_error.

Chart: CO_CLIENT

Data Item: RT_OBJ_ID

Description: Statechart internal: buffered object UUID of RPC call.

450 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Data Item: RT_OP_NUM

Description: Statechart internal: buffered operation number of RPC call.

Chart: CO_CLIENT

Data Item: RT_OUT_PARAMS

Description: Buffered array of unfragmented output data.

Chart: CO_CLIENT

Data Item: RT_PRES_CONTEXT_ID

Description: Statechart internal: presentation context identifier of current call.

Selection of values for the context identifier is implementation-dependent.
There must be a one-to-one mapping between each negotiated context and the
identifiers within an association.

Chart: CO_CLIENT

Data Item: RT_RCV_CANCEL_COUNT

Description: Statechart internal: received cancel count.

Chart: CO_CLIENT

Data Item: RT_SERVER_PRES_CONTEXT_LIST

Description: Statechart internal: the received set of supported server presentation contexts.

Chart: CO_CLIENT

Data Item: SHUTDOWN

Description: Constant: PDU type shutdown.

Definition: 17

Chart: CO_CLIENT

Data Item: SND_ASSOC_GROUP_ID

Description: Association group ID sent in bind and alter_context PDUs.

Chart: CO_CLIENT

Data Item: SND_CALL_ID

Description: Call ID of current RPC call.

Part 4 RPC Services and Protocols 451

CO_CLIENT Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT

Data Item: SND_IF_ID

Description: Interface UUID to be sent.

Chart: CO_CLIENT

Data Item: SND_IF_VERSION

Description: Interface version number to be sent.

Chart: CO_CLIENT

Data Item: SND_IN_PARAMS

Description: PDU body data promoted to SEND_PKT activity.

Chart: CO_CLIENT

Data Item: SND_MAX_RCV_FRAG_SIZE

Description: Constant: Maximum receive fragment size. Sent in bind PDU.

Chart: CO_CLIENT

Data Item: SND_MAX_XMIT_FRAG_SIZE

Description: Constant: Maximum transmit fragment size. Sent in bind PDU.

Chart: CO_CLIENT

Data Item: SND_OBJ_ID

Description: Object UUID of current RPC call.

Chart: CO_CLIENT

Data Item: SND_OP_NUM

Description: Operation number of current call.

Chart: CO_CLIENT

Data Item: SND_PRES_CONTEXT_ID

Description: Determined by the presentation context in the binding information.

Chart: CO_CLIENT

Data Item: SND_PRES_CONTEXT_LIST

Description: Presentation context list to be sent.

452 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT Machine

Chart: CO_CLIENT

Data Item: SND_REQUEST_TYPE

Description: PDU type to be sent.

Chart: CO_CLIENT

Data Item: TIMEOUT_CANCEL

Description: Timeout value for cancel requests.

Sets the lower bound on the time to wait before timing out after forwarding a
cancel PDU to the server. The default of this timeout value is set to infinity
(see Appendix K). Applications may set a different value via the
rpc_mgmt_set_cancel_timeout RPC API.

Part 4 RPC Services and Protocols 453

CO_CLIENT_ALLOC Machine Connection-oriented RPC Protocol Machines

11.2 CO_CLIENT_ALLOC Machine
Figure 11-2 shows the CO_CLIENT_ALLOC machine statechart.

T

CO_CLIENT_ALLOC

C

C

INIT

WAIT_RETRY

CREATE_ASSOCALLOC_ASSOC

GET_TICKET

CREATE_SUCCESS

LOCK_GRANTED

LOCK_GRANTED

[ASSOC_AVAIL]

[not RESOURCE_AVAIL]

[RESOURCE_AVAIL]

[not ASSOC_AVAIL]
CREATE_FAILED

START_CALL/SETUP_CALL

ATTEMPT_DONE/RETURN_STATUS

[AUTH and not TICKET]

FETCHED_TICKET

Figure 11-2 CO_CLIENT_ALLOC Statechart

454 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_ALLOC Machine

11.2.1 CO_CLIENT_ALLOC Activities

The CO_CLIENT_ALLOC statechart defines the following activities:

Chart: CO_CLIENT_ALLOC

Activity: FETCH_TICKET

Description: Obtains the security context for the RPC session from the security service (that
is, kerberos ticket, if authentication service is rpc_c_authn_dce_secret).

The activity resets the conditional flag TICKET to false at the beginning, and
sets TICKET to true before termination only if the fetch operation succeeded.
FETCH_TICKET is a self-terminating activity.

Part 4 RPC Services and Protocols 455

CO_CLIENT_ALLOC Machine Connection-oriented RPC Protocol Machines

11.2.2 CO_CLIENT_ALLOC States

The CO_CLIENT_ALLOC statechart defines the following states:

Chart: CO_CLIENT_ALLOC

State: ALLOC_ASSOC

Description: Wait for association to be allocated.

Reactions
Trigger Action

en(ALLOC_ASSOC) ALLOC_REQ

Chart: CO_CLIENT_ALLOC

State: CO_CLIENT_ALLOC

Description: Protocol machine for association allocation. Created by Invoke service
primitive.

Chart: CO_CLIENT_ALLOC

State: CREATE_ASSOC

Description: Create a new association.

Reactions
Trigger Action

IF
in(CO_CLIENT_GROUP:CO_CLIENT_GROUP)
and RT_SECONDARY_ADDRESS=NULL

THEN
CREATE_FAILED

ELSE
CREATE_ASSOCIATION

END IF

en(CREATE_ASSOC)

Chart: CO_CLIENT_ALLOC

State: GET_TICKET

Description: Get authentication ticket from security server (security service-specific).

Activities Throughout:
FETCH_TICKET

456 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_ALLOC Machine

Chart: CO_CLIENT_ALLOC

State: INIT

Description: Initialise state for a call.

Reactions
Trigger Action

TIMEOUT_MAX_ALLOC_WAIT:=3;
MAP_TO_GROUP_AND_LOCK;
TIMEOUT_RANDOM:=RAND_UNIFORM(0,3)

en(INIT)[not AUTH or TICKET]

Chart: CO_CLIENT_ALLOC

State: WAIT_RETRY

Description: Wait and retry if resources for association currently not available.

Reactions
Trigger Action

UNLOCK_GROUP;
TIMEOUT_RANDOM:=
MIN(RAND_UNIFORM
(0,TIMEOUT_MAX_ALLOC_WAIT),
CONST_MAX_BACKOFF);

TIMEOUT_MAX_ALLOC_WAIT:=
2*TIMEOUT_MAX_ALLOC_WAIT

en(WAIT_RETRY)

tm(en(WAIT_RETRY),
TIMEOUT_RANDOM)

MAP_TO_GROUP_AND_LOCK

Part 4 RPC Services and Protocols 457

CO_CLIENT_ALLOC Machine Connection-oriented RPC Protocol Machines

11.2.3 CO_CLIENT_ALLOC Events

The CO_CLIENT_ALLOC statechart defines the following events:

Chart: CO_CLIENT_ALLOC

Event: ALLOC_ASSOC_ACK

Description: Association allocated and may be used for call.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_ALLOC.

Chart: CO_CLIENT_ALLOC

Event: ALLOC_ASSOC_NAK

Description: Unable to allocate association because requested context not supported.

Generated in chart CO_CLIENT and sensed in CO_CLIENT_ALLOC.

Chart: CO_CLIENT_ALLOC

Event: ALLOC_REQ

Description: A client requested allocation of an association.

For efficiency, choose the association which has either or both a presentation
context and a security context matching those requested for the call.

Event is generated by CO_CLIENT_ALLOC and sensed by CO_CLIENT.

Chart: CO_CLIENT_ALLOC

Event: ATTEMPT_DONE

Description: Attempt to allocate association either completed successfully or failed.

Definition: RCV_BIND_NAK or RCV_ALTER_CONTEXT_REJECT
or ALLOC_ASSOC_ACK or ALLOC_ASSOC_NAK or
tm(en(INIT),
CONST_MAX_RESOURCE_WAIT)[not
in(ALLOC_ASSOC)] or NO_COMMUNICATION or
sp(FETCH_TICKET)[not TICKET]

Chart: CO_CLIENT_ALLOC

Event: CREATE_ASSOCIATION

Description: This event, generated internally, creates the CO_CLIENT machine.

The presentation context and security context are passed to the association
along with this event.

Event is generated by CO_CLIENT_ALLOC and sensed by CO_CLIENT.

458 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_ALLOC Machine

Chart: CO_CLIENT_ALLOC

Event: CREATE_FAILED

Description: Failed to create a new association.

Event is generated by CO_CLIENT or CO_CLIENT_ALLOC and sensed by
CO_CLIENT_ALLOC.

Chart: CO_CLIENT_ALLOC

Event: CREATE_SUCCESS

Description: A new association was successfully created.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_ALLOC.

Chart: CO_CLIENT_ALLOC

Event: FETCHED_TICKET

Description: Client fetched a valid authentication ticket.

Definition: sp(FETCH_TICKET)[TICKET]

Chart: CO_CLIENT_ALLOC

Event: LOCK_GRANTED

Description: The request to lock access to the group was granted.

To guard against race conditions, the model assumes the existence of a
centralised locking mechanism for each group. One lock is associated with
each group. Requests for a lock are queued and serviced in FIFO order. At
most one machine may be in possession of the lock for a particular group at
any time.

Chart: CO_CLIENT_ALLOC

Event: MAP_TO_GROUP_AND_LOCK

Description: Map the call to a group based upon the binding information and request lock.

Determine the group to which the binding information maps. Request a lock
for this group. If the group does not exist, then possession of the lock indicates
that this allocation machine is permitted to create the group.

Chart: CO_CLIENT_ALLOC

Event: NO_COMMUNICATION

Description: An unrecoverable network error occurred. Generated by underlying transport.

This may occur either during an attempt to create a new association or during
an attempt to allocate an existing association.

Part 4 RPC Services and Protocols 459

CO_CLIENT_ALLOC Machine Connection-oriented RPC Protocol Machines

Chart: CO_CLIENT_ALLOC

Event: RCV_ALTER_CONTEXT_REJECT

Description: Received an alter_context_resp PDU marking a security integrity failure.

This failure is indicated by data item PDU_AUTH_VALUE_SUB_TYPE set to
CONST_SUB_TYPE_INVALID_CHECKSUM. This event is generated in the
CNTL_CALL action (CO_CLIENT chart).

Chart: CO_CLIENT_ALLOC

Event: RCV_BIND_NAK

Description: Received a bind_nak PDU. Generated in CNTL_CALL action (CO_CLIENT
chart).

Chart: CO_CLIENT_ALLOC

Event: START_CALL

Description: The client has initiated a remote procedure call (Invoke service primitive).

Chart: CO_CLIENT_ALLOC

Event: UNLOCK_GROUP

Description: Release group lock or dequeue pending lock request. Generated internally.

If the machine has been granted the lock for the group, then release the lock.
If the machine has queued a request for the lock, then dequeue the request.

460 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_ALLOC Machine

11.2.4 CO_CLIENT_ALLOC Actions

The CO_CLIENT_ALLOC statechart defines the following actions:

Chart: CO_CLIENT_ALLOC

Action: RETURN_STATUS

Description: Return status of allocation attempt to stub and unlock group.

The CO_CLIENT_ALLOC machine indicates to the stub whether an
association was allocated. If an association was successfully allocated, then a
the identity of the association is returned to the stub. If the allocation attempt
failed, then the reason for the failure is returned to the stub.

Definition: UNLOCK_GROUP

Chart: CO_CLIENT_ALLOC

Action: SETUP_CALL

Description: Set up and initialise call data.

Definition: tr!(RT_DID_NOT_EXECUTE)

Part 4 RPC Services and Protocols 461

CO_CLIENT_ALLOC Machine Connection-oriented RPC Protocol Machines

11.2.5 CO_CLIENT_ALLOC Conditions

The CO_CLIENT_ALLOC statechart defines the following conditions:

Chart: CO_CLIENT_ALLOC

Condition: ASSOC_AVAIL

Description: The group exists and at least one association in the group is available.

The group indicated by the binding information exists, and at least one
association in that group is in the ASSOC_OPEN state.

Definition: in(CO_CLIENT:ASSOC_OPEN)

Chart: CO_CLIENT_ALLOC

Condition: AUTH

Description: Statechart internal flag: indicates that call is authenticated.

Chart: CO_CLIENT_ALLOC

Condition: RESOURCE_AVAIL

Description: Policy and resources permit new association. Value determined externally.

The policy for allowing creation of new associations and the management of
resources is implementation-dependent.

Chart: CO_CLIENT_ALLOC

Condition: RT_DID_NOT_EXECUTE

Description: Run time internal: the call has not been executed yet by the server manager.

This flag is common state shared between the stub and the run-time system.
The stub must initialise this to true. The run-time system updates this flag. If
a call fails, the stub may check this flag to ascertain whether it may safely retry
the call when exactly-once semantics were requested.

Chart: CO_CLIENT_ALLOC

Condition: TICKET

Description: The authentication ticket is valid. Determined externally.

The authentication ticket from the call’s client principal to the server’s
principal is valid. The particular ticket depends on the client/server pair of
principals, and may be different for different RPCs.

Note that implementations may cache unexpired tickets, even across process
invocations or system reboots. Therefore, this condition predicate may be
maintained externally to the RPC run-time system.

462 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_ALLOC Machine

11.2.6 CO_CLIENT_ALLOC Data-Items

The CO_CLIENT_ALLOC statechart defines the following data items:

Chart: CO_CLIENT_ALLOC

Data Item: CONST_MAX_BACKOFF

Description: Upper bound in seconds for wait to retry allocation. Architectural constant.

Definition: 60

Chart: CO_CLIENT_ALLOC

Data Item: CONST_MAX_RESOURCE_WAIT

Description: Maximum time in seconds to wait for association allocation. Architected
value.

Definition: 300

Chart: CO_CLIENT_ALLOC

Data Item: RT_SECONDARY_ADDRESS

Description: The secondary address for the group. Determined by CO_CLIENT_GROUP.

Chart: CO_CLIENT_ALLOC

Data Item: TIMEOUT_MAX_ALLOC_WAIT

Description: Maximum wait before retrying association allocation. Internal variable.

Chart: CO_CLIENT_ALLOC

Data Item: TIMEOUT_RANDOM

Description: Random time between 0 and TIMEOUT_MAX_ALLOC_WAIT. Internal
variable.

Part 4 RPC Services and Protocols 463

CO_CLIENT_GROUP Machine Connection-oriented RPC Protocol Machines

11.3 CO_CLIENT_GROUP Machine
Figure 11-3 shows the CO_CLIENT_GROUP machine statechart.

T

CO_CLIENT_GROUP

GROUP_ACTIVE

GROUP_OPEN

REMOVE_FROM_GROUP[ASSOC_COUNT=1]

ADD_TO_GROUP/ASSOC_COUNT:=1

CREATE_GROUP

Figure 11-3 CO_CLIENT_GROUP Statechart

464 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_GROUP Machine

11.3.1 CO_CLIENT_GROUP States

The CO_CLIENT_GROUP statechart defines the following states:

Chart: CO_CLIENT_GROUP

State: CO_CLIENT_GROUP

Description: Client association group machine. Created by CO_CLIENT:CREATE_GROUP
event.

The group is created when the CO_CLIENT receives a valid bind_ack PDU
and the group did not already exist. Note that once the CO_CLIENT_GROUP
is terminated, the group ID, RT_ASSOC_GROUP_ID, is no longer valid. If the
run-time system or stub was maintaining this value with other state (for
example, it may be stored with other binding data pointed to by a binding
handle) then the value must be invalidated appropriately.

Chart: CO_CLIENT_GROUP

State: GROUP_ACTIVE

Description: Associations belong to this group.

Reactions
Trigger Action

REMOVE_FROM_GROUP
[ASSOC_COUNT>1]

ASSOC_COUNT:=ASSOC_COUNT-1

ADD_TO_GROUP ASSOC_COUNT:=ASSOC_COUNT+1

ACTIVE_CONTEXT_COUNT:=
ACTIVE_CONTEXT_COUNT+1

CONTEXT_ACTIVE

ACTIVE_CONTEXT_COUNT:=
ACTIVE_CONTEXT_COUNT-1

CONTEXT_INACTIVE

Chart: CO_CLIENT_GROUP

State: GROUP_OPEN

Description: Open a new associations group.

Reactions
Trigger Action

ACTIVE_CONTEXT_COUNT:=0;
ASSOC_COUNT:=0;
RT_ASSOC_GROUP_ID:=PDU_ASSOC_GROUP_ID;
RT_SECONDARY_ADDRESS:=PDU_SEC_ADDR

en(GROUP_OPEN)

Part 4 RPC Services and Protocols 465

CO_CLIENT_GROUP Machine Connection-oriented RPC Protocol Machines

11.3.2 CO_CLIENT_GROUP Events

The CO_CLIENT_GROUP statechart defines the following events:

Chart: CO_CLIENT_GROUP

Event: ADD_TO_GROUP

Description: Signal group to add this association. Generated by an association in this
group.

Association must check that the instance of the CO_CLIENT_ALLOC machine
which initiated this association has not terminated. If it has terminated, then
the ASSOCIATION machine must lock the group before issuing this event to
avoid possible race conditions.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_GROUP.

Chart: CO_CLIENT_GROUP

Event: CONTEXT_ACTIVE

Description: A context handle was activated. Generated by the client stub.

The stub generates this event for each context handle which makes a
transition from inactive to active. To avoid a race condition which could result
from multiple simultaneous events, the stub must lock the group before
generating the CONTEXT_ACTIVE event and release the lock only after the
event has been processed by the group machine.

Chart: CO_CLIENT_GROUP

Event: CONTEXT_INACTIVE

Description: Context handle deactivated. Generated by the client stub.

The stub generates this event for each context handle which makes a
transition from active to inactive. To avoid a race condition which could result
from multiple simultaneous events, the stub must lock the group before
generating the CONTEXT_INACTIVE event and release the lock only after the
event has been processed by the group machine.

Chart: CO_CLIENT_GROUP

Event: CREATE_GROUP

Description: Triggers creation of the association group. If this event is issued to a group
that already exists, then it has no effect.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_GROUP.

466 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_CLIENT_GROUP Machine

Chart: CO_CLIENT_GROUP

Event: REMOVE_FROM_GROUP

Description: Remove association from this group.

To avoid a race condition which could result from multiple simultaneous
events, the association machine must lock the group before generating the
REMOVE_FROM_GROUP event and release the lock only after the event has
been processed by the group machine.

Event is generated by CO_CLIENT and sensed by CO_CLIENT_GROUP.

Part 4 RPC Services and Protocols 467

CO_CLIENT_GROUP Machine Connection-oriented RPC Protocol Machines

11.3.3 CO_CLIENT_GROUP Data-Items

The CO_CLIENT_GROUP statechart defines the following data items:

Chart: CO_CLIENT_GROUP

Data Item: ACTIVE_CONTEXT_COUNT

Description: Number of active context handles for group. State variable of
CO_CLIENT_GROUP.

Chart: CO_CLIENT_GROUP

Data Item: ASSOC_COUNT

Description: Number of associations in group. State variable of CO_CLIENT_GROUP.

Must lock group before accessing this state variable to avoid race conditions.

Chart: CO_CLIENT_GROUP

Data Item: PDU_ASSOC_GROUP_ID

Description: The association group ID (header field assoc_group_id) from the bind_ack
PDU.

Chart: CO_CLIENT_GROUP

Data Item: PDU_SEC_ADDR

Description: The optional secondary address (header field sec_addr) from the bind_ack
PDU.

Chart: CO_CLIENT_GROUP

Data Item: RT_ASSOC_GROUP_ID

Description: Group ID for newly created association. Defined in CO_CLIENT_GROUP.

Chart: CO_CLIENT_GROUP

Data Item: RT_SECONDARY_ADDRESS

Description: The secondary address for the group. Determined by CO_CLIENT_GROUP.

468 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

11.4 CO_SERVER Machine
Figure 11-4 shows the CO_SERVER machine statechart.

T

CO_SERVER

WORKING

CALL

C

FAULT

INIT
DATA

C REPLIED

AUTHENTICATION

REPLYING

INDICATION

PROCESS_REQ

CANCEL

C
AUTHENTICATION

CAN_IDLE

CONTROL

C
AUTHENTICATION

CNTL_IDLE

ASSOCIATION

CLOSED ASSOC_OPEN

ASSOC_REQ

LAST_OUT_PKT/DO_REPLY

RCV_FRAG_PDU

RCV_LAST_IN_FRAG

RCV_CNTL_PDU

DENIED

NEXT_OUT_PKT/DO_REPLY

[LAST_OUT_FRAG]

SEND_RESPONSE/FIRST_REPLY

[not LAST_OUT_FRAG]

PROC_RESPONSE[MAYBE]

PROC_FAULT/ERROR

AUTHENTICATED

RCV_FRAG_PDU_A

COMPLETE/FINAL

RCV_BIND

ASSOC_ACCEPT/DO_BIND_ACK

[not AUTH]

[AUTH]

RCV_REQ_PDU/DO_REQ

CONNECT_ESTABLISHED

CLOSE/CLEAN_UP

[not AUTH]/CNTL_CALL

[not AUTH]/PROCESS_CAN

RCV_CAN_PDU

[AUTH]

[AUTH]

AUTHENTICATED/CNTL_CALL

AUTHENTICATED/PROCESS_CAN

DENIED

Figure 11-4 CO_SERVER Statechart

Part 4 RPC Services and Protocols 469

CO_SERVER Machine Connection-oriented RPC Protocol Machines

11.4.1 CO_SERVER Activities

The CO_SERVER statechart defines the following activities:

Chart: CO_SERVER

Activity: ABORT_RECEIVE

Description: Flush and discard any further received packets for this call. There may be
numerous additional packets in the pipeline. The flush may be lazy, upon
subsequent receive processing. Also, notify the run-time system and stub to
reclaim any resources for this call.

Chart: CO_SERVER

Activity: ABORT_SEND

Description: Discontinue any further transmission of response data for the current call, to
the best extent possible. Some error condition has caused a fault.

Chart: CO_SERVER

Activity: CANCEL_NOTIFY_APP

Description: This activity notifies the manager routine of the RPC application about the
cancel request issued by the client.

CANCEL_NOTIFY_APP activity terminates after acknowledgement from the
stub. The stub sets the RETURN_PENDING_CANCEL flag appropriately.

Chart: CO_SERVER

Activity: HANDLE_IN_FRAG

Description: This activity is invoked at each received fragment evaluation of in parameters
for multi-fragmented RPC requests.

The HANDLE_IN_FRAG activity makes received data of the next fragment
available to the stub for unmarshalling and passes the object UUID
(RT_OBJ_ID) to the manager routine. This does not require a transfer of
control from the run-time system to the stub for each fragment;
implementation policy determines when control is transferred.

Chart: CO_SERVER

Activity: SEND_PKT

Description: Prepare a PDU to send to the client, adding the appropriate header
information as necessary. If security services were requested (conditional flag
AUTH is true), apply per-message security services. Send the PDU.

The conditional flags and data items set in the run-time system (with prefix
SND_) provide the appropriate input for generating the PDU data. Note that
actions within the same execution step that started this activity may have
assigned values to the SND_* variables which have to be taken by this
instance of the activity.

470 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

After sending a response PDU, the RT_OUT_FRAG pointer is incremented
accordingly, to point to the remaining data in the transmit queue.

Note: The SEND_PKT activity may be invoked simultaneously by several
orthogonal states (WORKING, CONTROL, CANCEL, and so on).
The run-time system must catch these send requests, buffer these and
the associated data, and perform the sends in sequential order.

Chart: CO_SERVER

Activity: STOP_ORPHAN

Description: Tell the stub that the client orphaned the call and allow the manager routine to
run down gracefully. If it is executing (that is, it is still receiving for a pipe),
cancel it. Otherwise, discard the input and/or output data. If possible (not
required), ensure that neither response nor fault PDU is returned for the
orphaned call.

Chart: CO_SERVER

Activity: VERIFY_AUTH

Description: Verify the authentication trailer of PDU and decrypt message if necessary.

This activity takes as input values the PDU header field auth_proto and the
authentication verifier.

Depending on the result of the verification, the activity VERIFY_AUTH
generates either the event AUTHENTICATED (success) or DENIED
(authentication failure).

The algorithm applied to this activity is dependent on the security service in
use (determined by RT_AUTH_SPEC). The general evaluation steps for
authentication service rpc_c_authn_dce_secret are as follows (for more details
see Chapter 13):

• Check the protection level applied to the PDU (parameter in
RT_AUTH_VERIFIER) against the protection level for the call (negotiated
security context). If matching, proceed with verification, otherwise raise
DENIED.

Note that bind and alter_context PDUs are used for negotiating the
security context. Therefore, the protection level will not be verified for
these PDUs; this verification takes only place for actual call PDUs.

• Decrypt the cyphertext portion of the verifier and verify PDUs integrity. If
discrepancies are found, raise DENIED, otherwise raise
AUTHENTICATED and proceed (if privacy protected).

• If privacy protection is requested, decrypt PDU body data.

Note: The VERIFY_AUTH activity may be invoked simultaneously by
several orthogonal states (WORKING, CONTROL and CANCEL).
VERIFY_AUTH must not generate the event AUTHENTICATED
unless the entire requested authentication processing is completed. If
VERIFY_AUTH detects an authentication failure and generates the
event DENIED, the protocol machine rejects the RPC call and no

Part 4 RPC Services and Protocols 471

CO_SERVER Machine Connection-oriented RPC Protocol Machines

further processing is required.

11.4.2 CO_SERVER States

The CO_SERVER statechart defines the following states:

Chart: CO_SERVER

State: ASSOCIATION

Description: Main state for active association.

Chart: CO_SERVER

State: ASSOC_OPEN

Description: Association available for call.

Reactions
Trigger Action

RCV_ALTER_CONTEXT DO_ALTER_CONTEXT_RESP

SND_REPLY_TYPE:=SHUTDOWN;
st!(SEND_PKT)

RESOURCES_SCARCE

SND_AUTH_VALUE_SUB_TYPE:=
CONST_SUB_TYPE_INVALID_CHECKSUM;

SND_REPLY_TYPE:=ALTER_CONTEXT_RESP;
st!(SEND_PKT)

DENIED[ALTER_CONTEXT_PDU]

Chart: CO_SERVER

State: ASSOC_REQ

Description: Wait for decision on whether to accept association.

Reactions
Trigger Action

ACCEPT_BIND[not
GROUP_EXISTS]

tr!(WAIT_FOR_GROUP)

entering RT_GROUP_ID:=PDU_ASSOC_GROUP_ID

SND_REJECT_REASON:=RT_REJECT_REASON;
SND_REPLY_TYPE:=BIND_NAK;
st!(SEND_PKT)

ASSOC_REJECT

Chart: CO_SERVER

State: AUTHENTICATION

Description: Process authentication verification.

Activities Throughout:
VERIFY_AUTH

472 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

State: CALL

Description: Processing a remote procedure call request.

Chart: CO_SERVER

State: CANCEL

Description: Processing of client requests to terminate call in progress.

The reaction within this state senses the termination of the
CANCEL_NOTIFY_APP activity as cancel acknowledgement from the server
manager routine. The manager routine also sets the
RETURN_PENDING_CANCEL flag appropriately.

Reactions
Trigger Action

IF
RETURN_PENDING_CANCEL

THEN
tr!(SND_PENDING_CANCEL)

END IF

sp(CANCEL_NOTIFY_APP)

Chart: CO_SERVER

State: CAN_IDLE

Description: Waits for cancel requests.

Reactions
Trigger Action

IF
AUTH

THEN
RT_AUTH_VERIFIER_CAN:=PDU_AUTH_VERIFIER;
RT_AUTH_LENGTH_CAN:=PDU_AUTH_SPEC

END IF

exiting

Chart: CO_SERVER

State: CLOSED

Description: Association waiting to receive bind request.

Reactions
Trigger Action

en(CLOSED) fs!(WAIT_FOR_GROUP)

SND_REJECT_REASON:=
CONST_REASON_INVALID_CHECKSUM;

SND_REPLY_TYPE:=BIND_NAK;
st!(SEND_PKT)

DENIED[BIND_PDU]

Part 4 RPC Services and Protocols 473

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

State: CNTL_IDLE

Description: Waits for incoming control PDUs.

Reactions
Trigger Action

fs!(ORPHANED_PDU);
fs!(BIND_PDU);
fs!(ALTER_CONTEXT_PDU)

en(CNTL_IDLE)

RECEIVE_PDU[PDU_TYPE=ORPHANED
and VALID_PDU_HEADER]

tr!(ORPHANED_PDU)

IF
AUTH

THEN
RT_AUTH_VERIFIER_CNTL:=
PDU_AUTH_VERIFIER;

RT_AUTH_LENGTH_CNTL:=
PDU_AUTH_SPEC

END IF

exiting

RECEIVE_PDU[PDU_TYPE=BIND
and VALID_PDU_HEADER]

tr!(BIND_PDU)

RECEIVE_PDU[PDU_TYPE=
ALTER_CONTEXT
and VALID_PDU_HEADER]

tr!(ALTER_CONTEXT_PDU)

RECEIVE_PDU[CNTL_PDU
and not VALID_FRAG_SIZE]

RCV_FRAG_SIZE_TOO_LARGE

RECEIVE_PDU[CNTL_PDU
and VALID_PDU_HEADER]

RCV_CNTL_PDU

Chart: CO_SERVER

State: CONTROL

Description: Processing received control PDUs.

Chart: CO_SERVER

State: CO_SERVER

Description: Main state for call and association; created by CONNECT_ESTABLISHED
event.

The CO_SERVER state is created when a connection to a server is established,
using the primary or secondary address for an association group.

474 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

State: DATA

Description: Processing RPC call data.

Chart: CO_SERVER

State: FAULT

Description: Handles processing faults and sends fault PDU.

Reactions
Trigger Action

en(FAULT) DEALLOC_REQ

Chart: CO_SERVER

State: INDICATION

Description: Handles incoming RPC request fragments.

Reactions
Trigger Action

en(INDICATION)
[not LAST_IN_FRAG]

DO_IN_PKT;
st!(HANDLE_IN_FRAG)

en(INDICATION)
[LAST_IN_FRAG]

DO_IN_PKT;
st!(HANDLE_IN_FRAG);
RCV_LAST_IN_FRAG

RECEIVE_PDU[PDU_TYPE=REQUEST
and not VALID_FRAG_SIZE]

RCV_FRAG_SIZE_TOO_LARGE

RECEIVE_PDU[PDU_TYPE=REQUEST and
VALID_PDU_HEADER and not AUTH]

DO_REQ;
RCV_FRAG_PDU

RECEIVE_PDU[PDU_TYPE=REQUEST
and VALID_PDU_HEADER and AUTH]

DO_REQ;
RCV_FRAG_PDU_A

Part 4 RPC Services and Protocols 475

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

State: INIT

Description: Initial RPC call state. Waits for request from client.

Reactions
Trigger Action

fs!(MAYBE);
fs!(LAST_IN_FRAG);
SND_CANCEL_COUNT:=0;
fs!(SND_PENDING_CANCEL)

en(INIT)

RECEIVE_PDU[PDU_TYPE=REQUEST
and not VALID_FRAG_SIZE]

RCV_FRAG_SIZE_TOO_LARGE

tm(en(INIT),
TIMEOUT_SERVER_DISCONNECT)

SND_REPLY_TYPE:=SHUTDOWN;
st!(SEND_PKT)

IF
PDU_MAYBE

THEN
tr!(MAYBE)

END IF

exiting

IF
PDU_PENDING_CANCEL

THEN
tr!(SND_PENDING_CANCEL)

END IF

exiting

exiting SETUP_CALL

Chart: CO_SERVER

State: PROCESS_REQ

Description: Promotes completely received request to manager routine

Reactions
Trigger Action

entering RT_OUT_PARAMS:=NULL

476 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

State: REPLIED

Description: Terminal state for calls.

Reactions
Trigger Action

en(REPLIED) DEALLOC_REQ

Chart: CO_SERVER

State: REPLYING

Description: Handles fragmented reply to client.

Reactions
Trigger Action

en(REPLYING) fs!(SND_FIRST_FRAG)

Chart: CO_SERVER

State: WORKING

Description: Main working state for call instance.

Part 4 RPC Services and Protocols 477

CO_SERVER Machine Connection-oriented RPC Protocol Machines

11.4.3 CO_SERVER Events

The CO_SERVER statechart defines the following events:

Chart: CO_SERVER

Event: ABORT_ASSOC_REQ

Description: Abrupt termination of the association requested. Generated externally.

Chart: CO_SERVER

Event: ABORT_CONNECTION

Description: Signal transport to abort connection. Generated internally.

Chart: CO_SERVER

Event: ACCEPT_BIND

Description: Generated by the ACCEPT_ASSOC_POLICY activity.

The local policy permits establishment of the requested association. The
mechanism for deciding whether to accept or reject a bind request is
implementation and policy-dependent.

Chart: CO_SERVER

Event: ADD_ALTER_CONTEXT

Description: Update the set of presentation contexts for this association.

Select the set of matching presentations contexts based on the received
presentation context list (p_context_elem field) of the alter_context PDU and
the contexts supported by the server. Generate the structure p_result_list to
be sent to the client in the alter_context_response PDU.

Chart: CO_SERVER

Event: ADD_PRES_CONTEXT

Description: Update the presentation context set for this association.

Select the set of matching presentations contexts based on the received
presentation context list (p_context_elem field) of the bind PDU and the
contexts supported by the server. Generate the structure p_result_list to be
sent to the client in the bind_ack PDU.

Chart: CO_SERVER

Event: ADD_TO_GROUP

Description: Signal group to add this association.

To avoid race conditions, the ASSOCIATION must lock the group before
issuing this event and unlock the group only after the event has been
processed by the group machine instance.

478 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Event is generated by CO_SERVER and sensed by CO_SERVER_GROUP.

Chart: CO_SERVER

Event: ASSOC_ACCEPT

Description: The server accepted the association.

Definition: ACCEPT_BIND[GROUP_EXISTS] or
[GROUP_EXISTS and WAIT_FOR_GROUP]

Chart: CO_SERVER

Event: ASSOC_REJECT

Description: Generated by the ACCEPT_ASSOC_POLICY activity.

The local policy rejected the request for a new association. The mechanism for
deciding whether to accept or reject a bind request is implementation and
policy-dependent.

Chart: CO_SERVER

Event: AUTHENTICATED

Description: Authentication processing completed successfully.

Chart: CO_SERVER

Event: CANCEL_CALL

Description: Generate local cancel request for the call currently using the association.

Chart: CO_SERVER

Event: CLOSE

Description: Compound events to terminate association.

Definition: NO_CONNECTION or ABORT_ASSOC_REQ

Chart: CO_SERVER

Event: COMPLETE

Description: RPC call completed (with success or fault).

Definition: DEALLOC_REQ or DENIED[not ORPHANED_PDU] or
[AUTH and TICKET_EXP] or
RCV_FRAG_SIZE_TOO_LARGE

Part 4 RPC Services and Protocols 479

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Event: CONNECT_ESTABLISHED

Description: A connection to server has been established. Generated externally by
transport.

The address used to establish the connection may be either the primary or, if
one exists, secondary address for the server.

Chart: CO_SERVER

Event: DEALLOC_REQ

Description: Call completed or failed. Service provider requests the deallocation of assoc.

Chart: CO_SERVER

Event: DENIED

Description: Authentication failure detected.

The VERIFY_AUTH activity generates this event if either the integrity check
failed or the requested protection level for authentication services does not
match (not for bind or alter_context PDUs).

Chart: CO_SERVER

Event: LAST_OUT_PKT

Description: Statechart internal event: last fragment of fragmented response.

Definition: [TRANSMIT_RESP and LAST_OUT_FRAG]

Chart: CO_SERVER

Event: MARK_ASSOC

Description: Mark association with termination status and related information.

Chart: CO_SERVER

Event: NEXT_OUT_PKT

Description: Statechart internal event: intermediate fragment of fragmented response.

Definition: [TRANSMIT_RESP and not LAST_OUT_FRAG]

Chart: CO_SERVER

Event: NO_CONNECTION

Description: Notification that the underlying connection terminated. Generated externally.

480 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Event: PROCESSING_FAULT

Description: Execution of procedure failed. Returned from called procedure (stub).

Chart: CO_SERVER

Event: PROCESSING_FDNE

Description: Stub (manager routine) or run-time system rejected RPC request.

The call did not execute.

Chart: CO_SERVER

Event: PROC_FAULT

Description: Execution of call failed.

Definition: PROCESSING_FAULT or PROCESSING_FDNE

Chart: CO_SERVER

Event: PROC_RESPONSE

Description: Call returned from called procedure (server manager routine).

This event indicates that the called application procedure is ready to respond
to the RPC request and has provided out parameter data in the
RT_OUT_PARAMS queue. The processing of the application procedure may
not have been completed and more out parameter data may to be queued
(sensed by the TRANSMIT_RESP and LAST_OUT_FRAG condition flags).

Chart: CO_SERVER

Event: RCV_ALTER_CONTEXT

Description: Received valid alter_context PDU. Generated in CNTL_CALL action.

Chart: CO_SERVER

Event: RCV_BIND

Description: Received valid bind PDU on this association’s transport connection.

Generated in CNTL_CALL action.

Chart: CO_SERVER

Event: RCV_CAN_PDU

Description: Received cancel PDU with valid header.

Definition: RECEIVE_PDU[PDU_TYPE=CANCEL and
VALID_PDU_HEADER and in(DATA) and not
in(REPLYING) and not in(REPLIED)]

Part 4 RPC Services and Protocols 481

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Event: RCV_CNTL_PDU

Description: Received one of the control PDUs with valid header.

Chart: CO_SERVER

Event: RCV_FRAG_PDU

Description: Received PDU for non-authenticated fragmented requests with valid header.

Chart: CO_SERVER

Event: RCV_FRAG_PDU_A

Description: Received PDU for authenticated fragmented request with valid header.

Chart: CO_SERVER

Event: RCV_FRAG_SIZE_TOO_LARGE

Description: The received PDU exceeded the maximum allowed fragment size.

Chart: CO_SERVER

Event: RCV_LAST_IN_FRAG

Description: Received last fragment request PDU. Signal completion to stub.

The last fragment of a multi-fragmented request or a single packet request
was received. RCV_LAST_IN_FRAG signals that the complete request data is
available to the stub for unmarshalling, and it transfers the control from the
run-time system to the stub for processing the RPC request.

Chart: CO_SERVER

Event: RCV_REQ_PDU

Description: Received request PDU (first packet for fragmented requests) with valid
header.

Definition: RECEIVE_PDU[PDU_TYPE=REQUEST and
in(ASSOC_OPEN) and PDU_FIRST_FRAG and
VALID_VERSION]

Chart: CO_SERVER

Event: RECEIVE_PDU

Description: Received a PDU from client.

482 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Event: REMOVE_FROM_GROUP

Description: Signal association group to remove this association.

To avoid race conditions, the ASSOCIATION must lock the group before
issuing this event and unlock the group only after the event has been
processed by the group machine instance.

Event is generated by CO_SERVER and sensed by CO_SERVER_GROUP.

Chart: CO_SERVER

Event: RESOURCES_SCARCE

Description: Request to reclaim resources. Externally generated.

Resource management is implementation-specific. This event is generated by
the implementation resource management policy when it is necessary to
reclaim idle associations. It is recommended that at least one idle association
per client-server pair be maintained for better performance. This may be
tuned for different style applications.

Chart: CO_SERVER

Event: SEND_RESPONSE

Description: Called procedure provided out parameters to be sent.

Definition: PROC_RESPONSE[not MAYBE]

Part 4 RPC Services and Protocols 483

CO_SERVER Machine Connection-oriented RPC Protocol Machines

11.4.4 CO_SERVER Actions

The CO_SERVER statechart defines the following actions:

Chart: CO_SERVER

Action: CLEAN_UP

Description: Termination actions.

Definition: MARK_ASSOC;
IF

in(ASSOC_OPEN)
THEN

REMOVE_FROM_GROUP;
CANCEL_CALL

END IF;
WHEN

ABORT_ASSOC_REQ
THEN

ABORT_CONNECTION
END WHEN

Chart: CO_SERVER

Action: CNTL_CALL

Description: Reactions on received control PDUs. Generate respective RCV_* events.

Definition: IF
ORPHANED_PDU

THEN
st!(STOP_ORPHAN);
DEALLOC_REQ

END IF;
IF

BIND_PDU
THEN

RCV_BIND
END IF;
IF

ALTER_CONTEXT_PDU
THEN

RCV_ALTER_CONTEXT
END IF

Chart: CO_SERVER

Action: DO_ALTER_CONTEXT_RESP

Description: Process the alter context negotiation request and send response back.

Note that the activities ADD_ALTER_CONTEXT and SEND_PKT must be
synchronised to assure that the alter_context_resp PDU contains the
negotiated context.

484 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Definition: RT_CLIENT_PRES_CONTEXT_LIST:=PDU_P_CONT_LIST;
RT_IF_ID:=PDU_IF_ID;
RT_IF_VERSION:=PDU_IF_VERSION;
IF

PDU_AUTH_SPEC=0
THEN

fs!(AUTH)
ELSE

tr!(AUTH)
END IF
ADD_ALTER_CONTEXT;
SND_REPLY_TYPE:=ALTER_CONTEXT_RESP;
st!(SEND_PKT)

Chart: CO_SERVER

Action: DO_BIND_ACK

Description: Signal CO_SERVER_GROUP to add group and send a bind_ack PDU.

Definition: RT_IF_ID:=PDU_IF_ID;
RT_IF_VERSION:=PDU_IF_VERSION;
IF

PDU_AUTH_SPEC=0
THEN

fs!(AUTH)
ELSE

tr!(AUTH)
END IF
IF

PDU_MAX_XMIT_FRAG_SIZE>RT_MAX_RCV_FRAG_SIZE
or PDU_MAX_XMIT_FRAG_SIZE=0 and
RT_MAX_RCV_FRAG_SIZE<CONST_MUST_RCV_FRAG_SIZE

THEN
SND_MAX_RCV_FRAG_SIZE:=RT_MAX_RCV_FRAG_SIZE

ELSE
IF

PDU_MAX_XMIT_FRAG_SIZE=0
THEN

SND_MAX_RCV_FRAG_SIZE:=CONST_MUST_RCV_FRAG_SIZE
ELSE

SND_MAX_RCV_FRAG_SIZE:=PDU_MAX_XMIT_FRAG_SIZE
END IF

END IF;
IF

PDU_MAX_RCV_FRAG_SIZE>RT_MAX_XMIT_FRAG_SIZE
or PDU_MAX_RCV_FRAG_SIZE=0 and
RT_MAX_XMIT_FRAG_SIZE<CONST_MUST_RCV_FRAG_SIZE

THEN
SND_MAX_XMIT_FRAG_SIZE:=RT_MAX_XMIT_FRAG_SIZE

ELSE
IF

PDU_MAX_RCV_FRAG_SIZE=0

Part 4 RPC Services and Protocols 485

CO_SERVER Machine Connection-oriented RPC Protocol Machines

THEN
SND_MAX_XMIT_FRAG_SIZE:=CONST_MUST_RCV_FRAG_SIZE

ELSE
SND_MAX_XMIT_FRAG_SIZE:=PDU_MAX_RCV_FRAG_SIZE

END IF
END IF;
SND_GROUP_FIELD:=RT_GROUP_ID;
SND_SEC_ADDR:=RT_SECONDARY_ADDRESS;
RT_CLIENT_PRES_CONTEXT_LIST:=PDU_P_CONT_LIST;
ADD_TO_GROUP;
ADD_PRES_CONTEXT;
SND_REPLY_TYPE:=BIND_ACK;
st!(SEND_PKT)

Chart: CO_SERVER

Action: DO_IN_PKT

Description: Append received request PDU body data to internal buffer.

Definition: RT_IN_PARAMS:=RT_IN_PARAMS+RT_BODY

Chart: CO_SERVER

Action: DO_REPLY

Description: Send last out frag to requesting client.

Definition: fs!(TRANSMIT_RESP);
IF

LAST_OUT_FRAG
THEN

tr!(SND_LAST_FRAG)
ELSE

fs!(SND_LAST_FRAG)
END IF;
SND_OUT_PARAMS:=RT_OUT_FRAG;
SND_REPLY_TYPE:=RESPONSE;
st!(SEND_PKT)

Chart: CO_SERVER

Action: DO_REQ

Description: Evaluate request PDU header and signal allocation request.

Definition: RT_PRES_CONTEXT_ID:=PDU_P_CONT_ID;
RT_BODY:=PDU_BODY;
IF

PDU_AUTH_SPEC/=0
THEN

RT_AUTH_VERIFIER_CALL:=PDU_AUTH_VERIFIER;
RT_AUTH_LENGTH_CALL:=PDU_AUTH_SPEC

END IF;
IF

486 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

PDU_LAST_FRAG
THEN

tr!(LAST_IN_FRAG)
END IF

Chart: CO_SERVER

Action: ERROR

Description: Determine the type of failure.

Definition: WHEN
PROCESSING_FDNE

THEN
tr!(SND_DID_NOT_EXECUTE)

ELSE
fs!(SND_DID_NOT_EXECUTE)

END WHEN;
FAULT_CALL

Chart: CO_SERVER

Action: FAULT_CALL

Description: Send fault PDU.

Definition: IF
not MAYBE

THEN
SND_REPLY_TYPE:=FAULT;
st!(SEND_PKT)

END IF;
IF

in(PROCESS_REQ) or in(REPLYING) or
in(REPLIED)

THEN
st!(ABORT_SEND)

ELSE
st!(ABORT_RECEIVE)

END IF

Chart: CO_SERVER

Action: FINAL

Description: Perform final actions for RPC call.

Definition: WHEN
DENIED[not BIND_PDU and not
ALTER_CONTEXT_PDU]

THEN
SND_OUT_PARAMS:=CONST_NCA_S_INVALID_CHKSUM;
FAULT_CALL;
DEALLOC_REQ

END WHEN;

Part 4 RPC Services and Protocols 487

CO_SERVER Machine Connection-oriented RPC Protocol Machines

WHEN
RCV_FRAG_SIZE_TOO_LARGE

THEN
SND_OUT_PARAMS:=CONST_NCA_S_PROTO_ERROR;
FAULT_CALL;
DEALLOC_REQ

END WHEN

Chart: CO_SERVER

Action: FIRST_REPLY

Description: Initialise and send first response PDU.

Definition: fs!(TRANSMIT_RESP);
IF

LAST_OUT_FRAG
THEN

tr!(SND_LAST_FRAG)
ELSE

fs!(SND_LAST_FRAG)
END IF;
tr!(SND_FIRST_FRAG);
SND_PRES_CONTEXT_ID:=RT_PRES_CONTEXT_ID;
SND_CALL_ID:=RT_CALL_ID;
RT_OUT_FRAG:=RT_OUT_PARAMS;
SND_OUT_PARAMS:=RT_OUT_PARAMS;
SND_REPLY_TYPE:=RESPONSE;
st!(SEND_PKT)

Chart: CO_SERVER

Action: PROCESS_CAN

Description: Process cancel request (signal manager routine).

Definition: SND_CANCEL_COUNT:=SND_CANCEL_COUNT+1;
st!(CANCEL_NOTIFY_APP)

Chart: CO_SERVER

Action: SETUP_CALL

Description: Set up call data at first call’s request PDU.

Definition: RT_CALL_ID:=PDU_CALL_ID;
IF

PDU_OBJ_UUID
THEN

RT_OBJ_ID:=PDU_OBJ_ID
ELSE

RT_OBJ_ID:=NULL
ENDIF;
RT_OP_NUM:=PDU_OP_NUM

488 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

11.4.5 CO_SERVER Conditions

The CO_SERVER statechart defines the following conditions:

Chart: CO_SERVER

Condition: ALTER_CONTEXT_PDU

Description: Statechart internal flag: received PDU type alter_context.

Chart: CO_SERVER

Condition: AUTH

Description: Statechart internal flag: false if PDU field auth_length = 0; true otherwise.

Chart: CO_SERVER

Condition: BIND_PDU

Description: Statechart internal flag: received PDU type bind.

Chart: CO_SERVER

Condition: CNTL_PDU

Description: Statechart internal flag: to be received control PDUs.

Definition: PDU_TYPE=ORPHANED or PDU_TYPE=BIND or
PDU_TYPE=ALTER_CONTEXT

Chart: CO_SERVER

Condition: GROUP_EXISTS

Description: The group exists.

Definition: in(CO_SERVER_GROUP:CO_SERVER_GROUP)

Chart: CO_SERVER

Condition: LAST_IN_FRAG

Description: Statechart internal flag: last in fragment or non-frag in packet received.

Chart: CO_SERVER

Condition: LAST_OUT_FRAG

Description: Statechart internal flag: last out fragment or non-frag out packet ready to send.

This flag is set by the run-time system if the transmit queue contains the last
fragment (see also Section 9.3 on page 333).

Part 4 RPC Services and Protocols 489

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Condition: MAYBE

Description: Statechart internal flag: maybe call.

Chart: CO_SERVER

Condition: ORPHANED_PDU

Description: Statechart internal flag: received PDU type orphaned.

Chart: CO_SERVER

Condition: PDU_FIRST_FRAG

Description: Header flag PFC_FIRST_FRAG.

Chart: CO_SERVER

Condition: PDU_LAST_FRAG

Description: Header flag PFC_LAST_FRAG.

Chart: CO_SERVER

Condition: PDU_MAYBE

Description: Header flag PFC_MAYBE.

Chart: CO_SERVER

Condition: PDU_OBJECT_UUID

Description: Status if optional object field is present in received PDU (header flag
PFC_OBJECT_UUID is set).

Chart: CO_SERVER

Condition: PDU_PENDING_CANCEL

Description: Header flag PFC_PENDING_CANCEL in received request PDU.

Chart: CO_SERVER

Condition: RETURN_PENDING_CANCEL

Description: Cancel pending state returned from stub after processing the cancel request.

490 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Condition: SND_DID_NOT_EXECUTE

Description: Statechart internal flag: send fault PDU with PFC_DID_NOT_EXECUTE
header flag set.

Chart: CO_SERVER

Condition: SND_FIRST_FRAG

Description: Statechart internal flag: send first out fragment.

Chart: CO_SERVER

Condition: SND_LAST_FRAG

Description: Statechart internal flag: header flag PFC_LAST_FRAG for PDU to be sent.

Chart: CO_SERVER

Condition: SND_PENDING_CANCEL

Description: Cancel pending state for current call at server.

The cancel pending state is set by the server manager routine via the
CANCEL_NOTIFY_APP activity.

Chart: CO_SERVER

Condition: TICKET_EXP

Description: Statechart internal flag: ticket expired.

Definition: SYS_TIME>GRACE_PERIOD+PDU_EXP_TIME

Chart: CO_SERVER

Condition: TRANSMIT_RESP

Description: One or more fragments queued for transmission of response data.

This flag indicates that one or more response fragment(s) are queued in a run-
time internal buffer and ready to be transmitted.

The run-time system internally sets this flag (true) after the stub initially
provides data in the transmit queue, sufficient for at least the first PDU
fragment to be transmitted. The protocol machine resets this flag if it has
detected and taken an event for sending the next fragment in the queue.

The run-time system sets this flag again after completion of a SEND_PKT if
the transmit queue contains enough data for the next PDU fragment to be
transmitted.

Part 4 RPC Services and Protocols 491

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Condition: VALID_FRAG_SIZE

Description: Evaluation whether received PDU exceeds size limit.

Definition: not PDU_TYPE=BIND and
PDU_FRAG_LENGTH<=RT_MAX_RCV_FRAG_SIZE or
PDU_TYPE=BIND and
PDU_FRAG_LENGTH<=CONST_MUST_RCV_FRAG_SIZE

Chart: CO_SERVER

Condition: VALID_PDU_HEADER

Description: Pre-evaluation of PDU header (before authentication processing).

Definition: PDU_CALL_ID=RT_CALL_ID and VALID_VERSION
and VALID_FRAG_SIZE

Chart: CO_SERVER

Condition: VALID_VERSION

Description: Evaluation of protocol version.

Definition: PDU_VERSION_NUM=CO_VERSION_NUM_V20 and
PDU_VERSION_NUM_MINOR<=CO_VERSION_NUM_V20_MINOR

Chart: CO_SERVER

Condition: WAIT_FOR_GROUP

Description: Association waits for group creation before opening.

492 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

11.4.6 CO_SERVER Data-Items

The CO_SERVER statechart defines the following data items:

Chart: CO_SERVER

Data Item: ALTER_CONTEXT

Description: Constant: PDU type alter_context.

Definition: 14

Chart: CO_SERVER

Data Item: ALTER_CONTEXT_RESP

Description: Constant: PDU type alter_context_resp.

Definition: 15

Chart: CO_SERVER

Data Item: BIND

Description: Constant: PDU type bind.

Definition: 11

Chart: CO_SERVER

Data Item: BIND_ACK

Description: Constant: PDU type bind_ack.

Definition: 12

Chart: CO_SERVER

Data Item: BIND_NAK

Description: Constant: PDU type bind_nak.

Definition: 13

Chart: CO_SERVER

Data Item: CANCEL

Description: Constant: PDU type cancel.

Definition: 18

Part 4 RPC Services and Protocols 493

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Data Item: CONST_MUST_RCV_FRAG_SIZE

Description: Constant: MustRecvFragSize value, indicating the lower bound of the
fragment size.

Definition: 1432

Chart: CO_SERVER

Data Item: CONST_NCA_S_INVALID_CHKSUM

Description: Constant: reject status code nca_s_invalid_chksum.

Chart: CO_SERVER

Data Item: CONST_NCA_S_PROTO_ERROR

Description: Constant: reject status code nca_s_proto_error.

Chart: CO_SERVER

Data Item: CONST_REASON_INVALID_CHECKSUM

Description: The value indicating a security integrity failure.

This value is the invalid_checksum member of the enumerated type
p_reject_reason_t (see Chapter 12). This is transmitted in the
provider_reject_reason field of the bind_nak PDU.

Chart: CO_SERVER

Data Item: CONST_SUB_TYPE_INVALID_CHECKSUM

Description: Value indicating a security integrity failure (invalid checksum).

The value dce_c_cn_dce_sub_type_invalid_checksum, which is encoded in
the sub_type field of the auth_value member of the authentication verifier.
(See Chapter 13.)

Definition: 2

Chart: CO_SERVER

Data Item: CO_VERSION_NUM_V20

Description: Constant: RPC protocol version 2.0 major version number.

Definition: 5

494 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Data Item: CO_VERSION_NUM_V20_MINOR

Description: Constant: RPC protocol minor version number.

Chart: CO_SERVER

Data Item: FAULT

Description: Constant: PDU type fault.

Definition: 3

Chart: CO_SERVER

Data Item: GRACE_PERIOD

Description: Grace period on server after ticket expiration (implementation-specific).

Chart: CO_SERVER

Data Item: ORPHANED

Description: Constant: PDU type orphaned.

Definition: 19

Chart: CO_SERVER

Data Item: PDU_ASSOC_GROUP_ID

Description: The assoc_group_id field from the received bind PDU.

Chart: CO_SERVER

Data Item: PDU_AUTH_SPEC

Description: PDU header field auth_length.

Chart: CO_SERVER

Data Item: PDU_AUTH_VERIFIER

Description: PDU trailer: authentication verifier (authentication protocol-specific).

Chart: CO_SERVER

Data Item: PDU_BODY

Description: Array of PDU body data.

Part 4 RPC Services and Protocols 495

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Data Item: PDU_CALL_ID

Description: PDU header field call_id.

Chart: CO_SERVER

Data Item: PDU_EXP_TIME

Description: Ticket expiration time transmitted in the authentication verifier.

Chart: CO_SERVER

Data Item: PDU_FRAG_LENGTH

Description: PDU header field frag_length.

Chart: CO_SERVER

Data Item: PDU_IF_ID

Description: PDU header field: interface identifier, encoded in the p_context_elem field of
bind and alter_context PDUs.

Chart: CO_SERVER

Data Item: PDU_IF_VERSION

Description: PDU header field: interface version, encoded in the p_context_elem field of
bind and alter_context PDUs.

Chart: CO_SERVER

Data Item: PDU_MAX_RCV_FRAG_SIZE

Description: PDU header field max_recv_frag.

Chart: CO_SERVER

Data Item: PDU_MAX_XMIT_FRAG_SIZE

Description: PDU header field max_xmit_frag.

Chart: CO_SERVER

Data Item: PDU_OBJ_ID

Description: PDU header field object.

496 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Data Item: PDU_OP_NUM

Description: PDU header field opnum.

Chart: CO_SERVER

Data Item: PDU_P_CONT_ID

Description: PDU header field p_cont_id.

Chart: CO_SERVER

Data Item: PDU_P_CONT_LIST

Description: PDU header field p_cont_elem in bind and alter_context PDUs.

Chart: CO_SERVER

Data Item: PDU_TYPE

Description: PDU header field PTYPE.

Chart: CO_SERVER

Data Item: PDU_VERSION_NUM

Description: PDU header field rpc_vers.

Chart: CO_SERVER

Data Item: PDU_VERSION_NUM_MINOR

Description: PDU header field rpc_vers_minor.

Chart: CO_SERVER

Data Item: REQUEST

Description: Constant: PDU type request.

Definition: 0

Chart: CO_SERVER

Data Item: RESPONSE

Description: Constant: PDU type response.

Definition: 2

Part 4 RPC Services and Protocols 497

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Data Item: RT_AUTH_LENGTH_CALL

Description: Statechart internal: auth_length field received in CALL state.

Chart: CO_SERVER

Data Item: RT_AUTH_LENGTH_CAN

Description: Statechart internal: auth_length field received in CANCEL state.

Chart: CO_SERVER

Data Item: RT_AUTH_LENGTH_CNTL

Description: Statechart internal: auth_length field received in CONTROL state.

Chart: CO_SERVER

Data Item: RT_AUTH_VERIFIER_CALL

Description: Received authentication trailer (verifier) for request PDU.

Chart: CO_SERVER

Data Item: RT_AUTH_VERIFIER_CAN

Description: Received authentication trailer (verifier) for cancel PDU.

Chart: CO_SERVER

Data Item: RT_AUTH_VERIFIER_CNTL

Description: Received authentication trailer (verifier) for control PDU.

Chart: CO_SERVER

Data Item: RT_BODY

Description: Statechart internal: temporarily buffered request PDU body data.

Chart: CO_SERVER

Data Item: RT_CALL_ID

Description: Statechart internal: call identifier of current RPC call.

Chart: CO_SERVER

Data Item: RT_CLIENT_PRES_CONTEXT_LIST

Description: Statechart internal: presentation context as represented by the client.

498 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Data Item: RT_GROUP_ID

Description: The identifier of the association group of which this association is a member.

Chart: CO_SERVER

Data Item: RT_IF_ID

Description: Statechart internal: received interface UUID.

Chart: CO_SERVER

Data Item: RT_IF_VERSION

Description: Statechart internal: received interface version number.

Chart: CO_SERVER

Data Item: RT_IN_PARAMS

Description: Statechart internal: buffered array of reassembled input data.

Chart: CO_SERVER

Data Item: RT_MAX_RCV_FRAG_SIZE

Description: Maximum size of a fragment the receiver is able to handle.

The minimum value of this fragment size is determined by the architected
value MustRcvFragSize (refer to Chapter 12).

Implementations may support larger fragment sizes that are subject to
negotiation with the client. This value is set internally by run-time
implementations.

Chart: CO_SERVER

Data Item: RT_MAX_XMIT_FRAG_SIZE

Description: Maximum size of a fragment the sender is able to handle.

The minimum value of this fragment size is determined by the architected
value MustRcvFragSize (refer to Chapter 12).

Implementations may support larger fragment sizes that are subject to
negotiation with the client. This value is set internally by run-time
implementations.

Part 4 RPC Services and Protocols 499

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Data Item: RT_OBJ_ID

Description: Statechart internal: buffered object UUID of RPC call.

Chart: CO_SERVER

Data Item: RT_OP_NUM

Description: Statechart internal: buffered operation number of RPC call.

Chart: CO_SERVER

Data Item: RT_OUT_FRAG

Description: Statechart internal pointer to data to be sent in next response PDU.

The SEND_PKT activity increments this pointer after a response PDU is sent.

Chart: CO_SERVER

Data Item: RT_OUT_PARAMS

Description: Buffered array of unfragmented output data.

RT_OUT_PARAMS is the queue of transmit data provided by the stub. A
possible segmentation of this queue is not equivalent to the sizes of PDU
fragments sent by the run-time system (SEND_PKT) activity.

The RT_OUT_FRAG variable is a pointer data type that points to the to be
transmitted data fragment within this RT_IN_PARAMS queue.

Chart: CO_SERVER

Data Item: RT_PRES_CONTEXT_ID

Description: Statechart internal: presentation context identifier of current call.

Chart: CO_SERVER

Data Item: RT_REJECT_REASON

Description: The reason the bind request was rejected.

The RPC run-time system sets this value according to the detected error (see
also the p_reject_reason_t type definition in Chapter 12).

Chart: CO_SERVER

Data Item: RT_SECONDARY_ADDRESS

Description: Secondary address for this server.

500 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER Machine

Chart: CO_SERVER

Data Item: SHUTDOWN

Description: Constant: PDU type shutdown.

Definition: 17

Chart: CO_SERVER

Data Item: SND_AUTH_VALUE_SUB_TYPE

Description: The value of the sub_type field of the auth_value member of the
authentication verifier sent in an alter_context_resp PDU. (See Chapter 13.)

Chart: CO_SERVER

Data Item: SND_CALL_ID

Description: Call identifier to be sent.

Chart: CO_SERVER

Data Item: SND_CANCEL_COUNT

Description: Counter of received cancel requests for current call.

Chart: CO_SERVER

Data Item: SND_GROUP_FIELD

Description: The assoc_group_id field of a bind_ack PDU.

Chart: CO_SERVER

Data Item: SND_MAX_RCV_FRAG_SIZE

Description: max_recv_frag header value to be sent.

Chart: CO_SERVER

Data Item: SND_MAX_XMIT_FRAG_SIZE

Description: max_xmit_frag header field to be sent.

Chart: CO_SERVER

Data Item: SND_OUT_PARAMS

Description: PDU body data promoted to SEND_PKT activity.

Part 4 RPC Services and Protocols 501

CO_SERVER Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER

Data Item: SND_PRES_CONTEXT_ID

Description: Presentation context identifier to be sent.

Chart: CO_SERVER

Data Item: SND_REJECT_REASON

Description: The value sent for the reject reason in a bind_nak PDU.

Chart: CO_SERVER

Data Item: SND_REPLY_TYPE

Description: PDU type to be sent.

Chart: CO_SERVER

Data Item: SND_SEC_ADDR

Description: The sec_addr field of a bind_ack PDU to be sent.

Chart: CO_SERVER

Data Item: SYS_TIME

Description: Secure reference time of local system.

Chart: CO_SERVER

Data Item: TIMEOUT_SERVER_DISCONNECT

Description: Timeout value: DefaultServerDisconnectTimer.

502 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER_GROUP Machine

11.5 CO_SERVER_GROUP Machine
Figure 11-5 shows the CO_SERVER_GROUP machine statechart.

T

CO_SERVER_GROUP

CALL_WAIT

GROUP_ACTIVE

ACCEPT_BIND[PDU_ASSOC_GROUP_ID=0]/INIT_GROUP

CLOSE_GROUP

REMOVE_FROM_GROUP[ACTIVE_CONTEXT_COUNT>0 and ASSOC_COUNT=1]

Figure 11-5 CO_SERVER_GROUP Statechart

Part 4 RPC Services and Protocols 503

CO_SERVER_GROUP Machine Connection-oriented RPC Protocol Machines

11.5.1 CO_SERVER_GROUP States

The CO_SERVER_GROUP statechart defines the following states:

Chart: CO_SERVER_GROUP

State: CALL_WAIT

Description: Wait for calls to complete before running down context handles.

Allows the server an opportunity to complete before attempting context
rundown.

Reactions
Trigger Action

IF
ACTIVE_CONTEXT_COUNT>0

THEN
RUNDOWN_CONTEXT_HANDLES

END IF

exiting

CONTEXT_ACTIVE@T{
ACTIVE_CONTEXT_COUNT:=
ACTIVE_CONTEXT_COUNT+1

ACTIVE_CONTEXT_COUNT:=
ACTIVE_CONTEXT_COUNT-1

CONTEXT_INACTIVE

Chart: CO_SERVER_GROUP

State: CO_SERVER_GROUP

Description: Main state for a server association group. Created by ACCEPT_BIND event.

Note that once the CO_SERVER_GROUP is terminated, the group ID
associated with this group is no longer valid. Receipt of a PDU containing a
PDU_ASSOC_GROUP_ID which does not match the group ID of any group is
a client protocol error.

Chart: CO_SERVER_GROUP

State: GROUP_ACTIVE

Description: Group contains associations not in CLOSED state.

Reactions
Trigger Action

ADD_TO_GROUP ASSOC_COUNT:=ASSOC_COUNT+1

REMOVE_FROM_GROUP[ASSOC_COUNT>1] ASSOC_COUNT:=ASSOC_COUNT-1

ACTIVE_CONTEXT_COUNT:=
ACTIVE_CONTEXT_COUNT+1

CONTEXT_ACTIVE

ACTIVE_CONTEXT_COUNT:=
ACTIVE_CONTEXT_COUNT-1

CONTEXT_INACTIVE

504 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER_GROUP Machine

11.5.2 CO_SERVER_GROUP Events

The CO_SERVER_GROUP statechart defines the following events:

Chart: CO_SERVER_GROUP

Event: ACCEPT_BIND

Description: Externally generated. Server accepts association. Same as in CO_SERVER.

Chart: CO_SERVER_GROUP

Event: ADD_TO_GROUP

Description: Signal group to add this association.

To avoid race conditions, the ASSOCIATION must lock the group before
issuing this event and unlock the group only after the event has been
processed by the group machine instance.

Event is generated by CO_SERVER and sensed by CO_SERVER_GROUP.

Chart: CO_SERVER_GROUP

Event: CLOSE_GROUP

Description: Close the group.

Definition: NO_CALLS[in(CALL_WAIT)] or
REMOVE_FROM_GROUP[ACTIVE_CONTEXT_COUNT=0
and ASSOC_COUNT=1]

Chart: CO_SERVER_GROUP

Event: CONTEXT_ACTIVE

Description: A context handle was activated. Generated by the server stub.

The stub must generate this event for each context handle which makes a
transition from inactive to active. To avoid a race condition which could result
from multiple simultaneous events, the stub must lock the group before
generating the CONTEXT_ACTIVE event and release the lock only after the
event has been processed by the group machine.

Chart: CO_SERVER_GROUP

Event: CONTEXT_INACTIVE

Description: Context handle deactivated. Generated by the server stub.

The stub generates this event for each context handle which makes a
transition from active to inactive. To avoid a race condition which could result
from multiple simultaneous events, the stub must lock the group before
generating the CONTEXT_INACTIVE event and release the lock only after the
event has been processed by the group machine.

Part 4 RPC Services and Protocols 505

CO_SERVER_GROUP Machine Connection-oriented RPC Protocol Machines

Chart: CO_SERVER_GROUP

Event: NO_CALLS

Description: All calls using this association group have completed. Generated externally.

Chart: CO_SERVER_GROUP

Event: REMOVE_FROM_GROUP

Description: Signal association group to remove this association.

To avoid race conditions, the ASSOCIATION must lock the group before
issuing this event and unlock the group only after the event has been
processed by the group machine instance.

Event is generated by CO_SERVER and sensed by CO_SERVER_GROUP.

Chart: CO_SERVER_GROUP

Event: RUNDOWN_CONTEXT_HANDLES

Description: Signal stub to rundown all active context handles for this group.

The stub manages context handles and may associate them with rundown
routines. An instance of the CO_SERVER_GROUP signals the stub to
rundown any active context handles that were associated with this group.

506 X/Open CAE Specification (1994)

Connection-oriented RPC Protocol Machines CO_SERVER_GROUP Machine

11.5.3 CO_SERVER_GROUP Actions

The CO_SERVER_GROUP statechart defines the following actions:

Chart: CO_SERVER_GROUP

Action: INIT_GROUP

Description: Initialise state for group and generate value for RT_GROUP_ID.

Definition: ASSOC_COUNT:=0;
ACTIVE_CONTEXT_COUNT:=0

11.5.4 CO_SERVER_GROUP Data-Items

The CO_SERVER_GROUP statechart defines the following data items:

Chart: CO_SERVER_GROUP

Data Item: ACTIVE_CONTEXT_COUNT

Description: Number of active context handles for this group. Internal variable.

Chart: CO_SERVER_GROUP

Data Item: ASSOC_COUNT

Description: Number of associations in group. Internal variable.

Chart: CO_SERVER_GROUP

Data Item: PDU_ASSOC_GROUP_ID

Description: The group id field from the received bind PDU.

Part 4 RPC Services and Protocols 507

Connection-oriented RPC Protocol Machines

508 X/Open CAE Specification (1994)

Chapter 12

RPC PDU Encodings

This chapter specifies the encodings of the Protocol Data Units (PDUs) used by the
connectionless and connection-oriented RPC protocols. The first section provides common
information for the two protocols. Subsequent sections provide connectionless and connection-
oriented protocol-specific information.

Table 12-1 lists the PDUs that are specified.

12.1 Generic PDU Structure
An RPC PDU contains up to three parts:

• A PDU header that contains protocol control information. A header is present in all PDUs.

• A PDU body that contains data. For example, the body of a request or response PDU
contains data representing the input or output parameters for an operation. A body is present
only in some types of PDUs.

• An authentication verifier that contains data specific to an authentication protocol. For
example, an authentication protocol may ensure the integrity of a packet via inclusion of an
encrypted checksum in the authentication verifier. The presence of an authentication verifier
depends on the PDU type and whether authentication is being used.

PDU Type Protocol Type Value
request CO/CL 0
ping CL 1
response CO/CL 2
fault CO/CL 3
working CL 4
nocall CL 5
reject CL 6
ack CL 7
cl_cancel CL 8
fack CL 9
cancel_ack CL 10
bind CO 11
bind_ack CO 12
bind_nak CO 13
alter_context CO 14
alter_context_resp CO 15
shutdown CO 17
co_cancel CO 18
orphaned CO 19

Table 12-1 RPC Protocol Data Units

Part 4 RPC Services and Protocols 509

Encoding Conventions RPC PDU Encodings

12.2 Encoding Conventions
The encodings are provided here as IDL data type declarations. The actual declarations of PDU
data types are implementation-dependent.

The run-time system treats PDU headers as byte streams that are encoded according to the
Network Data Representation (NDR, see Chapter 14) encoding rules. In PDUs containing stub
data, the stub data may be encoded according to any of the negotiated presentation syntaxes.
PDU-specific header fields identify the stub data presentation syntax. The run-time system
identifies the presentation syntax from the PDU-specific header fields and interprets the stub
data accordingly.

In order to encode and decode the header fields, implementations must support the following
subset of NDR:

• integers: 1, 2 and 4 octet unsigned

• octet string

• record constructor for the preceding types

• conformant array constructor.

Implementations must follow the rule that, beginning at the first octet of the PDU (or the first
octet of the optional data field), each field is encoded in the order specified without any
additional information such as type, length or padding.

12.3 Alignment
For all the PDUs, the scalar header fields are aligned [0 MOD min(8,sizeof(field))]. For PDUs that
contain stub data, the header is padded, if necessary, with zeros to an integral multiple of 8
octets in length. This allows the stub data to assume it will always begin with 0 MOD 8
alignment. Padding, where necessary, is included in the type declarations. The align(n) function,
which appears in some connection-oriented PDU declarations, identifies a function that returns
the number of padding octets to force alignment to a natural multiple of n. Implementations
should ensure that each message in memory begins on an 8 octet alignment boundary in order to
preserve the natural alignment.

Refer to Chapter 13 for alignment requirements for the optional authentication verifiers.

510 X/Open CAE Specification (1994)

RPC PDU Encodings Common Fields

12.4 Common Fields
Header encodings differ between connectionless and connection-oriented PDUs. However,
certain fields use common sets of values with a consistent interpretation across the two
protocols. These values are specified in the following sections.

12.4.1 PDU Types

Both connectionless and connection-oriented PDU headers contain a 1-byte field that identifies
the PDU type. The values are shown in the column marked Type Value in Table 12-1 on page
509.

12.4.2 Protocol Version Numbers

Both connectionless and connection-oriented PDU headers contain version number fields that
indicate the RPC protocol version. The connectionless headers contain a single version field,
while the connection-oriented headers contain both a major and a minor version field.
Connectionless and connection-oriented protocol version numbers vary independently, so that a
given version number is not necessarily unique to one of the protocols.

The version numbers for the protocols specified in this chapter are as follows:

• The major version number for the connection-oriented protocol is 5.

• The minor version number for the connection-oriented protocol is 0 (zero).

• The version number for the connectionless protocol is 4.

12.4.3 Data Representation Format Labels

Both connectionless and connection-oriented PDU headers contain an NDR data representation
format label that identifies the formats used by the sender of a PDU to represent data in the PDU
header, and when the transfer syntax is NDR, in the PDU body. (The representation of data in an
authentication verifier is determined by the authentication protocol.) Chapter 14 describes the
NDR data representation format label.

As defined by NDR, the format label consists of 4 bytes, although the fourth byte is currently
unused. Only the first 3 bytes appear in RPC connectionless PDU headers. Connection-oriented
PDUs include space for all four bytes of the format label.

NDR defines only one bit layout for the format label itself, so its format is the same in all PDUs.

12.4.4 Reject Status Codes

Both reject and connection-oriented fault PDUs contain a 32-bit field that indicates a server’s
reason for rejecting an RPC call request. This field is encoded as the body data of the reject PDU
and as the status field of the connection-oriented fault PDU header. Table E-1 on page 601 lists
the possible values of this field.

Part 4 RPC Services and Protocols 511

Connectionless RPC PDUs RPC PDU Encodings

12.5 Connectionless RPC PDUs
The RPC run-time system uses the connectionless PDUs for the client/server communications
that are required by each remote procedure call over a connectionless transport. The following
sections specify the encoding of each of the connectionless PDUs.

12.5.1 Connectionless PDU Structure

Connectionless PDUs consist of a header, body data and an optional authentication verifier. The
PDU header has a fixed length of 80 bytes. The encoding is described in Section 12.5.2. The PDU
body can be defined as an array of the IDL byte type. The length of the PDU body is specified in
the PDU header.

The authentication verifier can be defined as an array of the IDL byte type. The length of the
authentication verifier depends on the authentication protocol specified in the PDU header. An
authentication verifier is present in a PDU only if the auth_proto header field is not 0 (zero).

The maximum size of an RPC connectionless PDU is the fixed header length (80 bytes) plus the
maximum body length plus the length of the authentication verifier, which is determined by the
authentication protocol. The X/Open DCE defines a lower bound on the size of a single PDU
that all implementations must be able to receive, MustRecvFragSize. A client and server may
subsequently negotiate a large PDU size during the course of their conversation. This
negotiation may take place explicitly (by conveying the value in the body of a fack PDU; see
Section 12.5.3.4 on page 518), or implicitly (by presuming that a peer can receive packets as large
as those it has transmitted).

If the input data in a request or the output data in a response exceed the maximum PDU body
size, the RPC connectionless protocols fragment the request or response into several PDUs,
called fragments. The fragment number can be reused for a given call if the fragment number
space is exhausted. If fragment numbers wrap around and are reused, the implementation must
assure that these are unambiguous (for example, the first 50% of fragments must have been
acknowledged).

Requests that are broadcast must fit in one PDU, and on some connectionless transports they
may be subject to further size limitations.

12.5.2 Header Encoding

The connectionless header can be defined as a structure in Interface Definition Language (IDL):

typedef struct {
unsigned small rpc_vers = 4; /* RPC protocol major version (4 LSB only)*/
unsigned small ptype; /* Packet type (5 LSB only) */
unsigned small flags1; /* Packet flags */
unsigned small flags2; /* Packet flags */
byte drep[3]; /* Data representation format label */
unsigned small serial_hi; /* High byte of serial number */
uuid_t object; /* Object identifier */
uuid_t if_id; /* Interface identifier */
uuid_t act_id; /* Activity identifier */
unsigned long server_boot;/* Server boot time */
unsigned long if_vers; /* Interface version */
unsigned long seqnum; /* Sequence number */
unsigned short opnum; /* Operation number */
unsigned short ihint; /* Interface hint */
unsigned short ahint; /* Activity hint */
unsigned short len; /* Length of packet body */

512 X/Open CAE Specification (1994)

RPC PDU Encodings Connectionless RPC PDUs

unsigned short fragnum; /* Fragment number */
unsigned small auth_proto; /* Authentication protocol identifier*/
unsigned small serial_lo; /* Low byte of serial number */

} dc_rpc_cl_pkt_hdr_t;

The bit layout of each field in a PDU header is determined by the following:

• The IDL type of the field, as shown in the definition for dc_rpc_cl_pkt_hdr_t.

• The NDR representation for that IDL type, as specified in Chapter 14.

• The NDR character, integer and floating-point formats used by the RPC implementation that
is sending the PDU.

12.5.2.1 Protocol Version Number

The protocol version number is a non-negative integer that is encoded in the 4 least significant
bits of the rpc_vers field. (The remaining bits are reserved.) This number is incremented at each
new release of the protocol. The protocol version number allows implementations of several
versions of RPC to coexist in a distributed environment. The PDU formats given here are for
version 4.

12.5.2.2 PDU Type

The PDU type is a non-negative integer that is encoded in the 5 least significant bits of the ptype
field. (The remaining bits are reserved.) The values for each type are shown in the column
labelled Type Value in Table 12-1 on page 509.

12.5.2.3 Flags Fields

Each of the flags fields is an 8-bit integer that is composed of bit flags for use in protocol control.

This document currently specifies the use of 6 bits in the first set of PDU flags. The other bits are
either reserved for use by implementations or reserved for future use, as indicated in Table 12-3
on page 514 and Table 12-4 on page 517.

Some flags are meaningful only in PDUs that are sent from the client to the server. These flags
are ignored in PDUs that are sent from the server to the client.

Table 12-3 on page 514 lists the bit flags in the first set of PDU flags.

Part 4 RPC Services and Protocols 513

Connectionless RPC PDUs RPC PDU Encodings

PDU Flag Hex Value Meaning
Reserved for use by implementations.reserved_01 01

Meaningful in either direction. If set, the PDU is the last
fragment of a multi-PDU transmission.

lastfrag 02

Meaningful in either direction. If set, the PDU is a fragment of
a multi-PDU transmission.

frag 04

Meaningful for fragments sent in either direction. If set, the
receiver is not requested to send a fack PDU for the fragment.
Otherwise, if not set, the receiver acknowledges the received
PDU with a fack PDU. Note that both client and server may
send fack PDUs independent of the status of this flag.

nofack 08

Meaningful only from client to server. If set, the PDU is for a
maybe request.

maybe 10

Meaningful only from client to server. If set, the PDU is for an
idempotent request.

idempotent 20

Meaningful only from client to server. If set, the PDU is for a
broadcast request.

broadcast 40

Reserved for use by implementations.reserved_80 80

Table 12-2 The First Set of PDU Flags

Table 12-4 on page 517 lists the bit flags in the second set of PDU flags.

PDU Flag Hex Value Meaning
Reserved for use by implementations.reserved_01 01

Cancel pending at the call end.cancel_pending 02

Reserved for future use. Must be set to 0.reserved_04 04

Reserved for future use. Must be set to 0.reserved_08 08

Reserved for future use. Must be set to 0.reserved_10 10

Reserved for future use. Must be set to 0.reserved_20 20

Reserved for future use. Must be set to 0.reserved_40 40

Reserved for future use. Must be set to 0.reserved_80 80

Table 12-3 Second Set of PDU Flags

12.5.2.4 Data Representation Format Label

The data representation format label is described in Chapter 14. As defined by NDR, the format
label consists of 4 bytes, although the fourth byte is currently unused. Only the first 3 bytes
appear in connectionless PDUs.

12.5.2.5 Serial Number

The serial number is a 16-bit non-negative integer that identifies a transmission of a fragment.

The serial number is set to 0 (zero) when a remote procedure call is initiated, and is incremented
after each time a fragment is sent or resent on behalf of that call.

In a request or response PDU that is part of a multi-PDU transmission, the serial number
provides information to help determine the temporal order of fragment transmissions and
retransmissions. In other types of PDUs, the serial number is meaningless.

514 X/Open CAE Specification (1994)

RPC PDU Encodings Connectionless RPC PDUs

The 2 bytes of the serial number do not occupy contiguous positions in the PDU header. The
most significant byte follows the data representation format label. The least significant byte
follows the authentication protocol number.

12.5.2.6 Object Identifier

The object identifier is a UUID that uniquely identifies the object on which a remote procedure
call is operating. If the call does not operate on an object, this field contains the nil UUID.

The server uses the object UUID, the interface UUID, the interface version number, and the
operation number to select the operation to execute on the client’s behalf.

12.5.2.7 Interface Identifier

The interface identifier is a UUID that uniquely identifies the interface being called.

The server uses the object UUID, the interface UUID, the interface version number, and the
operation number to select the operation to execute on the client’s behalf.

12.5.2.8 Activity Identifier

The activity identifier is a UUID that uniquely identifies the client activity that is making a
remote procedure call. The server can use the activity UUID as a communications key between it
and the client.

12.5.2.9 Server Boot Time

The server boot time is a 32-bit non-negative integer that indicates the time at which the current
instantiation of a server was booted; that is, the time at which the process in which the server is
running was created, not the time at which the server host was booted. Server boot time is
represented as time in seconds since 1 January 1970 and must increase with each boot of the
server.

A server passes its boot time in all the PDUs that it sends to a client. The client passes back this
value in all the PDUs that it subsequently sends to the same server. When a client sends its first
PDU to a server, it does not know the server boot time, and it passes a value of 0 (zero). The
server boot time field enables the RPC connectionless protocols to prevent nonidempotent
operations from being executed more than once in the face of a server crash.

The protocol also allows for PDUs to be transmitted by the endpoint mapper on behalf of a
server process; for example, the endpoint mapper may return a reject PDU upon receipt of a
request sent to a server that is not currently running. In such cases, any PDUs transmitted by the
endpoint mapper must carry a 0 boot time, to differentiate them from PDUs that might
subsequently be received by the target server.

12.5.2.10 Interface Version

The interface version is a 32-bit non-negative integer that identifies the version number of the
interface being called. This field allows servers to implement several versions of one interface.

The server uses the object UUID, the interface UUID, the interface version number, and the
operation number to select the operation to execute on the client’s behalf.

Part 4 RPC Services and Protocols 515

Connectionless RPC PDUs RPC PDU Encodings

12.5.2.11 Sequence Number

The sequence number is a 32-bit non-negative integer that identifies the remote procedure call
that an activity is making.

Each remote procedure call invoked by an activity has a unique sequence number that is
assigned when the call is initiated. All RPC connectionless PDUs sent on behalf of that particular
call have the same sequence number, whether the PDUs are from client to server or from server
to client.

When an activity initiates a new remote procedure call, it increases the sequence number, so that
each subsequent call has a larger sequence number. Together, the activity UUID and the
sequence number uniquely identify a remote procedure call.

12.5.2.12 Operation Number

The operation number is a 16-bit non-negative integer that identifies a particular operation
within the interface being called.

12.5.2.13 Interface Hint

The interface hint is a 16-bit non-negative integer. Although an implementation can use this field
for any purpose, its intended use is to allow a server to optimise lookups of information about
interfaces.

12.5.2.14 Activity Hint

The activity hint is a 16-bit non-negative integer. Although an implementation can use this field
for any purpose, its intended use is to allow a server to optimise lookups of information about
the state of its communications with an activity.

12.5.2.15 PDU Body Length

The PDU body length is a 16-bit non-negative integer that indicates the length in bytes of the
PDU body. The maximum PDU body size is 65528 bytes. The alignment requirements for the
PDU header (see Section 12.3 on page 510) also apply to the PDU body data.

12.5.2.16 Fragment Number

The fragment number is a 16-bit non-negative integer that identifies a PDU within a multi-PDU
transmission.

In a request or response PDU that is part of a multi-PDU transmission, the fragment number
indicates the fragment that is being sent. The fragment number is incremented for each
fragment. The first fragment is fragment 0, the second is fragment 1, and so on.

In a fack PDU and a nocall PDU with a body, the fragment number indicates the fragments that
have been received in order, as follows:

• If fragment 0 through fragment n have been received, and fragment n+1 has not been
received, the fragment number field should be n.

• If fragment 0 has not been received, the fragment number field should contain the
hexadecimal value FFFF.

In effect, fragments received out of order are not acknowledged.

516 X/Open CAE Specification (1994)

RPC PDU Encodings Connectionless RPC PDUs

12.5.2.17 Authentication Protocol Identifier

The authentication protocol identifier is an 8-bit non-negative integer that identifies an
authentication protocol.

Table 12-4 lists the possible values for the authentication protocol identifier field and briefly
describes the authentication protocol identified by each value. All other values are reserved for
future use.

Identifier Protocol Used
0 None
1 OSF DCE Private Key Authentication

Table 12-4 Authentication Protocol Identifiers

12.5.3 Connectionless PDU Definitions

The following sections describe the contents and use of each of the connectionless PDUs.

12.5.3.1 The ack PDU

A client sends an ack PDU after it has received a response to an at-most-once request. An ack
PDU explicitly acknowledges that the client has received the response; it tells the server to cease
resending the response and discard the response PDU. (A client can also implicitly acknowledge
receipt of a response by sending a new request to the server.)

An ack PDU contains no body data.

12.5.3.2 The cancel_ack PDU

A server sends a cancel_ack PDU after it has received a cancel PDU. A cancel_ack PDU
acknowledges that the server has cancelled or orphaned a remote call or indicates that the server
is not accepting cancels.

A cancel_ack PDUs can optionally have a body. A cancel_ack PDU without a body
acknowledges orphaning of a call, whereas a cancel_ack PDU with a body acknowledges
cancellation of a call. Orphaned calls do not perform any further processing. Canceled calls
transparently deliver a notification to the server manager routine without altering the run-time
system state of the call. The run-time system’s processing of a cancelled call continues
uninterrupted.

When a cancel_ack PDU has a body, its format is specified by the following IDL declaration:

typedef struct
{

unsigned32 vers = 0; /* cancel-request body format version */
unsigned32 cancel_id;/* id of a cancel-request event being ack’d */
boolean server_is_accepting; /* server accepting cancels ? */

} rpc_dg_cancel_ack_body_t;

• An NDR unsigned long that indicates the version number of the cancel_ack PDU body. This
is independent of the protocol version number contained in the PDU header. This
specification is for version 0.

• An NDR unsigned long that identifies the cancel request event that is being acknowledged.

• An NDR boolean that indicates whether the server is accepting the cancel request. TRUE
means that it is accepting.

Part 4 RPC Services and Protocols 517

Connectionless RPC PDUs RPC PDU Encodings

The version number for the format of the cancel_ack body is the first byte of the body. This
version number changes independently of the protocol version number in the PDU header.

12.5.3.3 The cancel PDU

A client sends a cancel PDU when it has incurred a cancel fault. A cancel PDU tells the server to
cancel or orphan a remote operation. Canceled calls transparently deliver a notification to the
server manager routine without altering the run-time system state of the call. The run-time
system’s processing of a cancelled call continues uninterrupted.

The cancel PDU body format is specified by the following IDL declaration:

typedef struct
{

unsigned32 vers = 0; /* cancel body format version */
unsigned32 cancel_id;/* id of a cancel-request event */

} rpc_dg_cancel_body_t;

• An NDR unsigned long that indicates the version number of the cancel PDU body. This is
independent of the protocol version number contained in the PDU header. This specification
is for version 0.

• An NDR unsigned long that identifies a cancel request event.

The version number for the format of the cancel body is the first byte of the body. This version
number changes independently of the protocol version number in the PDU header.

12.5.3.4 The fack PDU

Both clients and servers send fack PDUs.

A client sends a fack PDU after it has received a fragment of a multi-PDU response. A fack PDU
explicitly acknowledges that the client has received the fragment; it may tell the sender to stop
sending for a while.

A server sends a fack PDU after it has received a fragment of a multi-PDU request. A fack PDU
explicitly acknowledges that the server has received the fragment; it may tell the sender to stop
sending for a while.

The nofack bit flag in a request or response fragment header can be used to control the sending
of fack PDUs by the receiver as follows:

• The receiver of a fragment must send an fack if the fragment’s nofack flag is not set.

• The receiver of a fragment may choose not to send a fack if the fragment’s nofack flag is set.

A fack PDU may contain a body with data that can be used by the sender of a request or
response to increase the efficiency of a multi-PDU transmission. The contents of a fack PDU
body are specified, but use of the data is left to implementations. Implementations must be able
to receive fack PDUs without bodies.

The first byte of a fack PDU body is a version number for the format of the fack body. This
version number can change independently of the protocol version number in the PDU header.

At version 0, the fack PDU body format is specified by the following IDL declaration:

typedef struct
{

unsigned8 vers = 0; /* Fack packet body version */
u_char pad1;
unsigned16 window_size; /* Sender’s receive window size (in pkts) */

518 X/Open CAE Specification (1994)

RPC PDU Encodings Connectionless RPC PDUs

unsigned32 max_tsdu; /* largest local TPDU size */
unsigned32 max_frag_size; /* largest TPDU not fragmented */
unsigned16 serial_num; /* serial # of packet that induced this fack */
unsigned16 selack_len; /* number of elements in the selack array */
unsigned32 selack[1]; /* variable number of 32 bit selective ack */

/* bit masks. */
} rpc_dg_fack_body_t;

• An NDR unsigned short integer indicates the version number of the fack PDU body.

• An uninitialised pad byte.

• An NDR unsigned short integer indicates the size in KB of the receive window at the sender
of the fack. The window size indicates how much additional data the sender of the fack is
prepared to receive. The window size field can be used by senders and receivers to
coordinate their rates of transmission and reception.

• An NDR unsigned long integer indicates the size in bytes of the largest Transport Protocol
Data Unit (TPDU) that can be passed through the local transport service interface at the
sender of the fack.

• An NDR unsigned long integer indicating the fack sender’s suggested maximum PDU size
for this conversation. The actual PDU size used may be further limited by the fack receiver.

• An NDR unsigned short integer indicates the serial number of the fragment transmission
that the sender of the fack is acknowledging. See Section 9.5.5 on page 340 for the semantics
of serial numbers.

• An NDR unsigned short integer that indicates the number of elements in the array of
selective acknowledgement bit masks. Selective acknowledgement bit masks identify any
fragments that the sender of the fack has received out of order; that is, any fragments whose
fragment numbers are greater than the fragment number in the header of the fack.

• An array of NDR unsigned long integers that function as bit masks, indicating any fragments
that the sender of the fack has received out of order.

Suppose that the sender of a fack has received fragments 0 through n, but not fragment n+1 of a
multi-PDU transmission; n is therefore the fragment number in the header of the fack. Let m be
an index for a bit mask in the bit mask array, where a value of m=0 indicates the first bit mask in
the array. Let b be an index for a bit in a bit mask, where a value of b=0 indicates the least
significant bit and a value of b=31 indicates the most significant bit. The value of bit b in mask m
indicates whether the sender of the fack has received the fragment with fragment number
n+32m+b+1. A value of 1 indicates that the fragment has been received, and a value of 0
indicates that the fragment has not been received.

The first bit in the first mask (m=0 and b=0) must always have a value of 0, since fragment n+1 is
the first missing fragment.

A fack body contains only as many selective acknowledgement bit masks as are necessary to
acknowledge fragments received out of order. The last bit mask in the fack body must always
have at least one non-zero bit.

The information in selective acknowledgement bit masks is intended to tell the sender of a
multi-PDU transmission which fragments it may need to resend.

Part 4 RPC Services and Protocols 519

Connectionless RPC PDUs RPC PDU Encodings

12.5.3.5 The fault PDU

A server sends a fault PDU if an operation incurs a fault while executing on the server side.

The fault PDU body format is specified by the following IDL declaration:

typedef struct
{

unsigned32 st; /* status code */
} rpc_dg_fault_body_t;

The body of a fault PDU contains a status code that indicates the fault that a requested operation
incurred. The status code is represented by an NDR unsigned long. The fault status values and
the corresponding application level fault_status parameter values are listed in Appendix E.

12.5.3.6 The nocall PDU

A server sends a nocall PDU in reply to a ping PDU. This reply indicates that the server is not
currently processing the client’s call. The server may have never received the request, or some of
the request fragments may have been lost and need to be retransmitted.

A nocall PDU can optionally carry a body whose format is the same as the optional fack PDU
body. (See Section 12.5.3.4 on page 518.) If the server wants to indicate that the call in question is
queued but not yet processed, it sets the receive window size to zero to indicate to the client that
it need not resend the request.

12.5.3.7 The ping PDU

A client sends a ping PDU when it wants to inquire about an outstanding request.

A ping PDU contains no body data.

12.5.3.8 The reject PDU

A server sends a reject PDU if an RPC request is rejected. The body of a reject PDU contains a
status code indicating why a callee is rejecting a request PDU from a caller. The body format is
the same as that of the fault PDU. (See Section 12.6.4.7 on page 535.) The status code is
represented by an NDR unsigned long. Reject status codes are listed Appendix E.

Note that reject status codes map to application level comm_status parameter values. This
mapping is given in Appendix E.

12.5.3.9 The request PDU

A client sends a request PDU when it wants to execute a remote operation. In a multi-PDU
request, the request consists of a series of request PDUs with the same sequence number and
monotonically increasing fragment numbers. The body of a request PDU contains data that
represents input parameters for the operation.

A request PDU may have one of the following types:

idempotent The request is for an idempotent operation. An idempotent request has
the idempotent bit flag set.

broadcast The request is to be broadcast to all hosts on the local network. A
broadcast request has the idempotent and broadcast bit flags set.
Broadcast calls are never authenticated. The request must be sent in one
PDU.

520 X/Open CAE Specification (1994)

RPC PDU Encodings Connectionless RPC PDUs

maybe The client does not expect a response. The protocols do not guarantee
that the server will receive the request. A maybe request has the
idempotent and maybe bit flags set.

broadcast/maybe The request is to be broadcast to all hosts on the local network and the
client does not expect a response. A broadcast/maybe request has the
idempotent, broadcast and maybe bit flags set. The request must be sent
in one PDU.

at-most-once The request is for an operation that cannot be executed more than once.
An at-most-once request is the default; none of the idempotent, broadcast
or maybe bit flags is set.

The body of a request PDU consists of an NDR representation of the input parameters for the
request.

12.5.3.10 The response PDU

A server sends a response PDU if an operation invoked by an idempotent, broadcast or at-
most-once request executes successfully. Servers do not send responses for maybe or
broadcast/maybe requests. A multi-PDU response consists of a series of response PDUs with
the same sequence number and monotonically increasing fragment numbers.

The body of a response PDU consists of the NDR representation of the output parameters for
the response.

12.5.3.11 The working PDU

A server sends a working PDU in reply to a ping PDU. This reply indicates that the server is
processing the client’s call.

A working PDU contains no body data.

Part 4 RPC Services and Protocols 521

Connection-oriented RPC PDUs RPC PDU Encodings

12.6 Connection-oriented RPC PDUs
The RPC run-time system uses the connection-oriented PDUs for the client/server
communications required by each remote procedure call over a connection-oriented transport.
This section specifies the encoding of each of the connection-oriented PDUs listed in Table 12-1
on page 509.

The client and server CALL protocol machines communicate using a set of call PDUs, and the
client and server ASSOCIATION protocol machines communicate using a set of association
PDUs. (The ASSOCIATION GROUP state machines are purely local to the client and server and
exchange no PDUs.) The PDUs in each group are:

Association bind
bind_ack
bind_nak
alter_context
alter_context_response

Call request
response
fault
shutdown
cancel
orphaned

The association and call PDUs are encoded by the RPC run-time system and delivered to the
underlying transport for transmission. This document does not specify encoding of any
connection PDUs. In the RPC connection management model, connections are established by the
underlying transport. The RPC run-time system assumes that the underlying transport provides
certain services (see Chapter 9), but it does not specify the concrete implementation of these
services or any protocol encodings.

12.6.1 Connection-oriented PDU Structure

The connection-oriented PDUs follow the general structure described in Section 12.1 on page
509; that is, a header followed by body data and an optional authentication verifier. Connection-
oriented PDU headers vary in size; every header includes a set of common header fields, but in
some connection-oriented PDUs, this is followed by PDU specific header fields. The
authentication verifier may be present in bind, bind_ack, alter_context and
alter_context_response PDUs; it is never present in bind_nak and shutdown PDUs; and it is
optionally present, depending on security protocol, in the other PDUs.

12.6.2 Fragmentation and Reassembly

RPC request and response service requests may contain arbitrary amounts of stub data. Either of
these requests may be fragmented by the RPC run-time system into multiple Transport Service
Data Units (TSDUs) and reassembled by the receiving RPC run-time system before or during
unmarshalling.

Note: No other RPC service requests shall be fragmented. Others must fit into a single
MustRecvFragSize fragment.

Each fragment is labelled as such using the PFC_FIRST_FRAG and PFC_LAST_FRAG flags in
the header pfc_flags field. If a service request needs only a single fragment, that fragment will
have both the PFC_FIRST_FRAG and PFC_LAST_FRAG flags set to TRUE. Since the
connection-oriented transport guarantees sequentiality, the receiver will always receive the
fragments in order.

522 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

Note: The flags encoding for the connectionless and connection-oriented protocols is
different. The connectionless PF_FRAG flag is not required in the connection-based
encoding, which explicitly labels both the first and last fragment.

The X/Open DCE defines a lower bound on the size of a single fragment (TSDU) that all
implementations must be able to receive, MustRecvFragSize. A client and server may also
negotiate larger fragment sizes as part of the binding operation.

The client determines, and then sends in the bind PDU, its desired maximum size for
transmitting fragments, and its desired maximum receive fragment size. Similarly, the server
determines its desired maximum sizes for transmitting and receiving fragments. Transmit and
receive sizes may be different to help preserve buffering. When the server receives the client’s
values, it sets its operational transmit size to the minimum of the client’s receive size (from the
bind PDU) and its own desired transmit size. Then it sets its actual receive size to the minimum
of the client’s transmit size (from the bind) and its own desired receive size. The server then
returns its operational values in the bind_ack PDU. The client then sets its operational values
from the received bind_ack PDU. The received transmit size becomes the client’s receive size,
and the received receive size becomes the client’s transmit size.

Either party may use receive buffers larger than negotiated — although this will not provide any
advantage — but may not transmit larger fragments than negotiated.

Note: An implementation may ignore the negotiation by always specifying the default
encodings of 0 (zero) in the PDUs. This is consistent with the negotiation algorithm
described here.

An implementation may wish to adjust its desired fragment sizes to tune them to the
most common data links expected.

When receiving a request PDU, the PFC_PENDING_CANCEL and PFC_MAYBE flag values on
the first_frag are authoritative. When receiving a response or fault PDU, the
PFC_DID_NOT_EXECUTE and PFC_PENDING_CANCEL flag values and the cancel_count
and status fields of the last_frag are authoritative.

12.6.3 Connection-oriented PDU Data Types

The following sections provide IDL declarations for header data types. These include both the
common header fields and other header fields that appear in various PDUs. These sections also
discuss the use of several fields and data types by the connection-oriented RPC protocol.

12.6.3.1 Declarations

The following synonyms appear in many of the declarations:

typedef unsigned hyper u_int64;
typedef unsigned long u_int32;
typedef unsigned short u_int16;
typedef unsigned small u_int8; /* single octet unsigned int */

The common header fields, which appear in all PDU types, are as follows. The comment fields
show the exact octet alignment and octet length of each element.

Part 4 RPC Services and Protocols 523

Connection-oriented RPC PDUs RPC PDU Encodings

/* start 8-octet aligned */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE; /* 02:01 packet type */
u_int8 pfc_flags; /* 03:01 flags (see PFC_...) */
byte packed_drep[4]; /* 04:04 NDR data representation format label */
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

The NDR data representation format label is discussed in Chapter 14.

This document defines the following values for the common header pfc_flags field:

#define PFC_FIRST_FRAG 0x01/* First fragment */
#define PFC_LAST_FRAG 0x02/* Last fragment */
#define PFC_PENDING_CANCEL 0x04/* Cancel was pending at sender */
#define PFC_RESERVED_1 0x08
#define PFC_CONC_MPX 0x10/* supports concurrent multiplexing

* of a single connection. */
#define PFC_DID_NOT_EXECUTE 0x20/* only meaningful on ‘fault’ packet;

* if true, guaranteed call did not
* execute. */

#define PFC_MAYBE 0x40/* ‘maybe’ call semantics requested */
#define PFC_OBJECT_UUID 0x80/* if true, a non-nil object UUID

* was specified in the handle, and
* is present in the optional object
* field. If false, the object field
* is omitted. */

Several elements are used for presentation context identification and negotiation. Local context
identifiers are defined as:

typedef u_int16 p_context_id_t;

Presentation syntax is identified by:

typedef struct {
uuid_t if_uuid;
u_int32 if_version;

} p_syntax_id_t;

For abstract syntax, if_uuid is set to the interface UUID, and if_version is set to the interface
version. For transfer syntax, these are set to the UUID and version created for the data
representation. The major version is encoded in the 16 least significant bits of if_version and the
minor version in the 16 most significant bits.

One element in a presentation context list is defined as:

typedef struct {
p_context_id_t p_cont_id;
u_int8 n_transfer_syn; /* number of items */
u_int8 reserved; /* alignment pad, m.b.z. */
p_syntax_id_t abstract_syntax; /* transfer syntax list */
p_syntax_id_t [size_is(n_transfer_syn)] transfer_syntaxes[];
} p_cont_elem_t;

The whole list is defined as:

typedef struct {
u_int8 n_context_elem; /* number of items */
u_int8 reserved; /* alignment pad, m.b.z. */

524 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

u_short reserved2; /* alignment pad, m.b.z. */
p_cont_elem_t [size_is(n_cont_elem)] p_cont_elem[];
} p_cont_list_t;

The following declarations are for the results of a presentation context negotiation. Result types
are defined as:

typedef short enum {
acceptance, user_rejection, provider_rejection
} p_cont_def_result_t;

Reasons for rejection of a context element are defined as:

typedef short enum {
reason_not_specified,
abstract_syntax_not_supported,
proposed_transfer_syntaxes_not_supported,
local_limit_exceeded
} p_provider_reason_t;

The meanings of these rejection reasons are defined in Section 2 of the ISO 8823 standard.

A result list returns the results of the context negotiation. A list element is declared as:

typedef struct {
p_cont_def_result_t result;
p_provider_reason_t reason; /* only relevant if result !=

* acceptance */
p_syntax_id_t transfer_syntax;/* tr syntax selected

* 0 if result not
* accepted */

} p_result_t;

The entire list is defined as:

/* Same order and number of elements as in bind request */

typedef struct {
u_int8 n_results; /* count */
u_int8 reserved; /* alignment pad, m.b.z. */
u_int16 reserved2; /* alignment pad, m.b.z. */
p_result_t [size_is(n_results)] p_results[];
} p_result_list_t;

The protocol version data type is defined as:

typedef struct {
u_int8 major;
u_int8 minor;
} version_t;

The run-time version data type is synonymous:

typedef version_t p_rt_version_t;

When the protocol negotiation fails, the list of supported protocols is returned as:

typedef struct {
u_int8 n_protocols; /* count */
p_rt_version_t [size_is(n_protocols)] p_protocols[];
} p_rt_versions_supported_t;

The following data structure is used when a bind request returns a secondary address. It holds a
string representation of the local port part of the address only. The length includes the C NULL

Part 4 RPC Services and Protocols 525

Connection-oriented RPC PDUs RPC PDU Encodings

string termination.

typedef struct {
u_int16 length;
char [size_is(length)] port_spec; /* port string spec */
} port_any_t;

Reasons for rejection of an association are returned in the bind_nak PDU. These are defined as:

typedef short enum {
reason_not_specified,
temporary_congestion,
local_limit_exceeded,
called_presentation_address_unknown,
protocol_version_not_supported,
default_context_not_supported,
user_data_not_readable,
no_PSAP_available,
authentication_type_not_recognized,

invalid_checksum
} p_reject_reason_t;

12.6.3.2 Connection-Oriented Protocol Versions

Each PDU contains the sender’s major and minor RPC run-time protocol version numbers. The
client’s and server’s major versions must be equal. Backward compatible changes in the protocol
are indicated by higher minor version numbers. Therefore, a server’s minor version must be
greater than or equal to the client’s. However, if the server’s minor version exceeds the client’s
minor version, it must return the client’s minor version and restrict its use of the protocol to the
minor version specified by the client. A protocol version mismatch causes the
nca_s_rpc_version_mismatch error status to be returned.

The PDU formats given here are for major version DC_PROTO_VERS_MAJOR_1, as defined in
Table 12-2 on page 514, minor version 0.

The protocol version is negotiated using the bind, bind_ack and bind_nak messages. For all
other messages, the protocol version in the header only serves as a sanity check; if it is incorrect,
it indicates a massive error and the connection should be terminated with the error
nca_s_rpc_version_mismatch.

12.6.3.3 The frag_length Field

The frag_length field represents the length of the entire PDU, including all of the header,
optional header fields, stub body and optional authentication verifier, if applicable.

12.6.3.4 Context Identifiers

Presentation context identifiers are transmitted on each request or response. The client defines
the values of the context identifiers, and both the client and server must be able to map between
the specific client’s context identifier and the selected abstract and transfer syntax, which
indicate the interface and data representation.

The client must assign context identifiers that are unique within at least a single association.
Context identifiers may also be unique within an association group or across the entire client
instantiation. A server must interpret context identifiers relative to each particular association;
that is, different associations within the same association group from the same client to the same
server may legally use the same context identifier with a different meaning.

526 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

12.6.3.5 The call_id Field

Each run-time protocol message contains a call_id field. This field is used by the caller to
guarantee that it is matching the proper response and request. Otherwise, responses for the
wrong call, or orphaned responses from calls that were cancelled, and the cancel timed out,
could be confused with current responses. The caller must guarantee that at any time, all
call_ids for all outstanding messages for the same association group are distinct. The server just
returns the call_id on the corresponding message.

The call_id field is also used to guarantee proper matching of bind_ack, bind_nak or
alter_context_response messages in order to guarantee proper behaviour under certain
conditions; for example, cancel timeout causes an orphan.

Note: The most straightforward implementation is for each client process to maintain a single
u_int32 sequence number counter to use for the call_id. Alternatively, the client may
assign a value representing a call data structure, and use that, provided it does
sufficient bookkeeping to insure that it cannot be reused if a call is cancelled and times
out, at least until the the entire orphaned response is received.

12.6.3.6 The assoc_group_id Field

The client should set the assoc_group_id field either to 0 (zero), to indicate a new association
group, or to the known value. When the server receives a value of 0, this indicates that the client
has requested a new association group, and it assigns a server unique value to the group. This
value is returned in the rpc_bind_ack PDU.

12.6.3.7 The alloc_hint Field

The alloc_hint field may be used by the transmitter as a hint to the receiver, informing it how
much buffer space, in units of octets, to allocate contiguously for fragmented requests. This is
only a potential optimisation; a receiver is required to work correctly regardless of the value
passed. The value 0 (zero) is reserved to indicate that the transmitter is not supplying any
information.

12.6.3.8 Authentication Data

If the auth_length header field value is non-zero, then the message contains optional
authentication and/or authorisation data in an authentication verifier. Each message format
specifies the location of the verifier, which always follows any stub data, if applicable.

The contents of the authentication verifier are specified in Chapter 13.

12.6.3.9 Optional Connect Reject and Disconnect Data

If the transport supports optional connect reject or disconnect data, the RPC run-time system
may transmit additional error information as the optional data. The following data types are
used to declare this optional data:

Part 4 RPC Services and Protocols 527

Connection-oriented RPC PDUs RPC PDU Encodings

typedef u_int16 rpcrt_reason_code_t;/* 0..65535 */

typedef struct {
u_int8 rpc_vers;
u_int8 rpc_vers_minor
u_int8 reserved[2];/* must be zero */
byte packed_drep[4];
u_int32 reject_status;
u_int8 reserved[4];
} rpcrt_optional_data_t;

The format for optional reject data is as follows:

typedef struct {
rpcrt_reason_code_t reason_code; /* 0..65535 */
rpcrt_optional_data_t rpc_info; /* may be RPC specific */
} rpcconn_reject_optional_data_t;

The format for optional disconnect data is as follows:

typedef struct {
rpcrt_reason_code_t reason_code; /* 0..65535 */
rpcrt_optional_data_t rpc_info; /* may be RPC-specific */
} rpcconn_disc_optional_data_t;

12.6.4 Connection-oriented PDU Definitions

The following sections give IDL declarations and descriptions for each of the the connection-
oriented PDUs.

12.6.4.1 The alter_context PDU

The IDL declaration of the alter_context PDU is as follows:

528 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

typedef struct {
/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = alter_context; /* 02:01 alter context PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

u_int16 max_xmit_frag; /* ignored */
u_int16 max_recv_frag; /* ignored */
u_int32 assoc_group_id; /* ignored */

/* presentation context list */

p_cont_list_t p_context_elem; /* variable size */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier;

} rpcconn_alter_context_hdr_t;

The alter_context PDU is used to request additional presentation negotiation for another
interface and/or version, or to negotiate a new security context, or both. The format is identical
to the bind PDU, except that the value of the PTYPE field is set to alter_context. The
max_xmit_frag, max_recv_frag and assoc_group_id fields are be ignored.

Part 4 RPC Services and Protocols 529

Connection-oriented RPC PDUs RPC PDU Encodings

12.6.4.2 The alter_context_resp PDU

The IDL declaration of the alter_context_resp PDU is as follows:

typedef struct {
/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = alter_context_response; /* 02:01 alter

context response PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

u_int16 max_xmit_frag; /* ignored */
u_int16 max_recv_frag; /* ignored */
u_int32 assoc_group_id; /* ignored */
port_any_t sec_addr; /* ignored */

/* restore 4-octet alignment */

u_int8 [size_is(align(4))] pad2;

/* presentation context result list, including hints */

p_result_list_t p_result_list; /* variable size */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */
} rpcconn_alter_context_response_hdr_t;

The alter_context_response PDU is used to indicate the server’s response to an alter_context
request. The PDU format is identical to bind_ack, except that the value of the PTYPE field is set
to alter_context_response. The max_xmit_frag, max_recv_frag, assoc_group_id and sec_addr
fields are ignored.

530 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

12.6.4.3 The bind PDU

The IDL declaration of the bind PDU is as follows:

/* bind header */
typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = bind; /* 02:01 bind PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

u_int16 max_xmit_frag; /* 16:02 max transmit frag size, bytes */
u_int16 max_recv_frag; /* 18:02 max receive frag size, bytes */
u_int32 assoc_group_id; /* 20:04 incarnation of client-server

* assoc group */
/* presentation context list */

p_cont_list_t p_context_elem; /* variable size */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier;

} rpcconn_bind_hdr_t;

The bind PDU is used to initiate the presentation negotiation for the body data, and optionally,
authentication. The presentation negotiation follows the model of the OSI presentation layer.

The PDU contains a priority-ordered list of supported presentation syntaxes, both abstract and
transfer, and context identifiers (local handles). (This differs from OSI, which does not specify
any order for the list.) The abstract and transfer syntaxes are represented as a record of interface
UUID and interface version. (These may map one-to-one into OSI object identifiers by providing
suitable prefixes and changing the encoding.) Each supported data representation, such as NDR,
will be assigned an interface UUID, and will use that UUID as part of its transfer syntax value.
Each stub computes its abstract syntax value given its interface UUID and interface version. The
transfer syntax value for NDR is defined in Appendix I.

The fields max_xmit_frag and max_recv_frag are used for fragment size negotiation as
described in Section 12.6.3 on page 523.

The assoc_group_id field contains either an association group identifier that was created during
a previous bind negotiation or 0 (zero) to indicate a request for a new group.

This PDU shall not exceed the MustRecvFragSize, since no size negotiation has yet occurred. If
the p_context_elem is too long, the leading subset should be transmitted, and additional
presentation context negotiation can occur in subsequent alter_context PDUs, as needed, after a
successful bind_ack.

Part 4 RPC Services and Protocols 531

Connection-oriented RPC PDUs RPC PDU Encodings

12.6.4.4 The bind_ack PDU

The IDL declaration of the bind_ack PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = bind_ack; /* 02:01 bind ack PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

u_int16 max_xmit_frag; /* 16:02 max transmit frag size */
u_int16 max_recv_frag; /* 18:02 max receive frag size */
u_int32 assoc_group_id; /* 20:04 returned assoc_group_id */
port_any_t sec_addr; /* 24:yy optional secondary address

* for process incarnation; local port
* part of address only */

/* restore 4-octet alignment */

u_int8 [size_is(align(4))] pad2;

/* presentation context result list, including hints */

p_result_list_t p_result_list; /* variable size */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */
} rpcconn_bind_ack_hdr_t;

The bind_ack PDU is returned by the server when it accepts a bind request initiated by the
client’s bind PDU. It contains the results of presentation context and fragment size negotiations.
It may also contain a new association group identifier if one was requested by the client.

The max_xmit_frag and max_recv_frag fields contain the maximum transmit and receive
fragment sizes as determined by the server in response to the client’s desired sizes.

The p_result_list contains the results of the presentation context negotiation initiated by the
client. It is possible for a bind_ack not to contain any mutually supported syntaxes.

If the client requested a new association group, assoc_group_id contains the identifier of the
new association group created by the server. Otherwise, it contains the identifier of the
previously created association group requested by the client.

532 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

12.6.4.5 The bind_nak PDU

The IDL declaration of the bind_nak PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = bind_nak; /* 02:01 bind nak PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

p_reject_reason_t provider_reject_reason; /* 16:02 presentation
context reject */

p_rt_versions_supported_t versions; /* 18:yy array of protocol
* versions supported */

} rpcconn_bind_nak_hdr_t;

The bind_nak PDU is returned by the server when it rejects an association request initiated by
the client’s bind PDU. The provider_reject_reason field holds the rejection reason code. When
the reject reason is protocol_version_not_supported, the versions field contains a list of run-
time protocol versions supported by the server.

The bind_nak PDU never contains an authentication verifier.

Part 4 RPC Services and Protocols 533

Connection-oriented RPC PDUs RPC PDU Encodings

12.6.4.6 The cancel PDU

The IDL declaration of the cancel PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5 ; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = co_cancel; /* 02:01 CO cancel PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

/* optional authentication verifier
* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */

} rpcconn_cancel_hdr_t;

The cancel PDU is used to forward a cancel.

534 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

12.6.4.7 The fault PDU

The IDL declaration of the fault PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = fault; /* 02:01 fault PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

/* needed for request, response, fault */

u_int32 alloc_hint; /* 16:04 allocation hint */
p_context_id_t p_cont_id; /* 20:02 pres context, i.e. data rep */

/* needed for response or fault */

u_int8 cancel_count /* 22:01 received cancel count */
u_int8 reserved; /* 23:01 reserved, m.b.z. */

/* fault code */

u_int32 status /* 24:04 run-time fault code or zero */

/* always pad to next 8-octet boundary */

u_int8 reserved2[4]; /* 28:04 reserved padding, m.b.z. */

/* stub data here, 8-octet aligned
.
.
. */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */

} rpcconn_fault_hdr_t;

The fault PDU is used to indicate either an RPC run-time, RPC stub, or RPC-specific exception to
the client. The p_cont_id field holds a context identifier that identifies the data representation.

The alloc_hint field is optionally used by the client to provide a hint to the receiver of the
amount of buffer space to allocate contiguously for fragmented requests. This is only a potential
optimisation. The server must work correctly regardless of the value passed. The value 0 (zero)
is reserved to indicate that the transmitter is not supplying any information.

Part 4 RPC Services and Protocols 535

Connection-oriented RPC PDUs RPC PDU Encodings

The status field indicates run-time status. The value may either be an architected non-zero value,
indicating a run-time error, such as an interface version mismatch, or 0 (zero), indicating a stub
defined exception that is specified with the stub data. If a non-zero value is present, no stub data
is allowed. Possible values are given in Table E-1 on page 601.

Certain status values imply that the call did not execute. To keep such status values consistent
with the flag, an implementation should model all fault messages as being initialised with the
PFC_DID_NOT_EXECUTE flag set to TRUE, then cleared when the run-time system (or stub, if
the implementation allows) passes control to the server stub routine.

536 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

12.6.4.8 The orphaned PDU

The IDL declaration of the orphaned PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = orphaned; /* 02:01 orphaned PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

/* optional authentication verifier
* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */

} rpcconn_orphaned_hdr_t;

The orphaned PDU is used by a client to notify a server that it is aborting a request in progress
that has not been entirely transmitted yet, or that it is aborting a (possibly lengthy) response in
progress.

Part 4 RPC Services and Protocols 537

Connection-oriented RPC PDUs RPC PDU Encodings

12.6.4.9 The request PDU

The IDL declaration of the request PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = request ; /* 02:01 request PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

/* needed on request, response, fault */

u_int32 alloc_hint; /* 16:04 allocation hint */
p_context_id_t p_cont_id /* 20:02 pres context, i.e. data rep */
u_int16 opnum; /* 22:02 operation #

* within the interface */

/* optional field for request, only present if the PFC_OBJECT_UUID
* field is non-zero */

uuid_t object; /* 24:16 object UID */

/* stub data, 8-octet aligned
.
.
. */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */

} rpcconn_request_hdr_t;

The request PDU is used for an initial call request. The p_cont_id field holds a presentation
context identifier that identifies the data representation. The opnum field identifies the operation
being invoked within the interface.

The PDU may also contain an object UUID. In this case the PFC_OBJECT_UUID flag is set in
pfc_flags, and the PDU includes the object field. If the PFC_OBJECT_UUID flag is not set, the
PDU does not include the object field.

The alloc_hint field is optionally used by the client to provide a hint to the receiver of the
amount of buffer space to allocate contiguously for fragmented requests. This is only a potential
optimisation. The server must work correctly regardless of the value passed. The value 0 (zero)
is reserved to indicate that the transmitter is not supplying any information.

The minimum size of an rpcconn_request_hdr_t is 24 octets. If a non-nil object UUID or
authentication and/or integrity or privacy services are used, the size will be larger.

538 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

The size of the stub data is calculated as follows:

stub_data_length = frag_length - fixed_header_length - auth_length;
if pfc_flags & PFC_OBJECT_UUID {

stub_data_length = stub_data_length - sizeof(uuid_t);
}

where the current value of fixed_header_length is 24 octets.

Part 4 RPC Services and Protocols 539

Connection-oriented RPC PDUs RPC PDU Encodings

12.6.4.10 The response PDU

The IDL declaration of the response PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = response; /* 02:01 response PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 length of auth_value */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

/* needed for request, response, fault */

u_int32 alloc_hint; /* 16:04 allocation hint */
p_context_id_t p_cont_id; /* 20:02 pres context, i.e.

* data rep */

/* needed for response or fault */

u_int8 cancel_count /* 22:01 cancel count */
u_int8 reserved; /* 23:01 reserved, m.b.z. */

/* stub data here, 8-octet aligned
.
.
. */

/* optional authentication verifier */
/* following fields present iff auth_length != 0 */

auth_verifier_co_t auth_verifier; /* xx:yy */

} rpcconn_response_hdr_t;

The response PDU is used to respond to an active call. The p_cont_id field holds a context
identifier that identifies the data representation. The cancel_count field holds a count of cancels
received.

The alloc_hint field is optionally used by the transmitter to provide a hint to the receiver of the
amount of buffer space to allocate contiguously for fragmented requests. This is only a potential
optimisation. The receiver must work correctly regardless of the value passed. The value 0 (zero)
is reserved to indicate that the transmitter is not supplying any information.

540 X/Open CAE Specification (1994)

RPC PDU Encodings Connection-oriented RPC PDUs

12.6.4.11 The shutdown PDU

The IDL declaration of the shutdown PDU is as follows:

typedef struct {

/* start 8-octet aligned */

/* common fields */
u_int8 rpc_vers = 5; /* 00:01 RPC version */
u_int8 rpc_vers_minor = 0; /* 01:01 minor version */
u_int8 PTYPE = shutdown ; /* 02:01 shutdown PDU */
u_int8 pfc_flags; /* 03:01 flags */
byte packed_drep[4]; /* 04:04 NDR data rep format label*/
u_int16 frag_length; /* 08:02 total length of fragment */
u_int16 auth_length; /* 10:02 */
u_int32 call_id; /* 12:04 call identifier */

/* end common fields */

} rpcconn_shutdown_hdr_t;

The shutdown PDU is sent by the server to request that a client terminate the connection, freeing
the related resources.

The shutdown PDU never contains an authentication verifier even if authentication services are
in use.

Part 4 RPC Services and Protocols 541

RPC PDU Encodings

542 X/Open CAE Specification (1994)

Chapter 13

Security

This chapter defines the RPC security services that an RPC application may select and describes
how they are supported in the basic RPC protocol and mapped to the underlying security
services. Section 13.1 on page 544 describes security semantics and generic security encodings
that are provided by RPC for both the connection-oriented and connectionless RPC protocols.
Section 13.2 on page 548 and Section 13.3 on page 555 specify encodings for the connectionless
and connection-oriented RPC protocols, respectively, for the DCE secret key authentication
protocol. The encodings specified in Section 13.2 and Section 13.3 are not generally applicable to
other security protocols.

In addition to the encodings and semantics specified in this chapter, the RPC run-time protocol
machines specified in Chapter 9 to Chapter 11 indicate how security-related processing is
integrated with protocol processing. The mechanisms by which the underlying security services
enforce protection guarantees (for example, encryption algorithms or cryptographic key
management) are outside the scope of the RPC specification. The DCE: Security Services
specification defines these protocols, algorithms, other security-related processing, and the
contents of the messages used by the underlying security services to support RPC.

The DCE Security Model offers a number of optional services above the basic RPC. It offers a
variety of levels of security service quality. These are realised via a combination of
authentication, data protection and authorisation mechanisms.

The specified models allow DCE users to invoke cryptographically secured mutual
authentication of a client and server, and to pass certified authorisation data from client to server
as part of the RPC invocation. The server can then discover the client’s identity and
authorisation credentials, and determine what access to authorise. RPC security services also
provide protection against undetected modifications of call data, cryptographic privacy of data,
and protection against replay of calls and data.

The RPC run-time system has two roles in this. First, it is the conduit for exchanging the security
credentials between clients and servers. Second, it may protect its communications from various
security threats.

Part 4 RPC Services and Protocols 543

The Generic RPC Security Model Security

13.1 The Generic RPC Security Model
The generic RPC security model and encodings specified in the following sections assume
support for, but are not limited to, the ISO C standard Security Service. They may be applied to
alternate security services as well. The model and encodings apply to both the connectionless
and connection-oriented RPC protocols.

13.1.1 Generic Operation

When an RPC is initiated with a request for security services, the service provider determines if
a pairwise security context has already been established between the client and server principals.
This security context might include a shared session key, sequence numbers, verification state,
and so on. If this context has not been established yet for that client/server principal pair, or has
expired, the client RPC service provider requests initiating credentials from the security services.
If these credentials are successfully acquired, the client RPC service provider then incorporates
them into the initial request. The credentials may be exchanged only on call boundaries.

The server processes these security data and then responds with its own security data. If this
exchange is successful, both the client and the server have established and synchronised their
initial security information. Depending on the level of service requested, this may provide strong
cryptographically-based mutual authentication.

For the actual call PDUs, for control PDUs and for subsequent calls, the selected protection
services are provided. For example, if strong integrity protection is required, each PDU is
cryptographically protected against undetected modification and deletion by the transmitter and
verified by the receiver. Or, if privacy protection is specified, stub data for request and response
PDUs is encrypted and integrity protected. If a mismatch is found, an error message is
generated, which is encoded in a fault, alter_context_response or bind_nak PDU for the
connection-oriented protocol or a reject PDU for the connectionless protocol, as detailed in
Chapter 10 and Chapter 11.

Note: The level of service cannot be changed for an already established security context.

A client that represents multiple user principals has the option of providing security services
such that each principal is individually authenticated. When a security context is established, a
requesting client principal is authenticated. An application may obtain the security credentials
for additional client principals, and then cause additional mutual authentications to occur by
requesting security services on behalf of the additional principals.

For each principal, the RPC protocols exchange the credentials in one of three ways:

• by performing the conversation manager exchange for authenticated calls (connectionless
protocol)

• by performing the alter_context exchange on the existing association (connection-oriented
protocol)

• by creating a new association with the bind exchange (connection-oriented protocol).

The server may allow for a grace period of service after credentials expire to compensate for
processing and communications delays. The client avoids sending requests it knows are likely to
expire. To force a re-authentication, it fetches new credentials for use with the server from the
security service and establishes the new security context according to the underlying protocol.

The RPC run-time system determines the security services used when accessing name services
on behalf of a principal. Section 12.6.3 on page 523 describes how RPC uses name services. If
the credentials of the principal are available to the RPC run-time system, then mutual
authentication, based on these credentials, is used for name service accesses. If the security

544 X/Open CAE Specification (1994)

Security The Generic RPC Security Model

context of the principal is not available to the RPC run-time system, then name service accesses
are unauthenticated. It is important to note that there is a difference between the security context
being unavailable and the security context having expired or being otherwise invalid. An
expired or invalid context results in authentication failure.

13.1.2 Generic Encodings

Connection-oriented and connectionless PDUs may contain an optional authentication verifier.
Authentication verifier encodings are largely dependent on the authentication protocol in use as
detailed in the DCE: Security Services specification. The following sections specify those
encodings that are authentication protocol-independent.

13.1.2.1 Protection Levels

RPC implementations are not required to support all of the protection levels specified here, but
supported protection levels must have at least this level of protection for all protocols.

Authentication verifiers encode protection levels as a single byte. The defined protection levels
are as follows:

dce_c_authn_level_none=1
The client has requested that no protection be performed. Depending on server policy, the
client may be granted access as an unauthenticated principal.

dce_c_authn_level_connect=2
The client and server identities are exchanged and cryptographically verified. Strong mutual
authentication is achieved — per association for the connection-oriented protocol and per
activity for the connectionless protocol — and is protected against replays. However, this
level provides no protection services per PDU.

dce_c_authn_level_call=3
This level offers the dce_c_authn_level_connect services plus integrity protection of the
first fragment only of each call. For the connection-oriented protocol any request for this
level is automatically upgraded to dce_c_authn_level_pkt.

dce_c_authn_level_pkt=4
This level offers the dce_c_authn_level_connect services plus per-PDU replay and
misordering detection. It provides no per-PDU modification protection.

dce_c_authn_level_pkt_integrity=5
This level offers the dce_c_authn_level_pkt services plus per-PDU modification and
deletion detection.

dce_c_authn_level_pkt_privacy=6
This level offers the dce_c_authn_level_pkt_integrity services plus privacy (encryption) of
stub call arguments only. All run-time and lower-layer headers are still transmitted in clear
text.

These values map directly to the values specified in Appendix D for the protect_level argument to
the RPC API routines. The protect_level value rpc_c_protect_level_level specifies the same
protection level as the one specified by the PDU value dce_c_authn_level_level.

Part 4 RPC Services and Protocols 545

The Generic RPC Security Model Security

13.1.2.2 Authentication Services

Authentication services are identified by a single byte. In connectionless PDUs, this is encoded in
the PDU header field auth_proto. In connection-oriented PDUs, this is encoded in the
authentication verifier. The currently supported values are as follows:

• dce_c_rpc_authn_protocol_none=0

• dce_c_rpc_authn_protocol_krb5=1

These values map directly to the values specified in Appendix D for the authn_svc argument to
the RPC API routines. The value dce_c_rpc_authn_protocol_none maps to rpc_c_authn_none,
and the value dce_c_rpc_authn_protocol_krb5 maps to rpc_c_authn_dce_secret.

The cryptographic protocols and algorithms to which these identifiers map are defined by the
DCE: Security Services specification.

13.1.2.3 Authorisation Services

Authorisation services are identified by a single byte. In the connection-oriented protocol, this is
encoded in the authentication verifier. In the connectionless protocol, this is part of the data of
the conversation manager challenge and response.

Two authorisation models are supported. These are encoded with the following values:

• dce_c_authz_name=1

• dce_c_authz_dce=2

These values map directly to the values specified in Appendix D for the authz_svc argument to
the RPC API routines.

The authorisation service dce_c_authz_name asserts, without cryptographic protection, the
principal name for level dce_c_authn_level_none and authenticates the principal name for other
levels. The authorisation service dce_c_authz_dce asserts the principal name and authorisation
data, without cryptographic protection, for level dce_c_authn_level_none and authenticates the
principal and its authorisation data for other levels. The DCE: Security Services specification
specifies the guarantees provided by these authorisation models.

13.1.3 Underlying Security Services Required

To support RPC security, underlying security services called by RPC must provide:

• Integrity protection of data composed of an arbitrary number of octets. The integrity
protection for some RPC levels of service require that the underlying security services
compute and return a value which will be referred to as a ‘‘checksum’’.

• Privacy protection of data composed of an arbitrary number of octets. The privacy
protection for some RPC levels of service require that the underlying security services
compute and return privacy protected data.

• Creation and verification of secure authentication and authorisation credentials.

• Indication as to whether an existing security context can be used for an RPC.

The methods by which these services are instantiated are defined by the DCE: Security Services
specification. Algorithms not defined by the DCE: Security Services specification may be used
instead to provide these services with loss of universal interoperability.

Note: In subsequent sections, references are made to the invocation of these services. The
data passed to these services for privacy or integrity protection, or both, must have

546 X/Open CAE Specification (1994)

Security The Generic RPC Security Model

been encoded in the transfer syntax to be used in RPC PDUs. For example, when using
NDR encoding, the protection operations are carried out on the sender’s representation
of the data.

Part 4 RPC Services and Protocols 547

Security Services for Connection-oriented Protocol Security

13.2 Security Services for Connection-oriented Protocol
The following sections specify security semantics and encodings for connection-oriented RPC
protocol when the PDU header field auth_length is non-zero and the field auth_type of the
authentication verifier is dce_c_rpc_authn_protocol_krb5. Use of other protection services is
permitted but is outside the scope of this specification and will reduce interoperability.

13.2.1 Client Association State Machine

Whenever a client attempts to create a new association to a server, it must take the following
steps:

1. Create a new association UUID, assoc_uuid.

2. Invoke the security services to compute a non-cryptographic checksum of the assoc_uuid.
The value computed will be denoted as assoc_uuid_chksum. The algorithm for computing
this non-cryptographic checksum is specified in the DCE: Security Services specification.

3. Initialise two 32-bit state variables called sequence numbers which may assume only integral
values in the range 0 to 232−1 inclusive:

• u_int32 next_send_seq=0

• u_int32 next_recv_seq=0

These steps are required even if there are already other associations established and
authenticated for the client/server pair. Each new association request must establish pairwise
credentials between the client and server even if they have already been established for the same
client/server pair on a different association.

While establishing security credentials, the client provider may transmit a bind PDU to establish
the initial security context, or an alter_context PDU to alter or add new security contexts. It may
receive bind_ack, bind_nak or alter_context_resp PDUs.

13.2.2 Server Association State Machine

Whenever a server receives a new association request, it must take the following steps:

1. Store the received value assoc_uuid_chksum.

2. Initialise two 32-bit state variables called sequence numbers which may assume only integral
values in the range 0 to 232−1 inclusive:

• u_int32 next_send_seq=0

• u_int32 next_recv_seq=1

While establishing security credentials, the server provider may receive bind or alter_context
PDUs, and transmit bind_ack, bind_nak or alter_context_resp PDUs.

13.2.3 Sequence Numbers

While sequence numbers are not transmitted explicitly by the RPC protocol, they are used in the
computation of various security checks for the PDUs. Sequence numbers are initialised to 0
(zero) on the establishment of each association and used by all PDUs even when no security
services have been requested. Every PDU transmitted, including call fragment PDUs, is assigned
the value of next_send_seq, which is then atomically incremented. Implementations must ensure
that PDUs are transmitted in the same order that the sequence numbers are assigned. Receivers
must check the anticipated next_recv_seq value against the received PDUs, and then atomically
increment next_recv_seq. Any out-of-order PDUs generate an invalid_checksum reject status

548 X/Open CAE Specification (1994)

Security Security Services for Connection-oriented Protocol

code, which is transmitted in the fault, bind_ack and alter_context_response PDUs.
Implementations must take care to verify the received PDU sequence numbers in the same order
the PDUs are received.

The most significant bit of the sequence number is used as a direction indicator. When
requesting security services using the sequence numbers assigned to PDUs sent from the server
to the client, RPC must invert the most significant bit of the sequence number before passing the
value to the underlying security services. Both client and server RPC run-time systems must
perform this inversion for security processing of PDUs sent from server to client.

There is no provision for overflow of sequence numbers. The maximum value is 232−1.

13.2.4 The auth_context_id Field

The auth_context_id field is an unprotected hint that is transmitted to suggest the appropriate
security context for the receiver to use. It may be used to distinguish among multiple user
principals sharing the same client. This is typically a table index or pointer value that must be
unique at least across the scope and lifetime of an association group.

13.2.5 Integrity Protection

The integrity checksums required for some of the levels of service may be computed via
different algorithms. The algorithm used to protect a specific PDU is indicated by the value of
the sub_type field, which encodes the authentication service using one of the values given in
Section 13.1.2.2 on page 546, and the desired protection level.

For all variants of the checksum, the transmitting side must pass to the underlying security
services:

• the security context indicated by the current auth_context_id

• the assoc_uuid_chksum

• the desired protection level

• the identification of the checksum algorithm to be used (corresponding to the value to be sent
in the sub_type field)

• the sequence number (next_send_seq)

• the PDU without the authentication verifier.

The computed checksum and checksum length are then inserted into their respective
authentication verifier fields.

The receiving side recomputes the checksum, by invoking the underlying security services and
passing (as needed):

• the security context for the call (hinted at by the auth_context_id in the authentication
verifier)

• the previously received assoc_uuid_chksum

• the desired protection level

• the identification of the checksum algorithm to be used (corresponding to the value to be
received in the sub_type field)

• the local receive sequence number, next_recv_seq

Part 4 RPC Services and Protocols 549

Security Services for Connection-oriented Protocol Security

• the received PDU without the authentication verifier.

The receiver then compares the computed checksum to the value received in the verifier. If they
are identical, then the PDU is accepted as authentic.

If the receiver does not support the sub_type specified by the transmitter, an error indicating
invalid checksum is returned. The callee should respond with the same subtype requested by the
caller.

13.2.6 Connection-oriented Encodings

Most of the connection-oriented RPC PDUs, as defined in Chapter 12, may include an optional
authentication verifier that contains authentication and/or authorisation data. The verifier is
present if and only if the auth_length field in the PDU is non-zero. The verifier consists of a set
of common fields and one field, auth_value, the encoding of which depends on authentication
service, authorisation service, protection level and PDU type. The length of the authentication
verifier varies depending on the data encoded by the auth_value field.

13.2.6.1 Common Authentication Verifier Encodings

The common authentication verifier is defined as the following structure:

typedef struct{

/* restore 4 byte alignment */

u_int8 [size_is(auth_pad_length)] auth_pad[]; /* align(4) */
u_int8 auth_type; /* :01 which authent service */
u_int8 auth_level; /* :01 which level within service */
u_int8 auth_pad_length; /* :01 */
u_int8 auth_reserved; /* :01 reserved, m.b.z. */
u_int32 auth_context_id; /* :04 */
u_int8 [size_is(auth_length)] auth_value[]; /* credentials */

} auth_verifier_co_t;

The auth_pad field is required to restore 0 mod 4 alignment following the stub data, if any. It
consists of 0, 1, 2 or 3 null bytes.

The auth_type field defines which authentication service is in use. Currently supported values
are specified in Section 13.1.2.2 on page 546.

The auth_level field defines the protection level. The supported values are specified in Section
13.1.2.1 on page 545.

The auth_pad_length field indicates the number of pad bytes that are appended to the header
and stub data before the authentication verifier.

The auth_reserved field is reserved for future use. It must be 0 (zero) on transmission, and it is
ignored on reception.

The auth_context_id field indicates the corresponding security context previously established.

The auth_value field may contain a variety of security-related data. For the bind, bind_ack,
alter_context and alter_context_response PDUs, this field encodes credentials. For other PDUs,
this field holds checksums and other per-PDU security data that depend on the protection level.
Encodings of this field depend on the PDU type, authentication service, authorisation service
and protection level. Section 13.2.6.2 on page 551 specifies the encodings of this field for per-
PDU security services. Section 13.2.6.3 on page 552 specifies the connection-oriented encodings
for exchanging credentials.

550 X/Open CAE Specification (1994)

Security Security Services for Connection-oriented Protocol

13.2.6.2 Encoding for Per-PDU Services

Authentication verifiers contain an auth_value field that holds checksums, credentials and other
security-related data. When used for per-PDU security services, the auth_value encoding
depends on the protection level. The following sections define the encodings of the auth_value
field to provide per-PDU security services. For protection level dce_c_authn_level_pkt_privacy,
the encryption of the PDU body data is also specified.

The encodings are modelled as IDL structure definitions. As in the RPC PDU definitions, they
assume no padding between elements, and they assume NDR transfer syntax.

The sub_type fields in auth_value encodings allow variant algorithms for providing the same
level of services. This field can also be used to indicate that an invalid checksum was received.
The currently defined values are as follows:

• dce_c_cn_dce_sub_type=0

• dce_c_cn_dce_sub_type_md5=1

• dce_c_cn_dce_sub_type_invalid_checksum=2 (Invalid integrity)

The mapping from the values dce_c_cn_dce_sub_type and dce_c_cn_dce_sub_type_md5 to
specific algorithms is defined by the DCE: Security Services specification. The value
dce_c_cn_dce_sub_type_invalid_checksum is used to indicate that an invalid checksum was
detected.

The following sections specify auth_value encodings for each protection level.

The dce_c_authn_level_none Protection Level

The auth_value is null; the entire authentication verifier may be omitted.

The dce_c_authn_level_connect Protection Level

The auth_value encoding is as follows:

typedef struct{
u_int8 sub_type;
} auth_value_t;

The dce_c_authn_level_call Protection Level

This level is not supported as a separate entity. Instead, requests for this level will automatically
be upgraded to dce_c_authn_level_pkt.

The dce_c_authn_level_pkt Protection Level

The auth_value encoding is as follows:

typedef struct{
u_int8 sub_type;
u_int8 checksum_length;
byte [size_is(checksum_length)] checksum[];
} auth_value_t;

where the field ‘‘checksum’’ is the checksum value returned by the underlying security service in
response to an integrity protection call (see Section 13.1.1 on page 544).

Part 4 RPC Services and Protocols 551

Security Services for Connection-oriented Protocol Security

The dce_c_authn_level_pkt_integrity Protection Level

The auth_value encoding is as follows:

typedef struct{
u_int8 sub_type;
u_int8 checksum_length;
byte [size_is(checksum_length)] checksum[];
} auth_value_t;

where the field ‘‘checksum’’ is the checksum value returned by the underlying security service in
response to an integrity protection call (see Section 13.1.1 on page 544).

The dce_c_authn_level_pkt_privacy Protection Level

In contrast to the other security levels, this level also requires changes to the contents of the body
data of the standard RPC PDUs. This level of service provides strong integrity protection for the
entire PDU, plus privacy protection for the body data only. Therefore, only the bodies of the
request, response and fault PDUs are encrypted.

The auth_value encoding is as follows:

typedef struct{
u_int8 sub_type;
u_int8 checksum_length;
byte [size_is(checksum_length)] checksum[];
} auth_value_t;

The PDU to be protected is divided into two pieces: the RPC header and the PDU body
composed of data generated by the stub’s marshalling procedures. The following is passed to
underlying security service in a call requesting privacy protection:

• the RPC header

• the PDU body, if any

• the desired checksum algorithm (corresponding to the value to be sent in the sub_type field).

The underlying security service returns the privacy protected PDU body, if any, and a checksum
value.

If there was a PDU body, then the privacy protected PDU body replaces the original,
unprotected PDU body in the PDU. The returned checksum value is inserted into the
authentication verifier checksum field. The resulting PDU may then be transmitted.

If there was no PDU body, then the checksum value is inserted into the checksum field of the
authentication verifier. The resulting PDU may then be transmitted.

The DCE: Security Services specification defines the algorithms used to create the protected
PDU body and the checksum value.

13.2.6.3 Credentials Encoding

This section defines the contents of the optional auth_value fields in the bind, bind_ack,
alter_context and alter_context_response PDUs as used for establishing credentials. The
auth_value fields are modelled as IDL structure definitions. As in the RPC PDU definitions, the
definitions assume no padding between elements, and they assume NDR transfer syntax.

For any protection level requested, including dce_c_authn_level_none, a bind PDU includes
optional authentication data. If a new client principal is being introduced, either a bind for a new
association or an alter_context on an existing association is used. The mutual authentication

552 X/Open CAE Specification (1994)

Security Security Services for Connection-oriented Protocol

response is carried by the bind_ack or alter_context_response, respectively.

When security services are in effect, the credentials field is empty (cred_length=0) for an
rpc_alter_context or rpc_alter_context_response PDU that is intended only to change non-
security-related context, such as presentation context, transfer syntax, and the like.

The generic encoding is as follows:

typedef struct{
u_int32 assoc_uuid_crc; /* checksum of assoc_uuid */
u_int8 sub_type;
u_int8 checksum_length;
u_int16 cred_length;
byte [size_is(cred_length)] credentials[];
byte [size_is(checksum_length)] checksum[];
} auth_value_t;

where:

• The assoc_uuid_crc field is defined by the client to be the value assoc_uuid_chksum, and is
ignored on response.

• The credentials field depends on the auth_type, as specified in DCE Secret Key credentials
Field Encoding.

• The checksum field depends on the level of service, as specified in DCE Secret Key
credentials Field Encoding.

DCE Secret Key credentials Field Encoding

The following algorithm defines the credentials field encoding for
auth_type=dce_c_rpc_authn_protocol_krb5:

For a bind or alter_context PDU with authentication level dce_c_authn_level_none,
authentication service of dce_c_rpc_authn_protocol_krb5.

• If the authorisation service is dce_c_authz_name, the credentials field has the form:

u_int8 authz_type=dce_c_authz_name;
char name[]; /* null-terminated local principal name */

/* size auth_length-1 */

• If the authorisation service is dce_c_authz_dce, the credentials field has the form:

u_int8 authz_type=dce_c_authz_dce;
byte pac[];

where the contents of the pac field is determined by the underlying security services and
defined in the DCE: Security Services specification.

For a bind_ack or alter_context_response PDU with authentication level
dce_c_authn_level_none, authentication service of dce_c_rpc_authn_protocol_krb5, and
authorisation service of either dce_c_authz_name or dce_c_authz_dce, the credentials field has
one of the following forms:

• If no error has occurred, then the auth_value field of the authentication verifier is empty
(null).

• If an authentication error occurred then the auth_value field contains:

u_int32 statusq /* big-endian encoded */

Part 4 RPC Services and Protocols 553

Security Services for Connection-oriented Protocol Security

For a bind or alter_context PDU with any authentication level except dce_c_authn_level_none,
authentication service of dce_c_rpc_authn_protocol_krb5, and authorisation service of either
dce_c_authz_name or dce_c_authz_dce, then the credentials field has the form:

byte request[];

where the contents of the request field is determined by the underlying security services and
defined in the DCE: Security Services specification.

For a bind_ack or alter_context_response PDU with any authentication level except
dce_c_authn_level_none, authentication service of dce_c_rpc_authn_protocol_krb5, and
authorisation service of either dce_c_authz_name or dce_c_authz_dce, then the credentials field
has one of the following forms:

• If no error has occurred, the credentials field is encoded as

byte response[];

where the contents of the response field are determined by the underlying security services
and defined in the DCE: Security Services specification.

• If an authentication error occurred, the credentials field is encoded as

byte error[];

where the contents of the error field are determined by the underlying security services and
defined in the DCE: Security Services specification.

554 X/Open CAE Specification (1994)

Security Security Services for Connectionless Protocol

13.3 Security Services for Connectionless Protocol
The following sections specify security semantics and encodings for connectionless RPC
protocol when the PDU header field auth_proto=dce_c_rpc_authn_protocol_krb5. Use of other
protection services is permitted but outside the scope of this specification.

13.3.1 Server Receive Processing

On receiving a PDU, the connectionless protocol machine first locates the activity record that is
associated with the client. This is determined through the activity ID. If no activity record is
found, one is created, and if a security service is requested, the challenge/response exchange is
initiated by performing the conversation manager callback for authenticated calls.

The protocol machine verifies the conversation manager callback response PDU. If the
appropriate values of the this PDU match the authentication information of the activity record
(refer to the DCE: Security Services specification), the security context is established; otherwise,
an error PDU (reject PDU) is generated.

The server also initiates the challenge/response exchange if it cannot locate the received session
key that is associated with the key sequence number.

Based on a valid security context, the server verifies the following for each received PDU:

• the authentication verifier according to the specific authentication protocol

• the selected level of per-PDU service.

If mismatches are detected, error PDUs (fault PDUs) are generated.

If the fragment number in the request PDU is 0 (zero), indicating that the PDU is the first PDU of
a call, the current time is compared with the expiration time of the security context. If it has
expired, an error PDU is generated.

13.3.2 Client Receive Processing

Client receive processing is identical to server receive processing, except that no attempt is made
to learn the key through a challenge/response exchange.

13.3.3 Conversation Manager Encodings

The conv_who_are_you_auth () operation of the conversation manager provides a way to
piggyback a variable-length array of bytes on each leg of the operation by using a
challenge/response exchange. The formats of these conversation manager challenge request
and response PDUs when auth_proto=dce_c_rpc_authn_protocol_krb5 are specified in the
following sections.

13.3.3.1 Challenge Request Data Encoding

The conversation manager challenge request PDU, which is generated by the server, is entirely
in plaintext because the server does not necessarily share any keys with the client. It is
transferred in the in_data parameter (that is, as the stub data of an RPC request PDU) of the
conv_who_are_you_auth () operation. When auth_proto=dce_c_rpc_authn_protocol_krb5, it is 12
bytes long and consists of:

typedef struct {
u_int32 key_seq_num; /* big endian */
byte[8] challenge;
} in_data;

Part 4 RPC Services and Protocols 555

Security Services for Connectionless Protocol Security

key_seq_num The sequence number of the key requested by the server.

challenge A 64-bit random value. See the DCE: Security Services specification for
information on generating this confounder.

13.3.3.2 Response Data Encoding

The response is transferred as the out_data parameter (that is, as stub data of an RPC response
PDU) of the conv_who_are_you_auth () conversation manager operation. The contents of this PDU
are specified in the DCE: Security Services specification.

13.3.4 Authentication Verifier Encodings

Connectionless PDUs contain an authentication verifier if the PDU header field auth_proto is
non-zero. Otherwise, the authentication verifier is not present.

The encoding and length of the authentication verifier depends on the authentication service, as
identified by the PDU header field auth_proto.

The authentication data encodings for the PDU authentication verifier are specified in the
following sections for auth_proto=dce_c_rpc_authn_protocol_krb5.

Unless specified otherwise, the data types and values are encoded in the NDR transfer syntax.
Note that no padding between elements within a data structure is assumed and that the
alignment requirements for the PDU header (see Section 12.3 on page 510) also apply to the
authentication verifier of the PDU trailer.

When the PDU header field auth_proto=dce_c_rpc_authn_protocol_krb5, every PDU contains a
20 or 24-byte authentication verifier. The first three fields of the verifier consist of a plaintext
header followed by an 16-byte ciphertext authentication value, as follows:

typedef struct {
u_int8 protection_level;
u_int8 key_vers_num;
byte[pad_length] pad;
byte[16] auth_value;
} auth_trailer_cl_t;

protection_level The protection level of the RPC. It indicates the level of service as
determined by the protection level values (see Section 13.1 on page 544).

key_vers_num The version number of the key that indicates the key used to encrypt or to
calculate the checksum of any ciphertext in the authentication value.

pad A padding field whose value is all zeros. The length of this array
(pad_length) is 6 bytes for protection level dce_c_authn_level_privacy, 2
bytes otherwise.

auth_value The ciphertext of the authentication verifier. The format of auth_value
depends on the level of service. The plaintext is encoded in the transfer
syntax as specified in the PDU header field drep.

The following sections describe the authentication value encodings for each protection level.

556 X/Open CAE Specification (1994)

Security Security Services for Connectionless Protocol

13.3.4.1 dce_c_authn_level_none

There is no authentication verifier in the PDU for this protection level.

13.3.4.2 dce_c_authn_level_connect

The auth_value field of the verifier is ignored for this level of service, which does not provide
protection per PDU.

13.3.4.3 dce_c_authn_level_call

This level is not supported. Requests for this level will automatically be upgraded to
dce_c_authn_level_pkt.

13.3.4.4 dce_c_authn_level_pkt

For per-PDU level, the underlying security service computes a 8-octet checksum of a plaintext
that is supplied to the auth_value field of the authentication verifier. The plaintext is
constructed as follows:

typedef struct {
u_int32 seqnum;
u_int32 fragnum;
} plaintext;

seqnum The sequence number of the call, as specified in the PDU header. If the
server generates the authentication verifier, the high-order bit of the
sequence number is set to 1, as indication for the direction.

fragnum The fragment number of the call, as specified in the PDU header.

The DCE: Security Services specification defines the algorithms used to create the checksum
value for the auth_value field.

13.3.4.5 dce_c_authn_level_integrity

For PDU-integrity level, the underlying security service computes a 16-octet checksum of the
concatenated PDU header and body data that is supplied to the auth_value field of the
authentication verifier.

The DCE: Security Services specification defines the algorithms used to create the checksum
value for the auth_value field.

13.3.4.6 dce_c_authn_level_privacy

In contrast to the other security levels, this level also requires changes to the contents of the body
data of the standard RPC PDUs. This level of service provides strong integrity protection for the
entire PDU, plus privacy protection for the body data only.

The PDU to be protected is divided into two pieces: the RPC header and the PDU body
composed of data generated by the stub’s marshalling procedures. The following is passed to the
underlying security service in a call requesting privacy protection:

• the RPC header

• the PDU body, if any

• the checksum field that was supplied as part of the out_data parameter in the conversation
manager operation

Part 4 RPC Services and Protocols 557

Security Services for Connectionless Protocol Security

• the sequence number of the call, as specified in the PDU header.

The underlying security service returns the privacy protected PDU body, if any, and a 16-octet
checksum value.

If there was a PDU body, then the privacy protected PDU body replaces the original,
unprotected PDU body in the PDU. Insert the returned checksum value into the auth_value
field. The resulting PDU may then be transmitted.

If there was no PDU body, then insert the returned checksum value into the auth_value field.
The resulting PDU may then be transmitted.

The DCE: Security Services specification defines the algorithms used to create the protected
PDU body and the checksum value.

558 X/Open CAE Specification (1994)

Chapter 14

Transfer Syntax NDR

Most application programs treat procedure call inputs and outputs as values of structured data
types such as integers, arrays and pointers. One role of IDL is to provide syntax for describing
these structured data types and values. However, the RPC protocol specifies that inputs and
outputs be passed in octet streams. The role of NDR is to provide a mapping of IDL data types
onto octet streams. NDR defines primitive data types, constructed data types and
representations for these types in an octet stream.

For some primitive data types, NDR defines several data representations. For example, NDR
defines ASCII and EBCDIC formats for characters. When a client or server sends an RPC PDU,
the formats used are identified in the format label of the PDU. The data representation formats
and the format label support the NDR multi-canonical approach to data conversion; that is, there
is a fixed set of alternate representations for data types.

This chapter describes:

• the NDR format label

• the set of NDR primitive data types and the supported data representation formats for these
types

• the set of NDR constructed data types and their representations.

Part 4 RPC Services and Protocols 559

Data Representation Format Label Transfer Syntax NDR

14.1 Data Representation Format Label
The NDR format label is a vector of 4 octets that identifies the particular data representation
formats used to represent primitive values both in the header and in the body of an RPC PDU.
The format label is itself part of the PDU header. (See Chapter 12 for definitions of RPC PDUs.)

Figure 14-1 illustrates the NDR format label. The four most significant bits of octet 0 indicate
integer format and endian type of the floating-point representation. The four least significant bits
of octet 0 indicate character format. Octet 1 indicates floating-point representation format. Octets
2 and 3 are reserved for future use and must be zero octets.

Integer
Representation

8 bits

Floating-Point
Representation

Character
Representation

Reserved for Future Use

Reserved for Future Use

0

1

2

3

Figure 14-1 NDR Format Label

Table 14-1 lists the values associated with integer, character and floating-point formats. The values are
represented in the format label in unsigned integer binary format.

Data Type Value in Label Format
0 ASCII

Character
1 EBCDIC
0 Big-endian

Integer and floating-point byte order
1 Little-endian
0 IEEE
1 VAX
2 Cray

Floating-point representation

3 IBM

Table 14-1 NDR Format Label Values

560 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Primitive Types

14.2 NDR Primitive Types
NDR defines a set of 13 primitive data types to represent Boolean values, characters, four sizes
of signed and unsigned integers, two sizes of floating-point numbers, and uninterpreted octets.

For characters, integers and floating-point numbers, NDR defines more than one representation
format. The formats used in an RPC PDU are identified in the NDR format label.

All NDR primitive data types are multiples of octets in length. A octet is 8 bits. A bit can take the
values 0 and 1.

14.2.1 Representation Conventions

The figures representing NDR primitive types adopt the following conventions:

• Each octet is represented by a rectangular box.

• When the figure refers to individual bits or groups of bits within an octet, the octet box is
divided by vertical lines into one or more smaller rectangles that represent the individual bits
or groups of bits.

• Within octets, bits and groups of bits are represented with the most significant bit at the left
and the least significant bit at the right.

• Most significant bit is abbreviated MSB, and least significant bit is abbreviated LSB.

• Data types larger than one octet are depicted as a series of octet boxes arranged vertically to
form a larger rectangle. The octets are ordered from top to bottom: the topmost octet appears
first in the octet stream and the bottommost octet appears last.

• Bit and octet numbering, for reference purposes, begins with 0.

• Diagrams do not depict the specified alignment gaps, which can appear in the octet stream
before an item (see Section 14.2.2 on page 562.)

• When a bit is set, it has the value 1. When a bit is reset, it has the value 0.

Following the preceding rules, the order of octets, as they occur in an octet stream, can be read
by reading vertically from the top octet box down to the bottom octet box. The order of bits and
groups of bits in an octet, from most significant to least significant, can be read beginning at the
leftmost end of an octet box and reading across to the right end. The order of bits and groups of
bits in the octets of a data type can therefore be read by reading the bits from left to right in each
octet, beginning with the top octet and ending with the bottom octet.

Note: Although NDR specifies the order of bits and groups of bits within the octet stream of
some data types, it specifies an octet stream representation of data rather than a bit
stream representation of data. NDR does not specify how a given octet stream is
represented as a bit stream, which is typically the province of underlying network
layers.

Part 4 RPC Services and Protocols 561

NDR Primitive Types Transfer Syntax NDR

14.2.2 Alignment of Primitive Types

NDR enforces NDR alignment of primitive data; that is, any primitive of size n octets is aligned at
a octet stream index that is a multiple of n. (In this version of NDR, n is one of {1, 2, 4, 8}.) An
octet stream index indicates the number of an octet in an octet stream when octets are
numbered, beginning with 0, from the first octet in the stream. Where necessary, an alignment
gap, consisting of octets of unspecified value, precedes the representation of a primitive. The gap
is of the smallest size sufficient to align the primitive.

14.2.3 Booleans

A Boolean is a logical quantity that assumes one of two values: TRUE or FALSE. NDR represents
a Boolean as one octet. It represents a value of FALSE as a zero octet, an octet in which every bit is
reset. It represents a value of TRUE as a non-zero octet, an octet in which one or more bits are set.

Figure 14-2 illustrates the boolean data type as it appears in the octet stream.

0 (zero) = FALSE
Nonzero = TRUE

8 bits

MSB LSB

Figure 14-2 The Boolean Data Type

14.2.4 Characters

NDR represents a character as one octet. Characters have two representation formats: ASCII and
EBCDIC.

Figure 14-3 illustrates the character type as it appears in the octet stream.

ASCII Format

8 bits

MSB LSB
EBCDIC Format

8 bits

MSB LSB

Figure 14-3 Character Data Type

14.2.5 Integers and Enumerated Types

NDR defines both signed and unsigned integers in four sizes:

small An 8-bit integer, represented in the octet stream as 1 octet.

short A 16-bit integer, represented in the octet stream as 2 octets.

long A 32-bit integer, represented in the octet stream as 4 octets.

hyper A 64-bit integer, represented in the octet stream as 8 octets.

562 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Primitive Types

NDR represents signed integers in twos complement format and represents unsigned integers as
unsigned binary numbers. There are two integer formats: big-endian and little-endian. If the
integer format is big-endian, the octets of the representation are ordered in the octet stream from
the most significant octet to the least significant octet. If the integer format is little-endian, the
octets of the representation are ordered in the octet stream from the least significant octet to the
most significant octet.

Figure 14-4 illustrates the integer types in big-endian and little-endian format.

0

1

2

3

4

5

6

7

8 bits

Little–Endian Formats

0

1

2

3

4

5

6

7

8 bits

Big–Endian Formats

hyper

0

1

2

3

8 bits

0

1

2

3

8 bits

long

0

1

8 bits

0

1

8 bits

short

0

8 bits

0

8 bits

small

MSB

LSB MSB

LSB

LSB

LSB

MSB

MSB

MSB LSB

MSB

LSB

MSB

LSB

MSB LSB

Figure 14-4 NDR Integer Formats

14.2.5.1 Enumerated Types

NDR represents enumerated types as signed short integers (2 octets).

Part 4 RPC Services and Protocols 563

NDR Primitive Types Transfer Syntax NDR

14.2.6 Floating-point Numbers

NDR defines single-precision and double-precision floating-point data types. It represents
single-precision types in 4 octets and double precision types in 8 octets.

NDR supports the following floating-point data representation formats for single-precision and
double-precision floating-point types:

• IEEE single-precision and double-precision floating-point formats, which comply with the
IEEE 754 standard.

• VAX F_floating and G_floating formats as defined in the VAX11 Architecture document.

• Cray floating-point format, as defined in the documentation produced by Cray Research, Inc.

• IBM short and long formats, as defined in the System/370 document.

Table 14-2 is a conversion chart that shows how NDR single-precision and double-precision
floating-point types correspond to the supported floating-point formats.

Conversion Values
NDR Values

IEEE VAX Cray IBM
Single Single (4 octets) F (4 octets) Single (4 octets) Short (4 octets)
Double Double (8 octets) G (8 octets) Double (8 octets) Long (8 octets)

Table 14-2 NDR Floating Point Types

The representation of a floating-point number comprises three fields:

• The sign bit, which indicates the sign of the number. Values 0 and 1 represent positive and
negative, respectively. This field is 1 bit in length.

• The exponent of the number (base 16 in IBM format, base 2 in all others), biassed by an
excess. The size of this field varies according to the format, as does the excess.

• The fractional part of the number’s mantissa (base 16 in IBM format, base 2 in all others). This
field is also called the number’s coefficient. The size of this field varies according to the
format.

NDR allows implementations to use different degrees of precision in representing floating-point
numbers. When the receiver is unmarshaling a floating-point number, and the number cannot be
represented exactly in the receiver’s floating-point format, the received (input) data are rounded
such that the representable value nearest the infinitely precise result is delivered. If two
representable values are equally near, the one with its least significant bit 0 (zero) is delivered.

The integer representation field of the NDR format label indicates whether floating-point values
are transmitted in big-endian or little-endian format. See Table 14-1 on page 560 for the mapping
between format label values and data representations.

The remainder of this section describes how floating-point numbers are represented in the octet
stream in IEEE, VAX, Cray and IBM formats.

14.2.6.1 IEEE Format

Single-precision IEEE floating-point format is 32 bits in length, consisting of a 1-bit sign, an 8-bit
exponent field (excess 127), and a 23-bit mantissa that represents a fraction in the range
1.0≤m<2.0. Double precision IEEE floating-point format is 64 bits in length with a 1-bit sign, an
11-bit exponent (excess 1023), and a 52-bit mantissa.

564 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Primitive Types

IEEE floating-point numbers are used on machines made by a variety of manufacturers and
based on a variety of architectures. Some of these machines use little-endian representation for
integers; other machines use big-endian representation. When a recipient interprets an NDR
octet stream whose format label specifies IEEE floating-point format, it uses the integer
representation in the format label to determine the octet order of the IEEE floating-point number.

Figure 14-5 illustrates IEEE single-precision floating-point format in big-endian and little-endian
integer representation. The exponents and fractions shown in this figure are represented in
unsigned-binary format.

0

1

2

3

fraction(3)

fraction(2)

fraction(1)

exponent(1)sign
bit

8 bits

Little–Endian Format

0

1

2

3

exponent(1)

fraction(3)

8 bits

Big–Endian Format

sign
bit

exp
(2)

exp
(2)

fraction(2)

fraction(1)

Figure 14-5 IEEE Single-precision Floating-point Format

Figure 14-6 illustrates IEEE double-precision floating-point format in big-endian and little-
endian integer representation. The exponents and fractions shown in this figure are represented
in unsigned-binary format.

0

1

2

3

4

5

6

7

fraction(7)

fraction(6)

fraction(5)

fraction(4)

fraction(3)

fraction(2)

sign
bit

exponent(1)

exponent(2) fraction(1)

8 bits

0

1

2

3

4

5

6

7

exponent(1)

exponent(2)

fraction(2)

fraction(3)

fraction(4)

fraction(5)

fraction(7)

fraction(1)

8 bits

sign
bit

fraction(6)

Little–Endian FormatBig–Endian Format

Figure 14-6 IEEE Double-precision Floating-point Format

14.2.6.2 VAX Format

VAX architecture defines four floating-point formats: F_floating, D_floating, G_floating and
H_floating. F_floating format is 32 bits in length, including a 1-bit sign, an 8-bit exponent (excess
128), and a 23-bit mantissa that represents a fraction in the range 0.5≤m<1.00. D_floating format
is 64 bits, with a 1-bit sign, an 8-bit exponent and a 56-bit mantissa. G_floating format is also 64
bits, with a 1-bit sign, an 11-bit exponent (excess 1024) and a 52-bit mantissa. H_floating format
is 128 bits.

Although the VAX architecture supports four floating-point formats, NDR uses only VAX
F_floating format to represent VAX single-precision floating-point numbers and VAX G_floating

Part 4 RPC Services and Protocols 565

NDR Primitive Types Transfer Syntax NDR

format to represent VAX double-precision floating-point numbers.

Figure 14-7 illustrates VAX F floating-point representation as it appears in the octet stream.
Exponents and fractions shown in this and the next figure are represented in unsigned-binary
format.

0

1

2

3

fraction(1)

fraction(2)

8 bits

exp
(2)

sign
bit

fraction(3)

exponent(1)

Field Size
in Bits

1, 7

1, 7

8

8

Byte
Offset

Figure 14-7 VAX Single-precision (F) Floating-point Format

Figure 14-8 illustrates VAX G floating-point representation as it appears in the octet stream.

exponent(2)

exponent(1)

fraction(3)

fraction(2)

fraction(5)

fraction(4)

fraction(6)

sign
bit

fraction(7)

0

1

2

3

8 bitsField Size
in Bits

4, 4

1, 7

8

8

Byte
Offset

fraction(1)

8

8

8

8

4

5

6

7

Figure 14-8 VAX Double-precision (G) Floating-point Format

Figure 14-7 and Figure 14-8 illustrate VAX F_floating and G_floating formats using a little-
endian representation for integers. However, some machines may implement VAX floating-

566 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Primitive Types

point format with a big-endian representation. When a recipient interprets an NDR octet stream
whose format label specifies VAX floating-point format, it uses the integer representation in the
format label to determine the octet order of the floating-point number.

14.2.6.3 Cray Format

Cray machine architecture defines only a double-precision floating-point format. However,
because Cray machines may be required to handle single-precision floating-point values (for
instance, if single-precision values are specified in an interface definition), NDR defines a single-
precision floating-point format for Cray machines; this format is identical to IEEE big-endian
single-precision format.

A Cray double-precision floating-point number is 64 bits in length and consists of a 1-bit sign, a
15-bit exponent (16,384 excess) and a 48-bit fraction. A Cray single-precision floating-point
number is 32 bits in length and consists of a 1-bit sign, an 8-bit exponent (excess 127) and a 23-bit
mantissa that represents a fraction in the range 1.0≤m<2.0.

Figure 14-9 illustrates the Cray floating-point formats.

0

1

2

3

exponent(1)

exponent(2)

fraction(1)

fraction(2)

sign
bit

8 bits

Double–Precision Format

0

1

2

3

exponent(1)

fraction(3)

8 bits

Single–Precision Format

sign
bit

exp
(2)

fraction(2)

fraction(1)

fraction(3)

fraction(4)

fraction(5)

fraction(6)

4

5

6

7

Figure 14-9 Cray Floating-point Formats

14.2.6.4 IBM Format

The IBM architecture defines short and long floating-point formats for single-precision and
double-precision floating-point values, respectively. An IBM short floating-point number
consists of a 1-bit sign, a 7-bit exponent and a 24-bit fraction. An IBM long floating-point number
consists of a 1-bit sign, a 7-bit exponent and a 56-bit fraction. The IBM formats represent both the
exponent and the fraction in hexadecimal rather than binary notation. Consequently, the
exponent is base 16, while the fraction is composed of either six 4-bit hexadecimal digits or
fourteen 4-bit hexadecimal digits.

Figure 14-10 on page 568 illustrates the IBM short and long floating-point formats.

Part 4 RPC Services and Protocols 567

NDR Primitive Types Transfer Syntax NDR

0

1

2

3

exponent

fraction(1)

fraction(2)

fraction(3)

sign
bit

8 bits

Double–Precision Format

0

1

2

3

exponent

fraction(3)

8 bits

Single–Precision Format

sign
bit

fraction(2)

fraction(1)

fraction(4)

fraction(5)

fraction(6)

fraction(7)

4

5

6

7

Figure 14-10 IBM Floating-point Formats

Figure 14-10 illustrates IBM floating-point format using a big-endian representation for integers.
However, some machines may implement IBM floating-point with a little-endian representation.
When a recipient interprets an NDR octet stream whose format label specifies IBM floating-point
format, it uses the integer representation in the format label to determine the octet order of the
floating-point number.

14.2.7 Uninterpreted Octets

NDR defines an uninterpreted octet data type for which no internal format is defined and on
which no format conversions are made.

illustrates the uninterpreted octet type as it appears in the octet stream.

8 bits

Figure 14-11 Uninterpreted Octet Representation

568 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

14.3 NDR Constructed Types
NDR supports data types that are constructed from the NDR primitive data types described in
the previous section. The NDR constructed types include arrays, strings, structures, unions,
variant structures, pipes and pointers.

NDR represents every NDR constructed type as a sequence of NDR primitive values. The
representation formats for these primitive values are identified in the NDR format label.

All NDR constructed data types are integer multiples of octets in length.

14.3.1 Representation Conventions

The figures representing NDR constructed types adopt the following conventions:

• Constructed types are represented as a series of one or more primitive types. Each primitive
type is shown as a rectangular box.

• The octet stream is depicted from left to right. The leftmost item appears first in the octet
stream and the rightmost item appears last.

• Specified alignment gaps, which can appear in the octet stream before and/or within an item,
are not shown in the figures (see Section 14.2.2 on page 562).

• Ellipsis points between items labelled ‘‘first’’ and ‘‘last’’ indicate that any number of items
can appear in the octet stream. Unless otherwise stated, at least one item, which would be
both first and last, must appear. Ellipsis points between items labelled ‘‘first’’ and
‘‘penultimate’’ are used similarly. Figure 14-12 on page 570 shows one example of this
notation.

• Braces and arrows indicate an item whose composition is exploded in another part of the
figure. Figure 14-17 on page 572 shows one example of this notation.

• ‘‘Max’’ is the abbreviation for ‘‘maximum’’, and ‘‘rep’’ is the abbreviation for
‘‘representation’’.

14.3.2 Arrays

An array is an ordered, indexed collection of elements of a single type. The elements of an array
can be of any NDR primitive or constructed type except arrays, pipes, conformant structures
and context handles.

NDR defines several representations for arrays. The representation used depends on:

• whether the array is uni-dimensional or multi-dimensional

• whether the array is conformant

• whether the array is varying.

NDR defines special representations for arrays of strings (see Section 14.3.4 on page 575), for
structures that contain some kinds of arrays (see Section 14.3.6 on page 577), and for arrays that
contain pointers (see Section 14.3.11 on page 582).

Part 4 RPC Services and Protocols 569

NDR Constructed Types Transfer Syntax NDR

14.3.2.1 Uni-dimensional Fixed Arrays

A fixed array is an array that is neither conformant nor varying. In a fixed array, the number of
elements is known beforehand.

NDR represents a fixed array as an ordered sequence of representations of the array elements.

Figure 14-12 illustrates a fixed array as it appears in the octet stream.

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

Figure 14-12 Uni-dimensional Fixed Array Representation

14.3.2.2 Uni-dimensional Conformant Arrays

A conformant array is an array in which the maximum number of elements is not known
beforehand and therefore is included in the representation of the array.

NDR represents a conformant array as an ordered sequence of representations of the array
elements, preceded by an unsigned long integer. The integer gives the number of array elements
transmitted, including empty elements.

A conformant array can contain at most 232−1 elements.

Figure 14-13 illustrates a conformant array as it appears in the octet stream.

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

Maximum Count

4 bytes

Figure 14-13 Uni-dimensional Conformant Array Representation

14.3.2.3 Uni-dimensional Varying Arrays

A varying array is an array in which the actual number of elements passed in a given call varies
and therefore is included in the representation of the array.

NDR represents a varying array as an ordered sequence of representations of the array elements,
preceded by two unsigned long integers. The first integer gives the offset from the first index of
the array to the first index of the actual subset being passed. The second integer gives the actual
number of elements being passed.

A varying array can contain at most 232−1 elements.

570 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

Figure 14-14 illustrates a varying array as it appears in the octet stream.

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

Offset
Actual
Count

4 bytes 4 bytes

Figure 14-14 Uni-dimensional Varying Array Representation

14.3.2.4 Uni-dimensional Conformant-varying Arrays

An array can be both conformant and varying. Such arrays are called conformant-varying.

NDR represents a conformant and varying array as an ordered sequence of representations of
the array elements, preceded by three unsigned long integers. The first integer gives the
maximum number of elements in the array. The second integer gives the offset from the first
index of the array to the first index of the actual subset being passed. The third integer gives the
actual number of elements being passed.

A conformant and varying array can contain at most 232−1−o elements, where o is the offset. The
integers that indicate the offset and the actual count are always present, even if the maximum
count is 0 (zero).

Figure 14-15 illustrates a conformant and varying array as it appears in the octet stream.

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

OffsetMaximum
Count

Actual
Count

4 bytes 4 bytes 4 bytes

Figure 14-15 Uni-dimensional Conformant and Varying Array Representation

14.3.2.5 Ordering of Elements in Multi-dimensional Arrays

NDR orders multi-dimensional array elements so that the index of the first dimension varies
slowest and the index of the last dimension varies fastest.

For example, consider an array A in two dimensions with indexes ranging from 0 to 1 in the first
dimension and from 0 to 2 in the second dimension. NDR orders the elements of the array as
follows:

A(0,0), A(0,1), A(0,2), A(1,0), A(1,1),
A(1,2)

where the notation A(i,j) denotes the element with index i in the first dimension and index j in
the second dimension of the array A.

14.3.2.6 Multi-dimensional Fixed Arrays

A multi-dimensional array is fixed if, in all of its dimensions, the number of elements is known
beforehand.

NDR represents fixed multi-dimensional arrays in the same format as fixed uni-dimensional
arrays, as shown in Figure 14-16 on page 572.

Part 4 RPC Services and Protocols 571

NDR Constructed Types Transfer Syntax NDR

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

Figure 14-16 Multi-dimensional Fixed Array Representation

14.3.2.7 Multi-dimensional Conformant Arrays

A multi-dimensional array is conformant if the maximum size in any of its dimensions is not
known beforehand.

NDR represents a multi-dimensional conformant array as an ordered sequence of unsigned long
integers, followed by an ordered sequence of representations of the array elements. The
sequence of integers give the maximum size in each dimension of the array.

A multi-dimensional conformant array can span at most 232−1 elements in each dimension.

Figure 14-17 illustrates a multi-dimensional conformant array as it appears in the octet stream.

4 bytes

Maximum Count
for

Last Dimension

Representation
of

First Element

Size per
Element Type

Size per
Element Type

Representation
of

Last Element

Maximum Count
for

First Dimension

4 bytes

Maximum
Counts

Figure 14-17 Multi-dimensional Conformant Array Representation

14.3.2.8 Multi-dimensional Varying Arrays

A multi-dimensional array is varying if the actual size in any of its dimensions varies.

NDR represents a multi-dimensional varying array as an ordered sequence of pairs of unsigned
long integers, followed by an ordered sequence of representations of the array elements. There is
one integer pair for each dimension of the array. The first integer of each pair gives the offset
from the first index in the dimension to the first index of the subset being passed. The second
integer of each pair gives the actual size in the dimension for the subset being passed.

572 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

A multi-dimensional varying array can span at most 232−1 elements in each dimension.

Figure 14-18 illustrates a multi-dimensional varying array as it appears in the octet stream.

4 bytes 4 bytes

Offset
for

First Dimension

Representation
of

First Element

Size per
Element Type

Offsets
and

Actual Counts

Size per
Element Type

4 bytes

Offset
for

Last Dimension

Actual Count
for

Last Dimension

Actual Count
for

First Dimension

4 bytes

Representation
of

Last Element

Figure 14-18 Multi-dimensional Varying Array Representation

14.3.2.9 Multi-dimensional Conformant and Varying Arrays

A multi-dimensional array can be both conformant and varying.

NDR represents a multi-dimensional conformant and varying array as an ordered sequence of
unsigned long integers, followed by an ordered sequence of pairs of unsigned long integers,
followed by an ordered sequence of representations of the array elements. In the sequence of
integers, there is one integer for each dimension of the array, and the integers give the maximum
size in each dimension. In the sequence of pairs of integers, there is one pair of integers for each
dimension of the array; the first integer of each pair gives the offset from the first index in the
dimension to the first index of the subset being passed, and the second integer of each pair gives
the actual size in the dimension for the subset being passed.

Each dimension of a multi-dimensional conformant and varying array can span at most 232−1−o
elements, where o is the offset in that dimension. The integers that indicate the offsets and the
actual counts are always present, even if one or more of the maximum counts is 0 (zero).

Figure 14-19 on page 574 illustrates a multi-dimensional conformant and varying array as it
appears in the octet stream.

Part 4 RPC Services and Protocols 573

NDR Constructed Types Transfer Syntax NDR

Offset
for First

Dimension

Actual Count
for First

Dimension

4 bytes 4 bytes 4 bytes4 bytes

Actual Count
for Last

Dimension

Maxium Count
for

First Dimension

4 bytes4 bytes

Representation
of

First Element

Size per
Element Type

Maximum
Counts

Offsets
and

Actual Counts

Size per
Element Type

Maxium Count
for

Last Dimension

Representation
of

Last Element

Offset
for Last

Dimension

Figure 14-19 Multi-dimensional Conformant and Varying Array Representation

14.3.3 Strings

A string is an indexed or unindexed ordered collection of elements of the same type. The
elements in a string must be characters, octets or structures all of whose elements are octets. The
actual number of elements passed in a given call varies and therefore is included in the
representation of the string.

The last element of a string is a terminator of the same size as the other elements. If the string
element size is one octet, the terminator is a 0 (zero) octet. The terminator for a string of multi-
byte characters must have 0 (zero) in all its bytes.

Strings can be varying or conformant and varying.

14.3.3.1 Varying Strings

NDR represents a varying string as an ordered sequence of representations of the string
elements, preceded by two unsigned long integers. The first integer gives the offset from the first
index of the string to the first index of the actual subset being passed. The second integer gives
the actual number of elements being passed, including the terminator.

A varying string can contain at most 232−1 elements and must contain at least one element, the
terminator.

Figure 14-20 illustrates a varying string as it appears in the octet stream.

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

Offset
Actual
Count

4 bytes 4 bytes

Figure 14-20 Varying String Representation

574 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

14.3.3.2 Conformant and Varying Strings

A conformant and varying string is a string in which the maximum number of elements is not
known beforehand and therefore is included in the representation of the string.

NDR represents a conformant and varying string as an ordered sequence of representations of
the string elements, preceded by three unsigned long integers. The first integer gives the
maximum number of elements in the string, including the terminator. The second integer gives
the offset from the first index of the string to the first index of the actual subset being passed. The
third integer gives the actual number of elements being passed, including the terminator.

A conformant and varying string can contain at most 232−1−o elements, where o is the offset, and
must contain at least one element, the terminator.

Figure 14-21 illustrates a conformant and varying string as it appears in the octet stream.

Representation
of

First Element

Representation
of

Last Element

Size per
Element Type

Size per
Element Type

Offset
Maximum

Count
Actual
Count

4 bytes 4 bytes 4 bytes

Figure 14-21 Conformant and Varying String Representation

14.3.4 Arrays of Strings

NDR defines a special representation for an array whose elements are strings.

In the NDR representation of an array of strings, any conformance information (maximum
element counts) for the strings is removed from the string representations and included in the
conformance information for the array, but any variance information (offsets and actual element
counts) for the strings remains with the string representations.

NDR requires that all of the strings in an array of strings have the same maximum element
count. In the representation of the array that has conformance information, the maximum
element count for the strings appears only once, following the maximum element counts for the
array.

Figure 14-22 on page 576 illustrates a multi-dimensional conformant and varying array of strings
as it appears in the octet stream.

An array of strings can have a degenerate form of the representation in Figure 14-22 on page 576,
depending on the properties of the array and of the strings, as follows:

• If the strings are conformant or if any dimension of the array is conformant, then the
representation contains maximum element counts for all dimensions of the array and for the
strings.

• If the strings are non-conformant and the array is non-conformant, then the representation
does not contain any maximum element counts.

• If any dimension of the array is varying, then the representation contains offsets and actual
counts for all dimensions of the array.

• If the array is non-varying, then the representation does not contain any offsets or actual
counts for the array, although it does contain offsets and actual counts for the strings.

Part 4 RPC Services and Protocols 575

NDR Constructed Types Transfer Syntax NDR

Offset
for First

Dimension

Actual Count
for First

Dimension

4 bytes 4 bytes 4 bytes4 bytes

Offset
for Last

Dimension

Actual Count
for Last

Dimension

Maxium Count
for

First Dimension

Maximum Count
for

Strings

4 bytes4 bytes4 bytes

Representation
of First String

(Without Maximum)

Size per
Element Type

Maximum
Counts

Offsets
and

Actual Counts

Size per
Element Type

Representation
of Last String

(Without Maximum)

Maxium Count
for

Last Dimension

Figure 14-22 Multi-dimensional Conformant and Varying Array of Strings

14.3.5 Structures

A structure is an ordered collection of members, not necessarily all of the same type. A structure
member can be of any NDR primitive or constructed type. However, a conformant array can
appear in a structure only as the last member, and a structure that contains a conformant array
can appear in another structure only as the last member.

NDR represents a structure as an ordered sequence of representations of the structure members.

Figure 14-23 illustrates a structure as it appears in the octet stream.

Representation
of

First Member

Size per
Member Type

Representation
of

Last Member

Size per
Member Type

Figure 14-23 Structure Representation

NDR defines special representations for structures that contain some kinds of arrays (see Section
14.3.6 on page 577) and for structures that contain pointers (see Section 14.3.11 on page 582).

576 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

14.3.6 Structures Containing Arrays

NDR defines special representations for a structure that contains a conformant array or a
conformant and varying array.

14.3.6.1 Structures Containing a Conformant Array

A structure can contain a conformant array only as its last member.

In the NDR representation of a structure that contains a conformant array, the unsigned long
integers that give maximum element counts for dimensions of the array are moved to the
beginning of the structure, and the array elements appear in place at the end of the structure. If a
structure that contains a conformant array itself a member of another structure, the maximum
element counts are further moved to the beginning of the containing structure. This construction
iterates through all enclosing structures.

Figure 14-24 illustrates a structure containing a conformant array as it appears in the octet
stream.

4 bytes 4 bytes

Maximum Count
for

First Dimension

Maximum Count
for

Last Dimension

Representation
of

First Member

Size per
Member Type

Maximum Counts
for

Array

Size per
Member Type

Sizes per
Element Type

Representations
of

Array Elements

Representation
of Penultimate

Member

Figure 14-24 Representation of a Structure Containing a Conformant Array

14.3.6.2 Structures Containing a Conformant and Varying Array

A structure can contain a conformant and varying array only as its last member.

In the NDR representation of a structure that contains a conformant and varying array, the
maximum counts for dimensions of the array are moved to the beginning of the structure, but
the offsets and actual counts remain in place at the end of the structure, immediately preceding
the array elements. If a structure that contains a conformant and varying array is itself a member
of another structure, the maximum counts are further moved to the beginning of the containing
structure. This construction iterates through all enclosing structures.

Figure 14-25 on page 578 illustrates a structure containing a conformant and varying array as it
appears in the octet stream. The offsets and actual counts iterate pairwise.

Part 4 RPC Services and Protocols 577

NDR Constructed Types Transfer Syntax NDR

Offset
for First

Dimension

Actual Count
for First

Dimension

4 bytes 4 bytes 4 bytes4 bytes

Offset
for Last

Dimension

Actual Count
for last

Dimension

Maxium Count
for

First Dimension

4 bytes4 bytes

Representation
of

First Member

Size per
Member Type

Maximum Counts
for

Array

Representation
of Penultimate

Member

Size per
Member Type

Maxium Count
for

Last Dimension

Offsets
and

Actual Accounts

Sizes per
Element Type

Representations
of

Array Elements

Figure 14-25 Representation of a Structure Containing a Conformant and Varying Array

14.3.7 Unions

A union is a collection of members, not necessarily of the same type, from which one member is
selected in any given instance by a discriminating tag. A union member can be of any NDR
primitive or constructed type except pipes. A union tag can be of any NDR integer, character or
Boolean type.

NDR represents a union as a representation of the tag followed by a representation of the
selected member.

For a non-encapsulated union, the discriminant is marshalled into the transmitted data stream
twice: once as the field or parameter, which is referenced by the switch_is construct, in the
procedure argument list; and once as the first part of the union representation, as shown in
Figure 14-26.

Figure 14-26 illustrates a union as it appears in the octet stream.

Size per
Tag Type

Representation
of

Tag

Representation
of

Member

Size per
Member Type

Figure 14-26 Union Representation

578 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

14.3.8 Pipes

A pipe is an ordered sequence of elements, all of the same type; the number of elements in a pipe
is determined dynamically and is potentially unlimited. Elements in a pipe can be of any NDR
primitive or constructed type except pipes, conformant and/or varying arrays, and structures
that contain conformant and/or varying arrays.

NDR represents a pipe as a sequence of chunks, not necessarily all containing the same number
of elements. A chunk can contain at most 232−1 elements of the pipe. The number of chunks is
potentially unlimited. NDR represents each chunk as an ordered sequence of representations of
the elements in the chunk, preceded by an unsigned long integer giving the number of elements
in the chunk. The final chunk is empty; it contains no elements and consists only of an unsigned
long integer with the value 0 (zero).

The NDR representation of a pipe can be regarded as a sequence of representations of one-
dimensional conformant arrays, of length>0, terminated by a zero-length array.

A pipe cannot be an element of another pipe, an element of an array, a member of a structure or
variant structure, or a member of a union.

Figure 14-27 illustrates a pipe as it appears in the octet stream.

First
Chunk

4 bytes

Last
Nonzero
Chunk

Count
of Elements

in Chunk

4 bytes

First Element
of Chunk

Last Element
of Chunk

Size per
Element Type

Size per
Element Type

0 (zero)

Figure 14-27 Pipe Representation

14.3.9 Pointers

NDR defines two classes of pointers that differ both in semantics and in representation:

• reference pointers, which cannot be null and cannot be aliases

• full pointers, which can be null and can be an aliases.

If a pointer points to nothing, it is null.

If the input and output octet streams pertaining to one remote procedure call contain several
pointers that point to the same thing, the first of these pointers to be transmitted is considered
primary and the others are considered aliases.

The scope of aliasing for a pointer extends to all streams transmitted in the service of one remote
procedure call; that is, any inputs in the request that initiates the call, and any outputs in the
response to the call.

Part 4 RPC Services and Protocols 579

NDR Constructed Types Transfer Syntax NDR

Aliasing does not apply to null pointers.

We refer to pointers that are parameters in remote procedure calls as top-level pointers and we
refer to pointers that are elements of arrays, members of structures, or members of unions as
embedded pointers. NDR defines different representations for top-level and embedded pointers.
Section 14.3.10 describes the NDR representation for top-level pointers. Section 14.3.11 on page
582 describes the NDR representation for embedded pointers.

14.3.10 Top-level Pointers

The following sections describe the NDR representation for pointers that are parameters in
remote procedure calls.

14.3.10.1 Top-level Full Pointers

NDR represents a null full pointer as an unsigned long integer with the value 0 (zero).

NDR represents the first instance in a octet stream of a non-null full pointer in two parts: the first
part is a non-zero unsigned long integer that identifies the referent; the second part is the
representation of the referent. NDR represents subsequent instances in the same octet stream of
the same pointer only by the referent identifier.

Each referent in the input and output streams pertaining to one remote procedure call is
associated with a referent identifier. A primary pointer and its aliases all have the same referent
identifier.

On input to the call, if there are n distinct referents of full pointers, the n referent identifiers are
chosen from the set of integers 1, . . ., n. On output from the call, if there are m new distinct
referents, the referent identifiers for the new referents are chosen from the set n+1, . . .,n+m.
Similar additions to the set of referent identifiers can also be made at each callback that occurs
within the execution of the call.

These requirements extend to embedded full pointers as well.

Figure 14-28 on page 581 illustrates the three possible representations for top-level full pointers.

580 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

Representation
of

Referent

4 bytes

Size per
Referent Type4 bytes

0 (zero)

Referent
Identifier

NULL

non-NULL —
First Instance
in the Byte Stream

non-NULL —
Subsequent Instance
in the Byte Stream

4 bytes

Referent
Identifier

Figure 14-28 Top-level Full Pointer Representation

14.3.10.2 Top-level Reference Pointers

A reference pointer cannot be null; it must point to a referent.

NDR represents a top-level reference pointer simply as the representation of its referent.

Figure 14-29 illustrates a top-level reference pointer as it appears in the octet stream.

Size per
Referent Type

Representation
of

Referent

Figure 14-29 Top-level Reference Pointer Representation

Part 4 RPC Services and Protocols 581

NDR Constructed Types Transfer Syntax NDR

14.3.11 Embedded Pointers

The following sections describe the NDR representation for pointers that are elements of arrays,
members of structures or members of unions.

In the NDR representation of an embedded pointer, the representation of the pointer referent is
sometimes deferred to a later position in the octet stream, while the pointer itself is always
represented in place as part of the constructed type.

14.3.11.1 Embedded Full Pointers

An embedded full pointer is represented by an unsigned long integer. If the pointer is null, the
integer has the value 0 (zero). If the pointer is non-null, the integer is the referent identifier.

The representation of the referent of a primary pointer may be deferred to a later position in the
octet stream. Section 14.3.11.3 on page 583 describes the algorithm for deferral. Except for this
possible deferral, the representation of an embedded full pointer is identical to that of a top-level
full pointer.

Figure 14-30 illustrates the three possible representations for embedded full pointers.

4 bytes

4 bytes

0 (zero)

Referent
Identifier

NULL

non-NULL —
First Instance
in the Byte Stream

non-NULL —
Subsequent Instance
in the Byte Stream

4 bytes

Referent
Identifier

Representation
of

Referent

Size per
Referent Type

Possible
Deferral

Figure 14-30 Embedded Full Pointer Representations

14.3.11.2 Embedded Reference Pointers

An embedded reference pointer is represented in two parts, a 4 octet value in place and a
possibly deferred representation of the referent.

The reference pointer itself is represented by 4 octets of unspecified value. The four octets are
aligned as if they were a long integer.

The special case of an array of reference pointers embedded in a structure has no NDR
representation, that is; there is no 4-byte unspecified value transmitted.

The representation of the referent of the reference pointer may be deferred to a later position in
the octet stream. Section 14.3.11.3 on page 583 describes the algorithm for deferral.

Figure 14-31 on page 583 illustrates an embedded reference pointer as it appears in the octet
stream.

582 X/Open CAE Specification (1994)

Transfer Syntax NDR NDR Constructed Types

Arbitrary
Representation

of
Referent

4 bytes
Possible
Deferral

Size per
Referent Type

Figure 14-31 Embedded Reference Pointer Representation

14.3.11.3 Algorithm for Deferral of Referents

If a pointer is embedded in an array, structure or union, the representation of its referent is
deferred to a position in the octet stream that follows the representation of the construction that
embeds the pointer. Representations of pointer referents are ordered according to a left-to-right,
depth-first traversal of the embedding construction. Following is an elaboration of the deferral
algorithm in detail:

• If an array, structure, or union embeds a pointer, the representation of the referent of the
pointer is deferred to a position in the octet stream that follows the representation of the
embedding construction.

• If an array or structure embeds more than one pointer, all pointer referent representations are
deferred, and the order in which referents are represented is the order in which their pointers
appear in place in the array or structure.

• If an array, structure or union embeds another array, structure or union, referent
representations for the embedded construction are further deferred to a position in the octet
stream that follows the representation of the embedding construction. The set of referent
representations for the embedded construction is inserted among the referent representations
for any pointers in the embedding construction, according to the order of elements or
members in the embedding construction.

• The deferral of referent representations iterates through all successive embedding arrays,
structures, and unions to the outermost array, structure or union.

Part 4 RPC Services and Protocols 583

NDR Input and Output Streams Transfer Syntax NDR

14.4 NDR Input and Output Streams
NDR represents the set of inputs or outputs in a remote procedure call as a octet stream. The
octet stream consists of two parts: one part represents data that are pipes and the other part
represents data that are not pipes. In the representation of a set of inputs, the part representing
pipes appears last. In the representation of a set of outputs, the part representing pipes appears
first.

Each part of the octet stream is aligned at an octet stream index that is a multiple of 8. To
produce this alignment, a gap of octets of unspecified value may separate the two parts. The
figures in this section do not show such gaps.

If an operation returns a result, the representation of the result appears after all parameters in
the output stream.

Figure 14-32 illustrates the octet stream that represents a set of inputs.

Representation
of First

Nonpipe Parameter

Size per
Parameter Type

Representation
of Last

Pipe Parameter

Size per
Parameter Type

Representation
of Last

Nonpipe Parameter

Size per
Parameter Type

Representation
of First

Pipe Parameter

Size per
Parameter Type

Figure 14-32 NDR Input Stream

Figure 14-33 illustrates the octet stream that represents a set of outputs.

Representation
of Last
Pipe

Parameter

Representation
of First
Pipe

Parameter

Size per
ParameterType

Representation
of

Operation
 Result

Size per
Result Type

Size per
Parameter Type

Size per
Parameter Type

Size per
Parameter Type

Representation
of First

Nonpipe
Parameter

Representation
of Last

Nonpipe
 Parameter

Figure 14-33 NDR Output Stream

The octet stream representing a set of inputs or outputs is transmitted either as the body of one
PDU or as the bodies of several PDUs, as described in Chapter 12.

584 X/Open CAE Specification (1994)

Appendix A

Universal Unique Identifier

This appendix specifies the syntax and semantics of the DCE variant of Universal Unique
Identifiers (UUIDs).

A UUID is an identifier that is unique across both space and time6, with respect to the space of
all UUIDs. A UUID can be used for multiple purposes, from tagging objects with an extremely
short lifetime, to reliably identifying very persistent objects across a network.

The generation of UUIDs does not require a registration authority for each single identifier.
Instead, it requires a unique value over space for each UUID generator. This spatially unique
value is specified as an IEEE 802 address, which is usually already applied to network-connected
systems. This 48-bit address can be assigned based on an address block obtained through the
IEEE registration authority. This UUID specification assumes the availability of an IEEE 802
address.

6. To be precise, the UUID consists of a finite bit space. Thus the time value used for constructing a UUID is limited and will roll
over in the future (approximately at A.D. 3400, based on the specified algorithm).

Part 4 RPC Services and Protocols 585

Format Universal Unique Identifier

A.1 Format
Table A-1 shows the format of a UUID.

Field NDR Data Type Octet # Note
The low field of the
timestamp.

time_low unsigned long 0-3

The middle field of
the timestamp.

time_mid unsigned short 4-5

The high field of the
timestamp
multiplexed with the
version number.

time_hi_and_version unsigned short 6-7

The high field of the
clock sequence
multiplexed with the
variant.

clock_seq_hi_and_reserved unsigned small 8

The low field of the
clock sequence.

clock_seq_low unsigned small 9

The spatially unique
node identifier.

node character 10-15

Table A-1 UUID Format

The UUID consists of a record of 16 octets and must not contain padding between fields. The
total size is 128 bits.

To minimise confusion about bit assignments within octets, the UUID record definition is
defined only in terms of fields that are integral numbers of octets. The version number is
multiplexed with the time stamp (time_high), and the variant field is multiplexed with the clock
sequence (clock_seq_high).

The timestamp is a 60 bit value. For UUID version 1, this is represented by Coordinated
Universal Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582
(the date of Gregorian reform to the Christian calendar).

The version number is multiplexed in the 4 most significant bits of the time_hi_and_version
field. Table A-2 lists currently defined versions of the UUID.

msb1 msb2 msb3 msb4 Version Description
DCE version, as specified herein.0 0 0 1 1

DCE Security version, with embedded POSIX UIDs.0 0 1 0 2

Table A-2 UUID version Field

The variant field determines the layout of the UUID. The structure of DCE UUIDs is fixed across
different versions. Other UUID variants may not interoperate with DCE UUIDs. Interoperability
of UUIDs is defined as the applicability of operations such as string conversion, comparison, and
lexical ordering across different systems. The variant field consists of a variable number of the
msbs of the clock_seq_hi_and_reserved field. Table A-3 on page 587 lists the contents of the
DCE variant field.

586 X/Open CAE Specification (1994)

Universal Unique Identifier Format

msb1 msb2 msb3 Description
Reserved, NCS backward compatibility.0 — —

DCE variant.1 0 —

Reserved, Microsoft Corporation GUID.1 1 0

Reserved for future definition.1 1 1

Table A-3 UUID variant Field

The clock sequence is required to detect potential losses of monotonicity of the clock. Thus, this
value marks discontinuities and prevents duplicates. An algorithm for generating this value is
outlined in Section A.2.1 on page 588. The clock sequence is encoded in the 6 least significant
bits of the clock_seq_hi_and_reserved field and in the clock_seq_low field.

The node field consists of the IEEE address, usually the host address. For systems with multiple
IEEE 802 nodes, any available node address can be used. The lowest addressed octet (octet
number 10) contains the global/local bit and the unicast/multicast bit, and is the first octet of the
address transmitted on an 802.3 LAN.

Depending on the network data representation, the multi-octet unsigned integer fields are
subject to byte swapping when communicated between different endian machines.

The nil UUID is special form of UUID that is specified to have all 128 bits set to 0 (zero).

Part 4 RPC Services and Protocols 587

Algorithms for Creating a UUID Universal Unique Identifier

A.2 Algorithms for Creating a UUID
Various aspects of the algorithm for creating a UUID are discussed in the following sections.
UUID generation requires a guarantee of uniqueness within the node ID for a given variant and
version. Interoperability is provided by complying with the specified data structure. To prevent
possible UUID collisions, which could be caused by different implementations on the same
node, compliance with the algorithms specified here is required.

A.2.1 Clock Sequence

The clock sequence value must be changed whenever:

• The UUID generator detects that the local value of UTC has gone backward; this may be due
to normal functioning of the DCE Time Service.

• The UUID generator has lost its state of the last value of UTC used, indicating that time may
have gone backward; this is typically the case on reboot.

While a node is operational, the UUID service always saves the last UTC used to create a UUID.
Each time a new UUID is created, the current UTC is compared to the saved value and if either
the current value is less (the non-monotonic clock case) or the saved value was lost, then the
clock sequence is incremented modulo 16,384, thus avoiding production of duplicate UUIDs.

The clock sequence must be initialised to a random number to minimise the correlation across
systems. This provides maximum protection against node identifiers that may move or switch
from system to system rapidly. The initial value shall not be correlated to the node identifier.

The rule of initialising the clock sequence to a random value is waived if, and only if all of the
following are true:

1. The clock sequence value is stored in a form of non-volatile storage.

2. The system is manufactured such that the IEEE address ROM is designed to be inseparable
from the system by either the user or field service, so that it cannot be moved to another
system.

3. The manufacturing process guarantees that only new IEEE address ROMs are used.

4. Any field service, remanufacturing or rebuilding process that could change the value of the
clock sequence must reinitialise it to a random value.

In other words, the system constraints prevent duplicates caused by possible migration of the
IEEE address, while the operational system itself can protect against non-monotonic clocks,
except in the case of field service intervention. At manufacturing time, such a system may
initialise the clock sequence to any convenient value.

A.2.2 System Reboot

There are two possibilities when rebooting a system:

1. the UUID generator state — the last UTC, adjustment, and clock sequence — of the UUID
service has been restored from non-volatile store

2. the state of the last UTC or adjustment has been lost.

If the state variables have been restored, the UUID generator just continues as normal.
Alternatively, if the state variables cannot be restored, they are reinitialised, and the clock
sequence is changed. If the clock sequence is stored in non-volatile store, it is incremented;
otherwise, it is reinitialised to a new random value.

588 X/Open CAE Specification (1994)

Universal Unique Identifier Algorithms for Creating a UUID

A.2.3 Clock Adjustment

UUIDs may be created at a rate greater than the system clock resolution. Therefore, the system
must also maintain an adjustment value to be added to the lower-order bits of the time.
Logically, each time the system clock ticks, the adjustment value is cleared. Every time a UUID is
generated, the current adjustment value is read and incremented atomically, then added to the
UTC time field of the UUID.

A.2.4 Clock Overrun

The 100 nanosecond granularity of time should prove sufficient even for bursts of UUID creation
in the next generation of high-performance multiprocessors. If a system overruns the clock
adjustment by requesting too many UUIDs within a single system clock tick, the UUID service
may raise an exception, handled in a system or process-dependent manner either by:

• terminating the requester

• reissuing the request until it succeeds

• stalling the UUID generator until the system clock catches up.

If the processors overrun the UUID generation frequently, additional node identifiers and clocks
may need to be added.

A.2.5 UUID Generation

UUIDs are generated according to the following algorithm:

1. Determine the values for the UTC-based timestamp and clock sequence to be used in the
UUID. Section A.1 on page 586 and Section A.2.1 on page 588 define how to determine
these values. For the purposes of this algorithm, consider the timestamp to be a 60-bit
unsigned integer and the clock sequence to be a 14-bit unsigned integer. Sequentially
number the bits in a field, starting from 0 (zero) for the least significant bit.

2. Set the time_low field equal to the least significant 32-bits (bits numbered 0 to 31 inclusive)
of the time stamp in the same order of significance. If a DCE Security version UUID is
being created, then replace the time_low field with the local user security attribute as
defined by the DCE: Security Services specification.

3. Set the time_mid field equal to the bits numbered 32 to 47 inclusive of the time stamp in
the same order of significance.

4. Set the 12 least significant bits (bits numbered 0 to 11 inclusive) of the
time_hi_and_version field equal to the bits numbered 48 to 59 inclusive of the time stamp
in the same order of significance.

5. Set the 4 most significant bits (bits numbered 12 to 15 inclusive) of the
time_hi_and_version field to the 4-bit version number corresponding to the UUID version
being created, as shown in Table A-2 on page 586.

6. Set the clock_seq_low field to the 8 least significant bits (bits numbered 0 to 7 inclusive) of
the clock sequence in the same order of significance.

7. Set the 6 least significant bits (bits numbered 0 to 5 inclusive) of the
clock_seq_hi_and_reserved field to the 6 most significant bits (bits numbered 8 to 13
inclusive) of the clock sequence in the same order of significance.

Part 4 RPC Services and Protocols 589

Algorithms for Creating a UUID Universal Unique Identifier

8. Set the 2 most significant bits (bits numbered 6 and 7) of the clock_seq_hi_and_reserved
field as shown in Table A-4.

Bit 7 Bit 6
1 0

Table A-4 The 2 msb of clock_seq_hi_and_reserved

9. Set the node field to the 48-bit IEEE address in the same order of significance as the
address.

590 X/Open CAE Specification (1994)

Universal Unique Identifier String Representation of UUIDs

A.3 String Representation of UUIDs
For use in human readable text, a UUID string representation is specified as a sequence of fields,
some of which are separated by single dashes.

Each field is treated as an integer and has its value printed as a zero-filled hexadecimal digit
string with the most significant digit first. The hexadecimal values a to f inclusive are output as
lower case characters, and are case insensitive on input. The sequence is the same as the UUID
constructed type.

The formal definition of the UUID string representation is provided by the following extended
BNF:

UUID = <time_low> <hyphen> <time_mid> <hyphen>
<time_high_and_version> <hyphen>
<clock_seq_and_reserved>
<clock_seq_low> <hyphen> <node>

time_low = <hexOctet> <hexOctet> <hexOctet> <hexOctet>
time_mid = <hexOctet> <hexOctet>
time_high_and_version = <hexOctet> <hexOctet>
clock_seq_and_reserved = <hexOctet>
clock_seq_low = <hexOctet>
node = <hexOctet><hexOctet><hexOctet>

<hexOctet><hexOctet><hexOctet>
hexOctet = <hexDigit> <hexDigit>
hexDigit = <digit> | <a> | | <c> | <d> | <e> | <f>
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"
hyphen = "-"
a = "a" | "A"
b = "b" | "B"
c = "c" | "C"
d = "d" | "D"
e = "e" | "E"
f = "f" | "F"

The following is an example of the string representation of a UUID:

2fac1234-31f8-11b4-a222-08002b34c003

Part 4 RPC Services and Protocols 591

Comparing UUIDs Universal Unique Identifier

A.4 Comparing UUIDs
Table A-5 lists the UUID fields in order of significance, from most significant to least significant,
for purposes of UUID comparison. The table also shows the data types applicable to the fields.

Field Type
time_low Unsigned 32-bit integer
time_mid Unsigned 16-bit integer
time_hi_and_version Unsigned 16-bit integer
clock_seq_hi_and_reserved Unsigned 8-bit integer
clock_seq_low Unsigned 8-bit integer
node Unsigned 48-bit integer

Table A-5 Field Order and Type

Consider each field to be an unsigned integer as shown in Table A-5. To compare a pair of
UUIDs, arithmetically compare the corresponding fields from each UUID in order of significance
and according to their data type. Two UUIDs are equal if and only if all the corresponding fields
are equal. The first of two UUIDs follows the second if the most significant field in which the
UUIDs differ is greater for the first UUID. The first of a pair of UUIDs precedes the second if the
most significant field in which the UUIDs differ is greater for the second UUID.

592 X/Open CAE Specification (1994)

Appendix B

Protocol Sequence Strings

This appendix lists valid RPC protocol sequence strings. These can be used with routines that
take a protocol sequence string argument (type unsigned_char_t*). They can also be used to
construct the rpc-protocol-sequence portion of a string binding. (See Section 3.1 on page 49 for
more information on protocol sequence strings and string bindings.)

Table B-1 shows the valid RPC protocol sequence strings.

String Description
"ncacn_ip_tcp" CO over Internet Protocol: Transmission Control Protocol (TCP/IP)
"ncacn_dnet_nsp" CO over DECnet: Network Services Protocol (DECnet Phase IV)
"ncacn_osi_dna" CO over Open Systems Interconnection (DECnet Phase V)
"ip"
"ncadg_ip_udp"

CL over Internet Protocol: User Datagram Protocol (UDP/IP)

"dds"
"ncadg_dds"

CL over Domain Datagram Service

Table B-1 RPC Protocol Sequence Strings

To ensure interoperation, applications should use only these strings. Not all implementations
support all the protocol sequences listed. Applications can use a particular protocol sequence
only if the implementation supports that sequence.

Section 3.1 on page 49 shows how to construct the network address and endpoint portions of a
string binding for the TCP/IP and UDP/IP protocols. Contact OSF for information on
constructing string bindings for the other protocol sequences or to obtain protocol string
assignments. To avoid conflicts or multiple strings for a protocol sequence, all protocol sequence
strings must be registered with OSF.

Part 4 RPC Services and Protocols 593

Protocol Sequence Strings

594 X/Open CAE Specification (1994)

Appendix C

Name Syntax Constants

Table C-1 lists defined constant values that specify name syntax. These can be used with RPC
routines that take a name_syntax argument.

Constant Value Description
rpc_c_ns_syntax_default 0 Default syntax
rpc_c_ns_syntax_dce 3 OSF DCE name syntax

Table C-1 RPC Name Syntax Defined Constants

When the RPC_DEFAULT_ENTRY_SYNTAX environment variable is defined, its value
determines the default syntax. When it is not defined, the RPC run-time system uses the
rpc_c_ns_syntax_dce name syntax as the default. The syntaxes that correspond to these values
will be specified in the DCE: Directory Services specification.

Part 4 RPC Services and Protocols 595

Name Syntax Constants

596 X/Open CAE Specification (1994)

Appendix D

Authentication, Authorisation and Protection-level
Arguments

This appendix lists possible values for several arguments used by authentication-related RPC
routines. The RPC API authentication-related routines are designed to be authentication and
authorisation service-independent, but the values taken by some arguments to these routines are
necessarily service-specific. The ISO C standard currently specifies some authentication and
authorisation services, but implementations may use others, and the ISO C standard may in the
future specify others. This appendix specifies argument values that are applicable to the services
currently specified in the ISO C standard. The use of these values assures portability of
applications to implementations that used the ISO C standard specified services.

D.1 The authn_svc Argument
The authn_svc argument is used to specify an authentication service. The following list gives the
possible values for currently specified authentication services.

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_default
DCE default authentication service (should equal one of the other defined values).

D.2 The authz_svc Argument
The authz_svc argument is used to specify an authorisation service. The following list gives the
possible values for currently specified authorisation services:

rpc_c_authz_none
The server performs no authorisation. This is valid only if the authn_svc argument is
rpc_c_authn_none.

rpc_c_authz_name
The server performs authorisation based on the client principal name.

rpc_c_authz_dce
The server performs authorisation using the client’s DCE Privilege Attribute Certificate
(PAC), which is sent to the server with each remote procedure call made with a given
binding. Typically, access is checked against DCE Access Control Lists (ACLs).

Part 4 RPC Services and Protocols 597

The protect_level Argument Authentication, Authorisation and Protection-level Arguments

D.3 The protect_level Argument
The protect_level argument is used to specify which level of protection to apply to authenticated
RPC communications. The following list gives possible values for this argument:

rpc_c_protect_level_default
Use the default protection level for the specified authentication service.

rpc_c_protect_level_none
Perform no protection.

rpc_c_protect_level_connect
The client and server identities are exchanged and cryptographically verified. Strong mutual
authentication is achieved on the connection and is protected against replays. There are no
protection services per PDU.

rpc_c_protect_level_call
This level offers the rpc_c_protect_level_connect services, plus integrity protection on the
first fragment of each call only. This level is currently not supported by the protocol. Any
request for this level will be automatically upgraded to rpc_c_protect_level_pkt.

rpc_c_protect_level_pkt
This level offers the rpc_c_protect_level_connect services, plus detection of misordering or
replay of PDUs. There is no protection against PDU modification.

rpc_c_protect_level_pkt_integrity
This level offers the rpc_c_protect_level_pkt services, plus detection of PDU modification.

rpc_c_protect_level_pkt_privacy
This level offers the rpc_c_protect_level_pkt_integrity services, plus privacy of stub call
arguments. Run-time and lower-layer headers are not protected by these services.

The protection-level values are listed in canonical order from the lowest to highest level of
protection. However, except for the first two levels, the actual definition of each level depends
on the underlying protocol, and not all levels may be provided by all protocols.

When an application calls the rpc_set_auth_info routine with a protection level that is not
supported, the RPC run-time system attempts to upgrade the request to the next highest
supported level.

598 X/Open CAE Specification (1994)

Authentication, Authorisation and Protection-level Arguments The privs Argument

D.4 The privs Argument
The privs argument returns a handle to the authorisation or privilege information for a client
binding handle. An application must cast this value to an appropriate type for the authorisation
service in use. Table D-1 shows the appropriate casts for supported authorisation services:

For authz_svc value: privs contains this data: Use this cast:
rpc_authz_none A NULL value. None
rpc_authz_name The calling client’s principal name. (unsigned_char_t *)
rpc_authz_dce The calling client’s privilege attribute certificate. (sec_id_pac_t *)

Table D-1 Casts for Authorisation Information

D.5 The server_princ_name Argument
The server_princ_name argument specifies a server principal name. The syntax of this name
depends on the authentication service in use. This syntax will be specified in the DCE: Security
Services specification.

D.6 The auth_identity Argument
The auth_identity argument specifies an application’s authentication and authorisation
credentials.

When using the rpc_c_authn_dce_secret authentication service and any authorisation service,
this value must be a sec_login_handle_t.

D.7 Key Functions
When a server application calls rpc_server_register_auth_info () to register authentication
information with the RPC run-time system, it specifies an authentication service, using the
authn_svc argument. It may also specify a server-provided key acquisition function, using the
get_key_fn argument. To specify the default key acquisition function for the authentication
service specified by authn_svc, the application supplies NULL for the get_key_fn argument. The
application may also supply an argument to be passed to the key acquisition function, using the
arg argument.

The values of these arguments determine how the RPC run-time system behaves when it needs
to acquire a key for authenticated RPC. Table D-2 on page 600 shows the RPC run-time system
behaviour for the supported authentication services.

Part 4 RPC Services and Protocols 599

Key Functions Authentication, Authorisation and Protection-level Arguments

authn_svc get_key_fn arg Run-time Behaviour
Uses the default method of
encryption key acquisition.

rpc_c_authn_default Ignored NULL

Uses the default method of
encryption key acquisition. The
specified argument is passed to the
default acquisition function.

rpc_c_authn_default Ignored non-NULL

Authentication is not performed.rpc_c_authn_none Ignored ignored

Uses the default method of
encryption key acquisition.

rpc_c_authn_dce_secret NULL NULL

Uses the default method of
encryption key acquisition. The
specified argument is passed to the
default acquisition function.

rpc_c_authn_dce_secret NULL non-NULL

Uses the specified encryption key
acquisition routine to obtain keys.

rpc_c_authn_dce_secret non-NULL NULL

Uses the specified encryption key
acquisition routine to obtain keys.
The specified argument is passed to
the acquisition function.

rpc_c_authn_dce_secret non-NULL non-NULL

Table D-2 RPC Key Acquisition for Authentication Services

600 X/Open CAE Specification (1994)

Appendix E

Reject Status Codes and Parameters

This appendix lists reject status codes for RPC PDUs and the error statuses that may returned by
a client stub to an application in comm_status and fault_status parameters.

E.1 Reject Status Codes
Both reject and connection-oriented fault PDUs contain a 32-bit field that indicates a server’s
reason for rejecting an RPC call request. This field is encoded as the body data of the reject PDU
and as the status field of the connection-oriented fault PDU header. Table E-1 lists the possible
values of this field in hexadecimal notation:

Name Value Protocol Meaning
The server does not support the RPC protocol
version specified in the request PDU.

nca_rpc_version_mismatch 1c000008 CO/CL

The request is being rejected for unspecified
reasons.

nca_unspec_reject 1c000009 CO,CL

The server has no state corresponding to the
activity identifier in the message.

nca_s_bad_actid 1c00000A CL

The Conversation Manager callback failed.nca_who_are_you_failed 1c00000b CL

The server manager routine has not been entered
and executed.

nca_manager_not_entered 1c00000c CO,CL

The operation number passed in the request PDU
is greater than or equal to the number of
operations in the interface.

nca_op_rng_error 1c010002 CO,CL

The server does not export the requested
interface.

nca_unk_if 1c010003 CO,CL

The server boot time passed in the request PDU
does not match the actual server boot time.

nca_wrong_boot_time 1c010006 CL

A restarted server called back a client.nca_s_you_crashed 1c010009 CL

The RPC client or server protocol has been
violated.

nca_proto_error 1c01000b CO/CL

The output parameters of the operation exceed
their declared maximum size.

nca_out_args_too_big 1c010013 CO,CL

The server is too busy to handle the call.nca_server_too_busy 1c010014 CO,CL

The server does not implement the requested
operation for the type of the requested object.

nca_unsupported_type 1c010017 CO,CL

Invalid presentation context ID.nca_invalid_pres_context_id 1c00001c CO

The server did not support the requested
authentication level.

nca_unsupported_authn_level 1c00001d CO,CL

nca_invalid_checksum 1c00001f CO,CL Invalid checksum.
nca_invalid_crc 1c000020 CO,CL Invalid CRC.

Table E-1 Reject Status Codes

Part 4 RPC Services and Protocols 601

Reject Status Codes Reject Status Codes and Parameters

Note: A set of fault status values is also encoded in both connectionless and connection-
oriented fault PDU body data. This data is not used by the RPC protocols themselves
and is not listed in Table E-1 on page 601. These fault values and the corresponding
application level fault_status values are given in Table E-3 on page 604.

602 X/Open CAE Specification (1994)

Reject Status Codes and Parameters Possible Failures

E.2 Possible Failures

E.2.1 comm_status Parameter

The following failures normally indicate a communication failure. Such failures do not
necessarily indicate a problem in the RPC or application code. All of the failures listed in Table
E-2 are returned in a comm_status parameter or function result when that mechanism is enabled
via the ACS. Portable applications should enable this mechanism as described in Section 4.3.9 on
page 266.

Name Value
rpc_s_access_control_info_inv 16C9A04A
rpc_s_cancel_timeout 16C9A030
rpc_s_comm_failure 16C9A016
rpc_s_connect_closed_by_rem 16C9A04C
rpc_s_connect_no_resources 16C9A044
rpc_s_connect_rejected 16C9A042
rpc_s_connect_timed_out 16C9A041
rpc_s_connection_closed 16C9A036
rpc_s_host_unreachable 16C9A049
rpc_s_fault_remote_comm_failure 16C9A085
rpc_s_loc_connect_aborted 16C9A04B
rpc_s_network_unreachable 16C9A043
rpc_s_no_memory 16C9A012
rpc_s_no_more_bindings 16C9A0B5
rpc_s_no_ns_permission 16C9A0A8
rpc_s_no_rem_endpoint 16C9A047
rpc_s_op_rng_error 16C9A001
rpc_s_rem_host_crashed 16C9A04D
rpc_s_rem_host_down 16C9A048
rpc_s_rem_network_shutdown 16C9A045
rpc_s_too_many_rem_connects 16C9A046
rpc_s_unknown_if 16C9A02C
rpc_s_unsupported_type 16C9A02D
rpc_s_wrong_boot_time 16C9A006

Table E-2 Failures Returned in a comm_status Parameter

E.2.2 fault_status Parameter

The following failures normally indicate a failure of the remote application code. All of the
failures listed in Table E-3 on page 604 are returned in a fault_status parameter or function result
when that mechanism is enabled via the ACS. Portable applications should enable this
mechanism, as described in Section 4.3.9 on page 266.

The four columns represent the fault status name, the hexadecimal value of the fault status, the
fault PDU name that is associated with this fault, and the hexadecimal value encoded by the
fault PDU.

Part 4 RPC Services and Protocols 603

Possible Failures Reject Status Codes and Parameters

Fault Status Status Value PDU Fault PDU Fault Value
rpc_s_call_cancelled 16C9A031 nca_s_fault_cancel 1C00000D
rpc_s_fault_addr_error 16C9A074 nca_s_fault_addr_error 1C000002
rpc_s_fault_context_mismatch 16C9A075 nca_s_fault_context_mismatch 1C00001A
rpc_s_fault_fp_div_by_zero 16C9A076 nca_s_fault_fp_div_zero 1C000003
rpc_s_fault_fp_error 16C9A077 nca_s_fault_fp_error 1C00000F
rpc_s_fault_fp_overflow 16C9A078 nca_s_fault_fp_overflow 1C000005
rpc_s_fault_fp_underflow 16C9A079 nca_s_fault_fp_underflow 1C000004
rpc_s_fault_ill_inst 16C9A07A nca_s_fault_ill_inst 1C00000E
rpc_s_fault_int_div_by_zero 16C9A07B nca_s_fault_int_div_by_zero 1C000001
rpc_s_fault_int_overflow 16C9A07C nca_s_fault_int_overflow 1C000010
rpc_s_fault_invalid_bound 16C9A07D nca_s_fault_invalid_bound 1C000007
rpc_s_fault_invalid_tag 16C9A07E nca_s_fault_invalid_tag 1C000006
rpc_s_fault_pipe_closed 16C9A07F nca_s_fault_pipe_closed 1C000015
rpc_s_fault_pipe_comm_error 16C9A080 nca_s_fault_pipe_comm_error 1C000018
rpc_s_fault_pipe_discipline 16C9A081 nca_s_fault_pipe_discipline 1C000017
rpc_s_fault_pipe_empty 16C9A082 nca_s_fault_pipe_empty 1C000014
rpc_s_fault_pipe_memory 16C9A083 nca_s_fault_pipe_memory 1C000019
rpc_s_fault_pipe_order 16C9A084 nca_s_fault_pipe_order 1C000016
rpc_s_fault_remote_no_memory 16C9A086 nca_s_fault_remote_no_memory 1C00001B
rpc_s_fault_unspec 16C9A087

Table E-3 Failures Returned in a fault_status Parameter

604 X/Open CAE Specification (1994)

Appendix F

IDL to C-language Mappings

This appendix specifies the bindings of IDL data types to NDR data types and to a set of C-
language defined data types. It also specifies the mapping of IDL syntax to the C-language
syntax of generated stubs.

F.1 Data Type Bindings
The the data type mappings are specified in Table F-1 on page 607. For definitions of the NDR
data types, refer to Chapter 14. Stubs use the C defined data types; to ensure portability,
applications should use them as well. The C types shown in the last column of the table are
recommended definitions for the C defined types for 32-bit machines.

Part 4 RPC Services and Protocols 605

Data Type Bindings IDL to C-language Mappings

IDL Type NDR Type Defined C Type C Type
boolean boolean idl_boolean unsigned char
char character idl_char unsigned char
byte uninterpreted octet idl_byte unsigned char
small small idl_small_int char
short short idl_short_int short int
long long idl_long_int long int

16- or 32- Bit Machines:
Big Endian:
struct {

long high;
unsigned long low;

}
Little Endian:
struct {

unsigned long low;
long high;

}
64-Bit Machines:
long

hyper hyper idl_hyper_int

unsigned small unsigned small idl_usmall_int unsigned char
unsigned short unsigned short idl_ushort_int unsigned short int
unsigned long unsigned long idl_ulong_int unsigned long int

16 or 32-Bit Machines:
Big Endian:
struct {

unsigned long high;
unsigned long low;

}
Little Endian:
struct {

unsigned long low;
unsigned long high;

}
64-Bit Machines:
unsigned long

unsigned hyper unsigned hyper idl_uhyper_int

float float idl_float float
double double idl_double double
handle_t not transmitted handle_t void *
error_status_t unsigned long idl_ulong_int unsigned long int
ISO_LATIN_1 uninterpreted octet ISO_LATIN_1 byte

struct{
byte row;
byte column;

}

ISO_MULTI_LINGUAL (Note 1.) ISO_MULTI_LINGUAL

struct{
byte group;
byte plane;
byte row;
byte column;

}

ISO_UCS (Note 1.) ISO_UCS

Table F-1 IDL/NDR/C Type Mappings

606 X/Open CAE Specification (1994)

IDL to C-language Mappings Data Type Bindings

1. The ISO_MULTILINGUAL and ISO_UCS types are structures and are NDR encoded as
constructed types.

The recommended values for the Boolean constants are specified in Table F-2.

Constant Value
TRUE 1
FALSE 0

Table F-2 Recommended Boolean Constant Values

Part 4 RPC Services and Protocols 607

Syntax Mappings IDL to C-language Mappings

F.2 Syntax Mappings
Unless specified otherwise, the code generated for the C language is syntactically identical to the
IDL declarations. The following are the mappings from IDL to the C language for which the
syntax is not identical to IDL. These mappings use the conventions, notation and productions
defined in Chapter 4.

• The interface header is not mapped to any C-language construct that is visible to users of
RPC. (See Chapter 2 for a discussion of interface handles.)

• The import declaration causes definitions to be imported from other IDL source files. The
import declaration itself has no associated C-language mapping.

• All attributes (for example, <type_attribute>, <union_type_switch_attr>,
<union_instance_switch_attr>, <usage_attribute>, <xmit_type>,
<field_attribute>, <ptr_attr>, <operation_attribute>,
<param_attribute>) and their associated [] (brackets), and punctuation are not mapped
to the C language.

• The IDL constant declaration:

const <const_type_spec> <Identifier> = <const_exp>

maps to the C language as:

#define <Identifier> (<const_exp>L)

• The IDL non-encapsulated union declaration

union [<tag>] { <union_case_label_n_e> <union_arm>
[<union_case_label_n_e> <union_arm>] ...
[default : <union_arm>]

}

maps to the C language as:

union [<tag>] { <union_arm> [<union_arm>]... }

If an IDL <union_arm> is empty (that is, an instance resolves to only a ; (semicolon)), then
no C mapping is generated for that arm.

• The IDL encapsulated union declaration:

union [<tag>] switch (<switch_type_spec> <Identifier>) [<union_name>]
{ <union_case_label> [<union_case_label>] ... <union_arm>

[<union_case_label> [<union_case_label>] ... <union_arm>] ...
}

maps to the C language as:

struct [<tag>]
{

<switch_type_spec> <Identifier> ;
union { <union_arm> [<union_arm>]... } <union_name> ;

}

If an IDL <union_arm> is empty (that is, an instance resolves to only a ; (semicolon)), then
no C mapping is generated for that arm. If <union_name> is not present in the IDL
declaration, then the union is assigned the name tagged_union.

608 X/Open CAE Specification (1994)

IDL to C-language Mappings Syntax Mappings

• The IDL pipe declaration:

pipe <type_spec> <pipe_declarators>

maps to the C language as:

typedef
struct <pipe_declarators> {

void (*pull) (
char *state,
<type_spec> *buf,
idl_ulong_int esize,
idl_ulong_int *ecount

);
void (*push) (

char *state,
<type_spec> *buf,
idl_ulong_int *ecount

);
void (*alloc) (

char *state,
idl_ulong_int bsize,
<type_spec> **buf,
idl_ulong_int *bcount

);
char *state;

} <pipe_declarators> ;

• The IDL array declarations in which all bounds of all dimensions evaluate to constants:

<Identifier> <[> <const_bounds> <]> [<[> <const_bounds> <]>] ...
<const_bounds> ::= <const_exp> | <lower> .. <upper>
<lower> ::= <Integer_literal> | <Identifier>
<upper> ::= <Integer_literal> | <Identifier>

map to the C language as:

<Identifier> <[> <size> <]> [<[> <size> <]>] ...

where <size> is the value obtained by evaluating either <const_exp> or the expression
(<upper>−<lower>+1).

• IDL-conformant array declarations in which the size of the first dimension is determined at
run time:

<Identifier> <[> [<star_bounds>] <]> [<[> <const_bounds> <]>] ...
<star_bounds> ::= * | <lower> .. *
<const_bounds> ::= <const_exp> | <lower> .. <upper>
<lower> ::= <Integer_literal> | <Identifier>
<upper> ::= <Integer_literal> | <Identifier>

when used in type definitions map to the C language as:

<Identifier> <[> 1 <]> [<[> <size> <]>] ...

and when used in parameter declarations map to the C language as:

<Identifier> <[> <]> [<[> <size> <]>] ...

where <size> is value obtained by evaluating either <const_exp> or the expression
(<upper>−<lower>+1).

• The manager EPV data type for an interface is determined by the interface definition
specified in IDL. The relevant fields of an interface definition:

Part 4 RPC Services and Protocols 609

Syntax Mappings IDL to C-language Mappings

<[> uuid (<interface-uuid>),
version (<major-version>.<minor-version>)

<]>
interface <if-name>

{
<type-decls>
<type-1> <op1> (<params-1>);

[<type-2> <op2> (<params-2>);] ...
}

are mapped to the C-language structure:

typedef
structure <if-name> v<major-version> <minor-varsion> epv t {

<type-1> (* <op1>) (<params-1>);
[<type-2> (* <op2>) (<params-2>);] ...

}
<if-name> v<major-version> <minor-version> epv t

where the IDL to C-language mappings have also been applied to the <type-1>, ...,
and <params-1>, ..., declarations.

Mappings to languages other than C will be specified by the X/Open DCE as they become
standardised.

610 X/Open CAE Specification (1994)

Appendix G

Portable Character Set

The portable character set specifies a set of characters that conforming implementations must
support. Implementation must be able to encode these characters with the IDL char data type,
but this document does not specify local encodings.

NDR supports two encodings of characters from the portable character set: ASCII and EBCDIC.

Table G-1 on page 612 specifies the NDR encodings in hexadecimal notation.

Note: This table presents only the default conversions. Due to the existence of multiple local
variants of EBCDIC, a system manager may provide ASCII/EBCDIC translation tables
other than the default.

Characters outside of the Portable Character Set (PCS) are also converted. Special
attention should be given to characters outside the PCS because different semantics
may be used by applications in different systems. For example, a linefeed character on
an EBCDIC system may have different semantics from the linefeed character on an
ASCII system since some applications on an ASCII system may take the linefeed
character to mean a combination of linefeed and carriage return.

Part 4 RPC Services and Protocols 611

Portable Character Set

Char. ASCII EBCDIC Char. ASCII EBCDIC Char. ASCII EBCDIC
(SP) 20 40 @ 40 7c ‘ 60 79_

21 4f A 41 c1 a 61

" 22 7f B 42 c2 b 62 82

23 7b C 43 c3 c 63 83

$ 24 5b D 44 c4 d 64 84

% 25 6c E 45 c5 e 65 85

& 26 50 F 46 c6 f 66 86

’ 27 7d G 47 c7 g 67 87

(28 4d H 48 c8 h 68 88

) 29 5d I 49 c9 i 69 89

* 2a 5c J 4a d1 j 6a 91

+ 2b 4e K 4b d2 k 6b 92

, 2c 6b L 4c d3 l 6c 93

- 2d 60 M 4d d4 m 6d 94

. 2e 4b N 4e d5 n 6e 95

/ 2f 61 O 4f d6 o 6f 96

0 30 f0 P 50 d7 p 70 97

1 31 f1 Q 51 d8 q 71 98

2 32 f2 R 52 d9 r 72 99

3 33 f3 S 53 e2 s 73 a2

4 34 f4 T 54 e3 t 74 a3

5 35 f5 U 55 e4 u 75 a4

6 36 f6 V 56 e5 v 76 a5

7 37 f7 W 57 e6 w 77 a6

8 38 f8 X 58 e7 x 78 a7

9 39 f9 Y 59 e8 y 79 a8

: 3a 7a Z 5a e9 z 7a a9

; 3b 5e [5b 4a { 7b c0

< 3c 4c \ 5c e0 | 7c bb

= 3d 7e] 5d 5a } 7d d0

> 3e 6e ˆ 5e 5f ˜ 7e a1

? 3f 6f _ 5f 6d

Table G-1 Portable Character Set NDR Encodings

612 X/Open CAE Specification (1994)

Appendix H

Endpoint Mapper Well-known Ports

The well-known ports used by the endpoint mapper are assigned by the appropriate authority
for each protocol. Table H-1 lists the well-known ports currently assigned to the endpoint
mapper.

Protocol Port
DOD TCP 135
DOD UDP 135
DECnet Phase IV 69
DECnet Phase V 69
Domain DDS 12

Table H-1 Endpoint Mapper Well-known Ports

Part 4 RPC Services and Protocols 613

Endpoint Mapper Well-known Ports

614 X/Open CAE Specification (1994)

Appendix I

Protocol Identifiers

This appendix defines the protocol identifiers that are used in protocol towers. Three types of
protocol identifiers are supported:

• An octet string derived from OSI Object Identifiers (OIDs). The prefix of this protocol
identifier (first octet) has the value 0 (zero). The suffix consists of the OSI OID encoded in
ASN.1/BER. Companies can assign their own values by using their OIDs.

• An octet string derived from an interface UUID combined with a version number. This type
(UUID_type_identifier) can be used for dynamically generated protocol identifiers where
registration is not sufficient or desired. The encoding of this protocol identifier type is as
follows:

— Octet 0 contains the hexadecimal value 0d. This is a reserved protocol identifier prefix
that indicates that the protocol ID is UUID derived.

— Octets 1 to 16 inclusive contain the UUID, in little-endian format.

— Octets 17 to 18 inclusive contain the major version number, in little-endian format.

OSF maintains a registry of transfer syntax identifiers encoded by using
UUID_type_identifiers. Currently there is one registered value for NDR. Hexadecimal
values for the NDR syntax identifier fields are shown in Table I-1.

Prefix UUID Version Comments
Version 1.1 data
representation protocol.

0d 8a885d04-1ceb-11c9-9fe8-08002b104860 01

Table I-1 NDR Transfer Syntax Identifier

Note: Contact OSF to obtain a listing of registered transfer syntaxes, including optional
transfer syntaxes not specified by this document, or to register new transfer
syntaxes.

• Single octet identifiers that are registered by the Open Software Foundation for commonly
used protocols. Table I-2 on page 616 lists currently registered values.

Part 4 RPC Services and Protocols 615

Protocol Identifiers

Protocol ID for: Identifier Value Related Information Comments
OSI TP4 05 T-Selector
OSI CLNS 06 NSAP

port address is 16 bit
unsigned integer, big
endian order

DOD TCP 07 port

port address is 16 bit
unsigned integer, big
endian_order

DOD UDP 08 port

host address is 4 octets, big
endian order

DOD IP 09 host address

RPC connectionless
protocol

0a minor version major version 4

RPC connection-
oriented protocol

0b minor version major version 5

DNA Session Control 02 —
DNA Session Control V3 03 —
DNA NSP Transport 04 —
DNA Routing 06 —
Named Pipes 10 — Microsoft Named Pipes
NetBIOS 11 — Microsoft NetBIOS
NetBEUI 12 — Microsoft NetBEUI

Netware SPX transport-
layer protocol

Netware SPX 13 —

Netware IPX transport-
layer protocol

Netware IPX 14 —

Table I-2 Registered Single Octet Protocol Identifiers

Note: Contact OSF to register a protocol identifier or for the format and semantics of the
Related Information entries not given in the table.

616 X/Open CAE Specification (1994)

Appendix J

DCE CDS Attribute Names

Table J-1 lists attribute name mapping for OSI object identifiers for DCE CDS.

Attribute Name OSI Object Identifier
1.3.22.1.3.15 {iso(1) identified-org(3) osf(22) dce(1)
cds(3) CDS_Class(15)}

CDS_Class

1.3.22.1.3.16 {iso(1) identified-org(3) osf(22) dce(1)
cds(3) CDS_ClassVersion(16)}

CDS_ClassVersion

1.3.22.1.1.1 {iso(1) identified-org(3) osf(22) dce(1)
rpc(1) RPC_ClassVersion(1)}

RPC_ClassVersion

1.3.22.1.1.2 {iso(1) identified-org(3) osf(22) dce(1)
rpc(1) RPC_ObjectUUIDs(2)}

RPC_ObjectUUIDs

1.3.22.1.3.30 {iso(1) identified-org(3) osf(22) dce(1)
cds(3) CDS_Towers(16)}

CDS_Towers

1.3.22.1.1.3 {iso(1) identified-org(3) osf(22) dce(1)
rpc(1) RPC_Group(3)}

RPC_Group

1.3.22.1.1.4 {iso(1) identified-org(3) osf(22) dce(1)
rpc(1) RPC_Profile(4)}

RPC_Profile

Table J-1 DCE CDS Attribute Names

Part 4 RPC Services and Protocols 617

DCE CDS Attribute Names

618 X/Open CAE Specification (1994)

Appendix K

Architected and Default Values for Protocol Machines

Table K-1 identifies the recommended default time-out values referenced in the client and server
protocol machines. Implementations must provide for default settings of these timers.
Applications may overwrite these default values through appropriate API functions.

Reference Name Protocol Default Value Description
Wait before sending an ack PDU.TIMEOUT_ACK CL 1 second

Wait for a response to a broadcast
PDU.

TIMEOUT_BROADCAST CL 5 seconds

Wait for a response to a cancel
PDU.

TIMEOUT_CANCEL CL 1 second

Wait for a response to a cancel
PDU.

TIMEOUT_CANCEL CO Infinity

Wait for a fack PDU if the no_fack
flag was cleared.

TIMEOUT_FRAG CL 2 seconds

Time for keeping state information
about the client.

TIMEOUT_IDLE CL 300 seconds

Initial value for wait before retrying
association allocation.

TIMEOUT_MAX_ALLOC_WAIT CO 3 seconds

Wait for a response to a ping PDU.TIMEOUT_PING CL 2 seconds

Wait for acknowledgement from
client before retransmitting a
response.

TIMEOUT_RESEND CL 2 seconds

Wait before shutdown of idle
connections (only if resources are
scarce).

TIMEOUT_SERVER_DISCONNECT CO 10 seconds

Wait for a response to a request
PDU.

TIMEOUT_WAIT CL Infinity

Table K-1 Default Protocol Machine Values

Table K-2 defines the constant MustRecvFragSize.

Reference Name Protocol Value
MustRecvFragSize CO 1432
MustRecvFragSize CL 1464

Table K-2 Definition of MustRecvFragSize

Part 4 RPC Services and Protocols 619

Architected and Default Values for Protocol Machines

620 X/Open CAE Specification (1994)

Appendix L

Protocol Tower Encoding

This appendix details the encoding of RPC binding information as protocol towers.

Section 6.2.3.1 on page 307 describes an abstract model of RPC binding information referred to
as a protocol_tower_t data type.

Appendix N defines the actual (concrete) IDL representation of a protocol tower data type as
twr_t and twr_p_t data types as follows:

/*
* Protocol Tower. The network representation of network addressing
* information (e.g., RPC bindings).
*/

typedef struct {
unsigned32 tower_length;
[size_is(tower_length)]
byte tower_octet_string[];

} twr_t, *twr_p_t;

This appendix defines the rules for encoding an protocol_tower_t (abstract) into the
twr_t.tower_octet_string and twr_p_t->tower_octet_string fields (concrete). For historical
reasons, this cannot be done using the standard NDR encoding rules for marshalling and
unmarshalling. A special encoding is required.

Note that the twr_t and twr_p_t are mashalled as standard IDL data types, encoded in the
standard transfer syntax (for example, NDR). As far as IDL and NDR are concerned,
tower_octet_string is simply an opaque conformant byte array. This section only defines how to
construct this opaque open array of octets, which contains the actual protocol tower
information.

The tower_octet_string[] is a variable length array of octets that encodes a single, complete
protocol tower. It is encoded as follows:

• Addresses increase, reading from left to right.

• Each tower_octet_string begins with a 2-byte floor count, encoded little-endian, followed by
the tower floors as follows:

+-------------+---------+---------+---------+---------+---------+
| floor count | floor 1 | floor 2 | floor 3 | ... | floor n |
+-------------+---------+---------+---------+---------+---------+

The number of tower floors is specific to the particular protocol tower, also known as a
protseq.

• Each tower floor contains the following:

|<- tower floor left hand side ->|<- tower floor right hand side ->|
+------------+-----------------------+------------+----------------------+
| LHS byte | protocol identifier | RHS byte | related or address |
| count | data | count | data |
+------------+-----------------------+------------+----------------------+

The LHS (Left Hand Side) of the floor contains protocol identifier information. Protocol
identifier values and construction rules are defined in Appendix I.

The RHS (Right Hand Side) of the floor contains related or addressing information. The type
and encoding for the currently defined protocol identifiers are given in Appendix I.

Part 4 RPC Services and Protocols 621

Protocol Tower Encoding

The floor count, LHS byte count and RHS byte count are all 2-bytes, in little endian format.

L.1 Protocol Tower Contents
All towers contain the 3 floors shown in Table L-1.

Floor Content
1 RPC interface identifier
2 RPC Data representation identifier
3 RPC protocol identifier

Table L-1 Floors 1 to 3 Inclusive

The content of floors 4 and 5 are protseq-specific. Table L-2 shows the contents for the protocol
sequences ncacn_ip_tcp and ncadg_ip_udp.

Floor Content
4 Port address
5 Host address

Table L-2 Floors 4 and 5 for TCP/IP Protocols

Implementations may optionally support the protocol sequence ncacn_dnet_nsp. Table L-3
shows the tower contents for this protocol.

Floor Content
4 DECnet session control
5 Transport - Network Services Protocol (NSP)
6 DECnet routing - Network Service Access Point (NSAP)

Table L-3 Floors 4, 5 and 6 for DECnet Protocol

622 X/Open CAE Specification (1994)

Appendix M

The dce_error_inq_text Manual Page

The dce_error_inq_text() routine may be used by RPC applications to return message text
corresponding to a status value. Because this routine is not specifically RPC-related, it is
specified in this appendix rather than as part of Chapter 3.

Part 4 RPC Services and Protocols 623

dce_error_inq_text() The dce_error_inq_text Manual Page

NAME
dce_error_inq_text — returns the message text for a status code.

SYNOPSIS
#include <dce/rpc.h>
#include <dce/dce_error.h>

void dce_error_inq_text(
unsigned long status_to_convert,
unsigned char *error_text,
int *status);

ARGUMENTS

Input

status_to_convert Specifies the status code to convert to a text string.

Output

error_text Returns a character string message that corresponds to the
status_to_convert argument.

status Returns the status code from this operation. A value of 0 (zero) indicates
that the operation completed successfully. A value of −1 indicates that it
failed.

DESCRIPTION
The dce_error_inq_text() routine returns a NULL-terminated character string message for the
status code specified. The routine uses the value of the environment variable NLSPATH to
determine the location of the message catalogue from which character string messages are
drawn.

The application must provide memory for the returned message. The largest returned message
is dce_c_error_string_len characters long, including the terminating NULL character.

If the call fails, this routine returns a message as well as a failure code in the status argument.

RETURN VALUE
None.

624 X/Open CAE Specification (1994)

Appendix N

IDL Data Type Declarations

This appendix gives IDL type declarations for a variety of data types. Some of these declarations
are used only in Appendix O, Appendix P and Appendix Q. If used in an actual
implementation, the actual organisation and naming of the IDL import sources including these
declarations is implementation-dependent.

N.1 Basic Type Declarations
In this section, the interface attribute [pointer_default(ptr)] is assumed in effect, unless explicitly
overridden.

The following are declarations for integers of specific sizes:

typedef unsigned small unsigned8;
typedef unsigned short unsigned16;
typedef unsigned long unsigned32;

typedef small signed8;
typedef short signed16;
typedef long signed32;

The following is the declaration for boolean:

typedef unsigned32 boolean32; /* 32-bit wide boolean */

The following types are used for status return values:

typedef unsigned long error_status_t;
const long error_status_ok = 0;

The following types are used for UUIDs:

typedef struct {
unsigned32 time_low;
unsigned16 time_mid;
unsigned16 time_hi_and_version;
unsigned8 clock_seq_hi_and_reserved;
unsigned8 clock_seq_low;
byte node[6];

} uuid_t, *uuid_p_t;

The following is the declaration for protocol towers, the network representation of network
addressing information such as RPC bindings. The contents of the tower_octet_string encode
the abstract type protocol_tower_t, defined in Section 6.2.3.1 on page 307 via the encoding rules
defined in Appendix L, with the protocol_tower_t cast into a byte[] type.

typedef struct {
unsigned32 tower_length;
[size_is(tower_length)]
byte tower_octet_string[];

} twr_t, *twr_p_t;

Part 4 RPC Services and Protocols 625

Basic Type Declarations IDL Data Type Declarations

The following are NDR format flag type definitions and values:

const long ndr_c_int_big_endian = 0;
const long ndr_c_int_little_endian = 1;
const long ndr_c_float_ieee = 0;
const long ndr_c_float_vax = 1;
const long ndr_c_float_cray = 2;
const long ndr_c_float_ibm = 3;
const long ndr_c_char_ascii = 0;
const long ndr_c_char_ebcdic = 1;

typedef struct
{

unsigned8 int_rep;
unsigned8 char_rep;
unsigned8 float_rep;
byte reserved;

} ndr_format_t, *ndr_format_p_t;

The following is the network representation of an IDL context handle:

typedef struct ndr_context_handle
{

unsigned32 context_handle_attributes;
uuid_t context_handle_uuid;

} ndr_context_handle;

The following are international character types:

typedef byte ISO_LATIN_1;

typedef struct
{

byte row;
byte column;

} ISO_MULTI_LINGUAL;

typedef struct
{

byte group;
byte plane;
byte row;
byte column;

} ISO_UCS;

The following are authentication protocol IDs. These are architectural values that are carried in
RPC protocol messages.

const long dce_c_rpc_authn_protocol_none = 0;
const long dce_c_rpc_authn_protocol_krb5 = 1;
typedef unsigned8 dce_rpc_authn_protocol_id_t;

626 X/Open CAE Specification (1994)

IDL Data Type Declarations Status Codes

N.2 Status Codes
This section contains declarations for the status codes that may be sent in connectionless reject
and connectionless and connection-oriented fault PDUs. The X/Open DCE specifies the values
of these codes; the names are a notational convenience and are not part of the specification.

A distinction can be drawn between protocol-level errors, which are associated with the RPC
request/response protocols proper, and application-level errors, which are defined by IDL and
the presentation protocol in use (for example, NDR). Errors such as ‘‘unknown interface’’ are in
the former category; errors such as ‘‘divide-by-zero’’ are in the latter category.

Protocol-level errors are interpreted by the RPC protocols. They are sent by a server in the body
of a connectionless reject PDU or in the status field of the header of a connection-oriented fault
PDU.

Application-level errors are understood by stubs, which map these errors to the appropriate
application status return values. In both protocols, application-level errors are indicated in the
bodies of fault PDUs. The contents of these bodies are untouched by the RPC protocol proper
and are simply conveyed from server to client application. In the names below, the application
errors are by convention named nca_s_fault_* to distinguish them.

The following status codes are defined:

/* unable to get response from server: */
const long nca_s_comm_failure = 0x1C010001;
/* bad operation number in call: */
const long nca_s_op_rng_error = 0x1C010002;
/* unknown interface: */
const long nca_s_unk_if = 0x1C010003;
/* client passed server wrong server boot time: */
const long nca_s_wrong_boot_time = 0x1C010006;
/* a restarted server called back a client: */
const long nca_s_you_crashed = 0x1C010009;
/* someone messed up the protocol: */
const long nca_s_proto_error = 0x1C01000B;
/* output args too big: */
const long nca_s_out_args_too_big = 0x1C010013;
/* server is too busy to handle call: */
const long nca_s_server_too_busy = 0x1C010014;
/* string argument longer than declared max len: */
const long nca_s_fault_string_too_long = 0x1C010015;
/* no implementation of generic operation for object: */
const long nca_s_unsupported_type = 0x1C010017;

const long nca_s_fault_int_div_by_zero = 0x1C000001;
const long nca_s_fault_addr_error = 0x1C000002;
const long nca_s_fault_fp_div_zero = 0x1C000003;
const long nca_s_fault_fp_underflow = 0x1C000004;
const long nca_s_fault_fp_overflow = 0x1C000005;
const long nca_s_fault_invalid_tag = 0x1C000006;
const long nca_s_fault_invalid_bound = 0x1C000007;
const long nca_s_rpc_version_mismatch = 0x1C000008;
/* call rejected, but no more detail: */
const long nca_s_unspec_reject = 0x1C000009;
const long nca_s_bad_actid = 0x1C00000A;
const long nca_s_who_are_you_failed = 0x1C00000B;
const long nca_s_manager_not_entered = 0x1C00000C;
const long nca_s_fault_cancel = 0x1C00000D;
const long nca_s_fault_ill_inst = 0x1C00000E;

Part 4 RPC Services and Protocols 627

Status Codes IDL Data Type Declarations

const long nca_s_fault_fp_error = 0x1C00000F;
const long nca_s_fault_int_overflow = 0x1C000010;
/* unused: 0x1C000011; */
const long nca_s_fault_unspec = 0x1C000012;
const long nca_s_fault_remote_comm_failure = 0x1C000013;
const long nca_s_fault_pipe_empty = 0x1C000014;
const long nca_s_fault_pipe_closed = 0x1C000015;
const long nca_s_fault_pipe_order = 0x1C000016;
const long nca_s_fault_pipe_discipline = 0x1C000017;
const long nca_s_fault_pipe_comm_error = 0x1C000018;
const long nca_s_fault_pipe_memory = 0x1C000019;
const long nca_s_fault_context_mismatch = 0x1C00001A;
const long nca_s_fault_remote_no_memory = 0x1C00001B;
const long nca_s_invalid_pres_context_id = 0x1C00001C;
const long nca_s_unsupported_authn_level = 0x1C00001D;
const long nca_s_invalid_checksum = 0x1C00001F;
const long nca_s_invalid_crc = 0x1C000020;

628 X/Open CAE Specification (1994)

IDL Data Type Declarations RPC-specific Data Types

N.3 RPC-specific Data Types
This section contains some RPC-specific data types declarations.

In this section, the interface attribute [pointer_default(ref)] is assumed in effect, unless explicitly
overridden.

The following is a declaration of the interface identifier structure, consisting of uuid and major
and minor version fields:

typedef struct {
uuid_t uuid;
unsigned16 vers_major;
unsigned16 vers_minor;

} rpc_if_id_t;
typedef [ptr] rpc_if_id_t *rpc_if_id_p_t;

The following is a declaration of a vector of interface identifiers:

typedef struct {
unsigned32 count;
[size_is(count)]
rpc_if_id_p_t if_id[*];

} rpc_if_id_vector_t;
typedef [ptr] rpc_if_id_vector_t *rpc_if_id_vector_p_t;

The following are declarations of version options (choices for matching on version numbers):

const long rpc_c_vers_all = 1;
const long rpc_c_vers_compatible = 2;
const long rpc_c_vers_exact = 3;
const long rpc_c_vers_major_only = 4;
const long rpc_c_vers_upto = 5;

The following are declarations of constants for accessing values in statistics vector:

const long rpc_c_stats_calls_in = 0;
const long rpc_c_stats_calls_out = 1;
const long rpc_c_stats_pkts_in = 2;
const long rpc_c_stats_pkts_out = 3;
const long rpc_c_stats_array_max_size = 4;

The following is a declaration of a statistics vector returned by management inquiry:

typedef struct {
unsigned32 count;
unsigned32 stats[1]; /* length_is (count) */

} rpc_stats_vector_t, *rpc_stats_vector_p_t;

The following are declarations of constants for the endpoint service.

const long rpc_c_ep_all_elts = 0;
const long rpc_c_ep_match_by_if = 1;
const long rpc_c_ep_match_by_obj = 2;
const long rpc_c_ep_match_by_both = 3;

Part 4 RPC Services and Protocols 629

IDL Data Type Declarations

630 X/Open CAE Specification (1994)

Appendix O

Endpoint Mapper Interface Definition

This appendix gives the IDL specification of the RPC interface to the endpoint mapper service. It
makes use of declarations given in Appendix N.

Following are brief descriptions of the operations:

ept_insert() Add the specified entries to an endpoint map.

ept_delete Delete the specified entries from an endpoint map.

ept_lookup () Lookup entries in an endpoint map.

ept_map() Apply some algorithm (using the fields in the map_tower) to an
endpoint map to produce a list of protocol towers.

ept_lookup_handle_free () Free an ept_lookup or ept_map context_handle.

ept_inq_object() Inquire Endpoint Map’s object id.

ept_mgmt_delete() Delete matching entries from an endpoint map. All entries that
match the tower’s interface uuid, version, and network address
are deleted. If an object uuid is specified, the entries that are
deleted must also match the object uuid.

The endpoint mapper listens on a well-known endpoint for each supported protocol. Registered
endpoints are listed in Appendix H. An implementation may specify supported endpoints by
adding the appropriate endpoint attribute specification to the following declaration.

[uuid(e1af8308-5d1f-11c9-91a4-08002b14a0fa), version(3.0),
pointer_default(ptr)]

interface ept
{

const long ept_max_annotation_size = 64;

typedef struct
{

uuid_t object;
twr_p_t tower;

[string] char annotation[ept_max_annotation_size];
} ept_entry_t, *ept_entry_p_t;

typedef [context_handle] void *ept_lookup_handle_t;

/*
* E P T _ I N S E R T
*/

void ept_insert(
[in] handle_t h,
[in] unsigned32 num_ents,
[in, size_is(num_ents)]

ept_entry_t entries[],
[in] boolean32 replace,
[out] error_status_t *status

);

Part 4 RPC Services and Protocols 631

Endpoint Mapper Interface Definition

/*
* E P T _ D E L E T E
*/

void ept_delete(
[in] handle_t h,
[in] unsigned32 num_ents,
[in, size_is(num_ents)]

ept_entry_t entries[],
[out] error_status_t *status

);

/*
* E P T _ L O O K U P
*/

[idempotent]
void ept_lookup(

[in] handle_t h,
[in] unsigned32 inquiry_type,
[in] uuid_p_t object,
[in] rpc_if_id_p_t interface_id,
[in] unsigned32 vers_option,
[in, out] ept_lookup_handle_t *entry_handle,
[in] unsigned32 max_ents,
[out] unsigned32 *num_ents,
[out, length_is(*num_ents), size_is(max_ents)]

ept_entry_t entries[],
[out] error_status_t *status

);

/*
* E P T _ M A P
*/

[idempotent]
void ept_map(

[in] handle_t h,
[in] uuid_p_t object,
[in] twr_p_t map_tower,
[in, out] ept_lookup_handle_t *entry_handle,
[in] unsigned32 max_towers,
[out] unsigned32 *num_towers,
[out, length_is(*num_towers), size_is(max_towers)]

twr_p_t towers[],
[out] error_status_t *status

);

/*
* E P T _ L O O K U P _ H A N D L E _ F R E E
*/

void ept_lookup_handle_free(
[in] handle_t h,
[in, out] ept_lookup_handle_t *entry_handle,
[out] error_status_t *status

);

/*

632 X/Open CAE Specification (1994)

Endpoint Mapper Interface Definition

* E P T _ I N Q _ O B J E C T
*/

[idempotent]
void ept_inq_object(

[in] handle_t h,
[out] uuid_t *ept_object,
[out] error_status_t *status

);

/*
* E P T _ M G M T _ D E L E T E
*/

void ept_mgmt_delete(
[in] handle_t h,
[in] boolean32 object_speced,
[in] uuid_p_t object,
[in] twr_p_t tower,
[out] error_status_t *status

);
}

Part 4 RPC Services and Protocols 633

Endpoint Mapper Interface Definition

634 X/Open CAE Specification (1994)

Appendix P

Conversation Manager Interface Definition

This appendix gives the IDL specification of the conversation manager. It makes use of
declarations given in Appendix N.

P.1 Server Interface
Following are brief descriptions of the server operations:

conv_who_are_you()

This operation is called by a server to a client when the server has just received a non-
idempotent call request from a client about whom the server knows nothing. The server calls
this operation to determine the current sequence number of the client (identified by its activity
ID) in question. If the returned sequence number is higher than the one in the request that
prompted the conv_who_are_you () call, the request must be a duplicate and is ignored.

This operation is necessarily idempotent since it supports, and hence can not depend on, non-
idempotent call semantics.

It is expected, though not logically required, that servers will maintain a cache of client activity
ID/current sequence number pairs to minimise the number of times this operations needs to be
called by servers. Cache entries can be dropped as is convenient to servers since the cached
information can always be re-obtained by making calls on this operation.

The server passes its boot time back to the client to protect against the case where the server
receives a request, executes it, crashes before sending the reply, and then reboots and receives a
duplicate of the request. In this scenario, the rebooted server will necessarily make a
conv_who_are_you () call. However, the input boot time will be different and the client, which will
have saved the server’s boot time from the conv_who_are_you () call made by the previous
incarnation of the server, will notice this and return a non-zero error status to the server,
prompting the server to not execute the original request. (Note that the client will still not know
whether the call was executed zero or one times. The only guarantee is that it is not executed
more than once.)

conv_who_are_you2()

This is a newer version of conv_who_are_you () and has a superset of the older call’s semantics.
The additional semantics are that this call returns a UUID that uniquely identifies the client’s
address space (CAS UUID). The CAS UUID is used in cases where the server is monitoring the
liveness of a client which is not currently making a remote call to the server (for example, in case
the server application is holding state on behalf of the client, and it wants to discard or otherwise
clean up this state if the client crashes).

For compatibility with old clients (protocol version < 4), servers do not call this operation to get
client sequence number information. Rather, they call this operation if, in the course of
processing a client’s call, they need the CAS UUID. This operation is constructed as a superset of
conv_who_are_you () to make it possible in the future (or in environments with no old clients), for
servers to call this operation to get the client’s sequence number (and hence avoid making an
extra call to get the CAS UUID).

Part 4 RPC Services and Protocols 635

Server Interface Conversation Manager Interface Definition

conv_are_you_there()

Use of conv_are_you_there () is implementation-specific (see convc_indy () below).

conv_who_are_you_auth()

The version of conv_who_are_you () that is used to do authenticated RPC. Instead of calling
conv_who_are_you () the server can use this function, supplying an authentication challenge to
the client, and receive a response to the challenge.

[uuid(333a2276-0000-0000-0d00-00809c000000), version(3)]
interface conv
{

/*
* C O N V _ W H O _ A R E _ Y O U
*/

[idempotent]
void conv_who_are_you(

[in] handle_t h,
[in] uuid_t *actuid,
[in] unsigned32 boot_time,
[out] unsigned32 *seq,
[out] unsigned32 *st

);

/*
* C O N V _ W H O _ A R E _ Y O U 2
*/

[idempotent]
void conv_who_are_you2(

[in] handle_t h,
[in] uuid_t *actuid,
[in] unsigned32 boot_time,
[out] unsigned32 *seq,
[out] uuid_t *cas_uuid,
[out] unsigned32 *st

);

/*
* C O N V _ A R E _ Y O U _ T H E R E
*/

[idempotent]
void conv_are_you_there(

[in] handle_t h,
[in] uuid_t *actuid,
[in] unsigned32 boot_time,
[out] unsigned32 *st

);

/*
* C O N V _ W H O _ A R E _ Y O U _ A U T H
*/

[idempotent]
void conv_who_are_you_auth(

[in] handle_t h,

636 X/Open CAE Specification (1994)

Conversation Manager Interface Definition Server Interface

[in] uuid_t *actuid,
[in] unsigned32 boot_time,
[in, size_is(in_len)]

byte in_data[],
[in] signed32 in_len,
[in] signed32 out_max_len,
[out] unsigned32 *seq,
[out] uuid_t *cas_uuid,
[out, length_is(*out_len), size_is(out_max_len)]

byte out_data[],
[out] signed32 *out_len,
[out] unsigned32 *st

);
}

P.2 Client Interface
Following is a brief description of the client operation:

convc_indy()

A client can call this operation to assert its liveness to a server that holds state on its behalf. That
is, if a server/client is maintaining liveness and the server does not receive one of these calls
within a certain period of time, it will assume the client has died and will notify the server stub
routine. Use of convc_indy () is implementation-specific, and not specified in this document.

[uuid(4a967f14-3000-0000-0d00-012882000000), version(1)]
interface convc
{

/*
* C O N V C _ I N D Y
*/

[maybe]
void convc_indy(

[in] handle_t h,
[in] uuid_t *cas_uuid

);
}

Part 4 RPC Services and Protocols 637

Conversation Manager Interface Definition

638 X/Open CAE Specification (1994)

Appendix Q

Remote Management Interface

Servers implicitly make available a set of remote management operations which are accessible to
applications via rpc_mgmt_*() API calls. To support these operations in an interoperable manner,
servers must export the remote management interface specified in this appendix. This appendix
makes use of data types defined in Appendix N.

[uuid(afa8bd80-7d8a-11c9-bef4-08002b102989), version(1)]

interface mgmt
{
import "dce/rpctypes.idl";

/*
* R P C _ _ M G M T _ I N Q _ I F _ I D S
*/

void rpc__mgmt_inq_if_ids
(

[in] handle_t binding_handle,
[out] rpc_if_id_vector_p_t *if_id_vector,
[out] error_status_t *status

);

/*
* R P C _ _ M G M T _ I N Q _ S T A T S
*/

void rpc__mgmt_inq_stats
(

[in] handle_t binding_handle,
[in, out] unsigned32 *count,
[out, size_is (*count)] unsigned32 statistics[*],
[out] error_status_t *status

);

/*
* R P C _ _ M G M T _ I S _ S E R V E R _ L I S T E N I N G
*/

boolean32 rpc__mgmt_is_server_listening
(

[in] handle_t binding_handle,
[out] error_status_t *status

);

/*
* R P C _ _ M G M T _ S T O P _ S E R V E R _ L I S T E N I N G
*/

void rpc__mgmt_stop_server_listening
(

[in] handle_t binding_handle,
[out] error_status_t *status

);

Part 4 RPC Services and Protocols 639

Remote Management Interface

/*
* R P C _ _ M G M T _ I N Q _ P R I N C _ N A M E
*/

void rpc__mgmt_inq_princ_name
(

[in] handle_t binding_handle,
[in] unsigned32 authn_proto,
[in] unsigned32 princ_name_size,
[out, string, size_is(princ_name_size)]

char princ_name[],
[out] error_status_t *status

);

}

640 X/Open CAE Specification (1994)

Index

ACS ...262, 268
identifiers ...262
include declaration...263
inheritance of type attributes...........................262
specifying binding handles.......................264-265
syntax summary ...262-263

ACS attributes
explicit_handle..264
interaction of comm_status and fault status 267
interaction of represent_as and handle290
interaction of represent_as and transmit_as 290
represent_as...265
return statuses ...266-267
auto_handle...265
code ...265
comm_status ...40, 266
enable_allocate..268
fault_status ..40, 267
heap...268
implicit_handle...264
in_line ...266
nocode...265
out_of_line ...266
represent_as ..257, 289

activities..298
API...11, 48
API data types ...49

binding handle ..50
binding vectors ...51
Boolean ...52
boolean32 ...52
endpoint map inquiry handle............................52
interface handles...52
interface identifier vector....................................53
interface identifiers ..53
manager Entry Point Vectors53
name service handles...54
NIDL_manager_epv ..53
protocol sequence strings54
protocol sequence vectors55
rpc_c_stats_calls_in constant.............................55
rpc_c_stats_calls_out constant55
rpc_c_stats_pkts_in constant55
rpc_c_stats_pkts_out constant55
rpc_ep_inq_handle_t ...52
rpc_if_handle_t ...52

rpc_if_id_t ..53
rpc_protseq_vector_t ...55
signed integer..49
signed32..49
statistics vectors..55
string bindings ..56
string UUIDs..57
unsigned character string49
unsigned integers ...49
unsigned16...49
unsigned32...49
unsigned8...49
unsigned_char_t ...49
UUID vector ..57
uuid_vector_t ..57
rpc_binding_handle_t ...50
rpc_binding_vector_t ..51
rpc_if_id_vector_t ..53
rpc_ns_handle_t..54
rpc_stats_vector_p_t ..55
rpc_stats_vector_t ..55

API operations ...17-18
authentication ...45
binding..17, 42
endpoint ...17
endpoint management ..47
error messages ..48
interface ..42
local endpoint..43
local management ..48
local/remote management48
management ..18
name service..17, 44
name service management.................................47
object ...44
protocol sequence...43
security ...18
server listen..46
string free ...46
stub memory ...18, 46
UUID...18, 46

application code..15
Application Programming Interface.....................49
application/stub/run-time layering.....................16
application/stub/run-time system layering.......15
associations ..298

X/Open DCE: Remote Procedure Call 641

Index

at-most-once semantics...299
Attribute Configuration Source...........................262
authentication services..39
authorisation services..39
binding handles...20-21, 50

client ..21
server...21, 25-26

binding information.................................19, 304-305
binding mechanism...........................19, 30, 304, 311

client binding steps...26-27
server binding steps.......................................23, 26

binding methods...30
automatic ...26, 30
explicit ..26, 30
implicit..30

binding search
algorithm..34, 36
routines ...33-34

bindings...12-13
compatible ...26
full..20
partial..20, 25, 32
string ...21, 25

broadcast semantics ...299
call handle ..313
call identifiers ..298
call representation ..313
call routing...27, 30
call threads ...37
cancels...13, 40, 302-303

time-out period...40, 302
client/server model..12
conformance requirements...............................7, 329
connection-oriented PDU data types.........523, 528
connection-oriented PDUs

alloc_hint field...527
alter_context ..528
alter_context_resp ..530
assoc_group_id field..527
authentication verifier.......................................527
auth_length field...527
bind..531
bind_ack ...532
bind_nak...533
call_id field...527
cancel ..534
connect reject and disconnect data.................527
context identifiers...526
fault ...535
fragmentation and reassembly........................522
frag_length field..526

orphaned..537
protocol versions ..526
request ..538
response..540
shutdown ...541
structure ...522

connection-oriented protocol
association groups ...333
association management policy......................334
associations..334
calls..335
client/server model..333
endpoint addresses ..334
overview ..333, 338
transport service requirements335

connection-oriented protocol machines....336, 338
ASSOCIATION...337-338
CANCEL...337-338
CONTROL ...337-338
CO_CLIENT_ALLOC336
CO_CLIENT_GROUP336
CO_SERVER..338
CO_SERVER_GROUP.......................................338
WORKING...338
CO_CLIENT ..337

connectionless PDU header encoding................512
activity hint..516
activity identifier ..515
authentication protocol identifier...................517
body length..516
data representation format label.....................514
flags fields ..513
fragment number..516
interface hint..516
interface identifier ..515
interface version ...515
object identifier ...515
operation number...516
PDU type..513
protocol version number513
sequence number..516
serial number...514
server boot time..515

connectionless PDUs
ack..517
fack ..518
fault ...520
nocall...520
ping..520
reject ..520
request ..520

642 X/Open CAE Specification (1994)

Index

response..521
structure ...512
working ..521
cancel ..518
cancel_ack ..517

connectionless protocol
activities ...339
calls..339
client/server model..339
execution contexts..339
liveness ...339
overview ..339, 343
serial numbers...340
transport service requirements340

connectionless protocol machines..............341, 343
AUTHENTICATION341-342
CALLBACK...341
CANCEL ..342
CL_CLIENT...341
CL_SERVER...342
CONTROL ...341-342
DATA ..342
PING ...342
WORKING...342

context handle rundown.......................................290
context handles ...299
data representation format labels511, 560
data types ...49
dce_error_inq_text()..40, 624
endpoint mapper..........................17, 25, 27, 305-306
endpoint selection ..27
endpoints..19, 25, 304-306

dynamic..305
well-known..305

Entry Point Vector (EPV)...53
error handling ...40, 312
execution semantics.........................12, 296, 298-299
failure modes...13
idempotent semantics ...299
IDL...15, 235, 277

anonymous types ...261
ASCII/EBCDIC conversion of char................261
BNF notation.......................................235, 269, 275
brace ..237
comments...237
constant declarations240, 242
constructed identifiers...............................276-277
directional attributes ...259
function pointers ..260
grammar synopsis269, 275
identifiers ...236

import declarations..240
interface bodies...239
interface definition structure237
interface headers...238
keywords..236
lexemes ...236-237
operation declarations.......................................258
parameter aliasing..259
parameter declarations..............................259-260
predefined types ...260-261
punctuation ...236
reserved words ...236
tagged declarations..242
type declarations ..242
white space ..237

IDL attributes
field attributes...249, 253
field attributes in array declarations......250, 253
field attributes in string declarations253
handle ...288
idempotent...247
in ..259
inheritance of type attributes...........................248
interaction of represent_as and handle290
interaction of represent_as and transmit_as 290
interaction of transmit_as and handle289
length_is ...253
max_is...253, 257
negative size and length specifications253
out..259
pointer attributes..254
relationships between field attributes............252
size_is ...253, 257
string ...257
type attributes ...248-249
version ..238
broadcast ..258
context_handle..249
endpoint ...239
first_is..252-253
handle...248, 256
idempotent...258
ignore ..250
last_is...251-253
length_is ...252-253
local ...239
max_is...250, 252
maybe..258
out..257
pointer_default ...239
size_is ...251, 253

X/Open DCE: Remote Procedure Call 643

Index

transmit_as247-248, 257, 287
uuid ...238

IDL data types
arrays ..247
base types ...243-244
conformant arrays250-251
conformant varying arrays.......................251-252
constructed types244, 247
context handles...256, 290
encapsulated unions..245
enumerated types...246
error_status_t ..260
integers ...243
non-encapsulated unions245
pipes..246-247, 256
structures ...244
unions..245-246
varying arrays ...251-252
boolean ...244
byte..244
char..244, 261
handle_t..244, 256
unsigned char..244
void..244

IDL pointer attributes254-255
in interface header..255
in member declarations.....................................255
in typedefs ...255
on function results ...255
ptr ..247
ptr ..254
ref...254

IDL pointers...253, 257
aliasing..259
as arrays..257
full..254
reference ...254
restrictions on..256-257
varying arrays of ..256
with string attribute...257

Interface Definition Language235
interface handles...41
interface identifiers..................20, 25, 28, 33, 53, 296
interface selection ...28
interface specification13, 235, 277
interface UUIDs....................................19, 28, 53, 296
interfaces ..12, 296

operations ..12
version numbers.....................19, 28, 238, 296-297
versions...12

interoperability..5

requirements on stubs292
manager Entry Point Vectors24
manager EPVs..24-25, 30, 41
manager routines12, 15, 296
manager selection...29
maybe semantics ..299
name service ..13

caching..36
expiration age..36
model ..31
recommended usage..32

name service attributes..............................32-34, 306
binding..32
group...32
object ...32
profile..32
roup...310
profile..311
server_name ..308

name service class values311
name service data types307-308

protocol_tower_t encoding rules....................308
name service entries ..25, 306

group ...32-33
profile ..32-33
server...32

name service object encoding311
Name Service-independent API............................17
name syntax tags ..32
NDR ..559, 584
NDR arrays

multi-dimensional conformant572
multi-dimensional conformant and varying573
multi-dimensional fixed....................................571
multi-dimensional varying572
of strings ...575-576
ordering of elements in multi-dimensional ..571
uni-dimensional conformant570
uni-dimensional conformant-varying571
uni-dimensional fixed570
uni-dimensional varying570

NDR constructed types.................................569, 583
arrays ..569, 574
conformant and varying strings......................575
pipes..579
pointers ..579, 583
representation conventions..............................569
strings..574-575
structures ...576, 578
unions ...578
varying strings ..574

644 X/Open CAE Specification (1994)

Index

NDR format label ...560
NDR input and output streams...........................584
NDR pointers

deferral of referents for embedded pointers.583
embedded full ...582
embedded reference...582
top level reference ..581
top-level full ..580

NDR primitive types561, 568
alignment ...562
Booleans ...562
characters ...562
Cray floating-point...567
floating-point ..564, 568
hyper ...562
IBM floating-point..567
IEEE floating-point...564
integers..562-563
long..562
representation conventions..............................561
short ..562
small ..562
uninterpreted octets...568
VAX floating-point...565

NDR structures
containing arrays ..577-578

nested RPCs...298
network addresses ...19, 304
Network Data Representation.............................559
NSI ..26, 31, 36, 44, 306, 311
object UUIDs...............19, 21, 25-26, 29, 32, 296, 304
operation numbers19, 25, 30, 292
PDU encodings ...509, 541

alignment ...510
common fields...511
connection-oriented...522
connectionless ...512
conventions ...510
data representation format labels511
generic structure...509
protocol version numbers511
reject status codes...511

pipe processing...281, 287
portability specification...4
ports

endpoint mapper..239
profile elements...33

default ...33
priority value...33

protection levels..39
Protocol Data Units..509

protocol definitions..329, 343
protocol identifiers ...308
protocol machines

client ..330-331
naming conventions ..343
server...331-332

protocol sequences.....................................19, 25, 304
protocol specification5, 329, 343
protocol towers ...31-32, 308

example ..309
protocol version numbers19, 304, 511
reject status codes...511
reliability...12
remoteness..12-13
request buffering...37
resource models ..14, 38-39

object-oriented ..14, 38
server-oriented..14, 38
service-oriented ..14, 38

RPC model...295, 312
RPC objects ..296
RPC service primitives..................................313, 318

Cancel ...316
Error ..317
Reject ...318
Result ..315
Invoke ...314

rpc_binding_copy() ...59
rpc_binding_free() ...60
rpc_binding_from_string_binding()61
rpc_binding_inq_auth_client()..............................62
rpc_binding_inq_auth_info()64
rpc_binding_inq_object()66
rpc_binding_reset() ...67
rpc_binding_server_from_client()........................68
rpc_binding_set_auth_info()70
rpc_binding_set_object() ..72
rpc_binding_to_string_binding()73
rpc_binding_vector_free()......................................74
RPC_DEFAULT_ENTRY_SYNTAX......................32
rpc_ep_register() ..75
rpc_ep_register_no_replace()78
rpc_ep_resolve_binding()80
rpc_ep_unregister() ...82
rpc_if_id_vector_free() ...84
rpc_if_inq_id() ..85
rpc_mgmt_ep_elt_inq_begin()86
rpc_mgmt_ep_elt_inq_done()89
rpc_mgmt_ep_elt_inq_next()90
rpc_mgmt_ep_unregister()92
rpc_mgmt_inq_com_timeout()94

X/Open DCE: Remote Procedure Call 645

Index

rpc_mgmt_inq_dflt_protect_level()95
rpc_mgmt_inq_if_ids() ...96
rpc_mgmt_inq_server_princ_name()98
rpc_mgmt_inq_stats()...100
rpc_mgmt_is_server_listening().........................102
rpc_mgmt_set_authorization_fn()104
rpc_mgmt_set_cancel_timeout()106
rpc_mgmt_set_com_timeout()............................107
rpc_mgmt_set_server_stack_size()....................109
rpc_mgmt_stats_vector_free()110
rpc_mgmt_stop_server_listening()....................111
rpc_network_inq_protseqs()112
rpc_network_is_protseq_valid()113
rpc_ns_binding_export()......................................115
rpc_ns_binding_import_begin().........................118
rpc_ns_binding_import_done()..........................120
rpc_ns_binding_import_next()121
rpc_ns_binding_inq_entry_name()....................124
rpc_ns_binding_lookup_begin()126
rpc_ns_binding_lookup_done()128
rpc_ns_binding_lookup_next()...........................129
rpc_ns_binding_select()..132
rpc_ns_binding_unexport()134
rpc_ns_entry_expand_name()136
rpc_ns_entry_object_inq_begin()137
rpc_ns_entry_object_inq_done()139
rpc_ns_entry_object_inq_next()140
rpc_ns_group_delete()..142
rpc_ns_group_mbr_add()144
rpc_ns_group_mbr_inq_begin()146
rpc_ns_group_mbr_inq_done()148
rpc_ns_group_mbr_inq_next()149
rpc_ns_group_mbr_remove()151
rpc_ns_mgmt_binding_unexport()....................153
rpc_ns_mgmt_entry_create()156
rpc_ns_mgmt_entry_delete()158
rpc_ns_mgmt_entry_inq_if_ids()160
rpc_ns_mgmt_handle_set_exp_age()................162
rpc_ns_mgmt_inq_exp_age()..............................164
rpc_ns_mgmt_set_exp_age()...............................166
rpc_ns_profile_delete() ...168
rpc_ns_profile_elt_add()170
rpc_ns_profile_elt_inq_begin()172
rpc_ns_profile_elt_inq_done()175
rpc_ns_profile_elt_inq_next()176
rpc_ns_profile_elt_remove()178
rpc_object_inq_type() ...180
rpc_object_set_inq_fn() ..182
rpc_object_set_type() ..183
rpc_protseq_vector_free()....................................185
rpc_server_inq_bindings()186

rpc_server_inq_if() ..188
rpc_server_listen() ...189
rpc_server_register_auth_info()191
rpc_server_register_if() ..193
rpc_server_unregister_if()....................................197
rpc_server_use_all_protseqs()199
rpc_server_use_all_protseqs_if()........................201
rpc_server_use_protseq().....................................203
rpc_server_use_protseq_ep()205
rpc_server_use_protseq_if()207
rpc_sm_allocate()...209
rpc_sm_client_free()..210
rpc_sm_destroy_client_context()211
rpc_sm_disable_allocate()....................................212
rpc_sm_enable_allocate().....................................213
rpc_sm_free() ..214
rpc_sm_get_thread_handle()215
rpc_sm_set_client_alloc_free()............................216
rpc_sm_set_thread_handle()217
rpc_sm_swap_client_alloc_free()218
rpc_string_binding_compose()...........................219
rpc_string_binding_parse()221
rpc_string_free()...223
run time ..15
security ...13, 39
server model ..37
servers

concurrency ...14, 37
remote management......................................14, 37
request buffering...37

service specification ...5
session identifiers ...298
statechart elements

actions...320
activities ...320
conditions...320
data items...320
events ..319
states ...319
triggers..319

statechart graphical expressions
conditional connectors322
default entrances ..322
terminal connectors ...322

statechart semantics319, 327
conflicting transitions..323
execution steps and time323
implicit exits and entrances323
synchronisation and race conditions324

statecharts
concurrency ...321

646 X/Open CAE Specification (1994)

Index

state hierarchies ..321
summary of language elements..............325, 327

status output argument...40
string bindings ..56
string UUIDs..57
stub data types

default manager EPVs.................................53, 281
interface handles ..52, 281
NIDL_manager_epv ..53

stubs..15, 41, 279, 292
data types ...41
floating-point error handling...........................292
memory management ...41

threads ..300, 302
application ...300
call..300
RPC..300

transfer syntax..................................19, 304, 559, 584
type UUIDs..25, 29, 296
UUIDs...57, 585, 592

algorithms for creating588, 590
comparing..592
format ...586
string representation..591

uuid_compare()..225
uuid_create()...226
uuid_create_nil() ..227
uuid_equal()..228
uuid_from_string() ..229
uuid_is_nil() ..230
uuid_to_string() ...231

X/Open DCE: Remote Procedure Call 647

Index

648 X/Open CAE Specification (1994)

