
Radio /aack
THREE DOLLARS /• MD
NINETY- FIVE CENTS

62-2006

ysss

gA TANDY CORPORATION COMPANY

FIRST EDITION
THIRD PRINTING—1980

Copyright © 1979 by Radio Shack, a Tandy Corporation

Company, Fort Worth, Texas 76107. Printed in the United

States of America.

All rights reserved. Reproduction or use, without express

permission, of editorial or pictorial content, in any manner,

is prohibited. No patent liability is assumed with respect to

the use of the information contained herein.

Library of Congress Catalog Card Number; 79-63607

Why study assembly language programming for the Radio
Shack TRS-80? Why when I was a youngster all we had was
Level I BASIC to work with and we did all right with that!

Well, BASIC, whether it is Level I, Level II, or Disc, is still

just as useful as ever. There are times, though, when the
absolute fastest possible processing is called for. That is one
case where assembly language reigns supreme. Programs run
at assembly-language speeds are up to 300 times faster than
their BASIC equivalents ! Did you ever want to try your hand
at the most elemental type of coding to see if you could con-
struct a program in similar fashion to building electronic cir-

cuits from discrete components ? Assembly-language will give
you that challenge. How about your memory requirements?
Do you find that you always require 4K bytes more than you
have in RAM? Assembly language will enable you to run a
program in 4K that requires 24K in BASIC. Did you ever
have an urge to see what is going on in all of those routines
in ROM or TRSDOS? You guessed it—assembly language
again.

The goal of this book is to take a TRS-80 user familiar with
some of the concepts of programming in BASIC and intro-
duce him to TRS-80 assembly language. The text does not
absolutely require a Radio Shack Editor/Assembler package,
but it will help. If your system will not support an Editor/
Assembler, then Radio Shack T-BUG can be used to key in

all of the programs in this book without assembling—we've
done that for you. We have designed the book to be highly
interactive. There are many programs that can be assembled
and loaded, or simply keyed in using T-BUG, and that illus-

trate the techniques of assembly-language programming as
they relate to the TRS-80. We have routines to write data to

the screen, to move patterns at high-speed, to graphically il-

lustrate a bubble sort, and even a routine to play music by
using the cassette output I Of course, you may also use the

book simply as a reference book for assembly-language rou-

tines. The last chapter has a dozen or so "standard" assembly-

language routines that can be used in your own assembly-

language coding.

Section I of this book covers the general concepts of TRS-80
assembly language. The TRS-80 uses a Z-80 microprocessor,

and the architecture of both the TRS-80 and Z-80 are covered

in Chapter 1. Chapter 2 talks about the instruction set of the

Z-80. There are hundreds of actual instructions, but they can
easily be grouped into a manageable number of types. Chapter

3 discusses the many addressing modes available for instruc-

tions in the Z-80. Assembly-language programming operations

and formats are covered in Chapter 4, while Chapter 5 covers

T-BUG and machine-language programming.

The second section of the book discusses various types of

programming operations and provides many examples of each

type. Chapter 6 shows how data is transferred within the

TRS-80, between memory and central processing unit and
between other parts of the system. Arithmetic and compare
operations are covered in Chapter 7; this chapter describes

how the Z-80 adds and subtracts, along with a description of

different types of number formats. Chapter 8 gives examples
of logical and bit operations and shifts, some of the most pow-
erful instructions in the Z-80. Chapter 9 describes how as-

sembly-language programs perform string manipulations and
process data in tables. Chapter 10 talks about input/output
operations, one of the most mysterious (unjustifiably so) areas

of computer programming. The last chapter contains the pre-

viously mentioned common subroutines.

Two appendices provide a cross-reference of Z-80 operation

codes and instruction set. Appendix I lists the Z-80 instruction

set by function (add, subtract, etc.) while Appendix II pro-

vides a detailed alphabetized listing of all instructions.

If you suspect that assembly-language might be for you,

then by all means give it a try. You have nothing to lose but

your GOSUBs (and other BASIC statements). The author
hopes that you have as much fun in sampling the programs
in this book as he did in constructing them.

William Barden, Jr.

To Marguerite

Contents

Section I. General Concepts

CHAPTER 1

TRS-80 and Z-80 Architecture , 11

Functional Blocks— What Are All These Ones and Zeros —
CPU, Memory, and I/O—The Z-80: A Chip Off the Old Block

CHAPTER 2

Z-80 Instructions , . . ,

,

, . , , , , . 24

The Z-.80 Family Tree—How Long Is an Instruction—Wait a
Microsecond—Instruction Groups—Data Movement—Arithme-
tic, Logical, and Compare— Decision Making and Jumps—
Stack Operations-—Shifting and Bit Operations—I/O Opera-
tions—A Program of a Thousand Instructions Begins With
the First Bit

CHAPTER 3

Z-80 ADDRESSING ...,....,,...,..., . , . 41

Why Not One Addressing Mode—Implied Addressing: No Ad-
dressing at All—Immediate Addressing—Register Addressing

—Register Indirect—Direct Addressing-—Relative Addressing

—A Special Type of Call—Indexed Addressing—Bit Address-

ing—Conclusion and Confusion

CHAPTER 4

Assembly-Language Programming , , , 58

Machine-Language Coding-—TRS-80 Editor/Assembler'—Edit-

ing New Programs—Assembling—Loading'—-Assembler For-

mats—More Pseudo-Ops—A Mark II Version of the Store "1"

Program—Further Editing and Assembling

CHAPTER 5

T-BUG and Debugging ..,.,.....,.,.,.,, 75

Loading and Using T-BUG—T-BUG Commands—T-BUG Tape
Formats-—-Standard Format in Following Chapters

Section II. Programming Methods

CHAPTER 6

Moving Data in Bytes, Words, and Blocks ,...,...,, 87

Byte and Word Moves—Filling or Padding—An Unsophisti-

cated Block Move—An Elegant Block Move—FILL Subroutine

—MOVE Subroutine—Subroutine Format—Stack Operation

CHAPTER 7

ARITHMETIC AND COMPARE OPERATIONS . , , . , 108

Number Formats: Absoiutely and Positively—Signed Num-
bers—Adding and Subtracting 8-Bit Numbers—Adding and
Subtracting 16-Bit Numbers—A Precision Instrument—Deci-

mal Arithmetic—Compare Operations

CHAPTER 8

Logical Operations, Bit Operations, and Shd?ts . . . , , 131

ANDs, ORs, and Exclusive ORs—Bit Instructions—Shiftless

Computers—Rotates—Some Shifting Is Very Logical—Arith-
metic Shifts—Software Multiply and Divide—Input and Out-
put Conversions

CHAPTER 9

Strings and Tables . . , ,.,......,... 151

Assembler-Generated Strings— Generalized String Output—
String Input—Block Compares—Table Searches—Unordered
Tables—Ordered Tables

"^

CHAPTER 10

I/O Operations,..,....,.., , , , . . , 167

Memory Versus I/O—Keyboard Decoding-—Display Program-
ming—Mysteries of the Cassette Revealed—Reai-World Inter-

facing—Discrete Inputs

CHAPTER 11

Common Subroutine ,...,.,. 189

FILL Subroutine—MOVE Subroutine—MULADD Subroutine
— MULSUB Subroutine— COMPARE Subroutine— MUL16
Subroutine—DIVI 6 Subroutine—HEXCV Subroutine

—

SEARCH Subroutine—SET, RESET and TEST Subroutines

Section HI. Appendices

APPENDIX I

Z-80 INSTRUCTION SET,..,,...,,,.. , 205

APPENDIX II

Z-80 Operation Code Listings .,,...,. 209

Index .,,,,,,.,..,, , , 221

SECTIOM

General Concepts

CHAPTER 1

This chapter will discuss the architecture of the TRS-80,
with special consideration to the Z-80 microprocessor con-
tained within the TRS-80. What is a microprocessor? What
is a Z-80 ? Why do I need to know about it to program in as-
sembly language? Why are we asking so many hypothetical
questions ? These and other questions will be answered in this
chapter as we attempt to unravel the mysteries of the archi-
tecture or general functional blocks of the TRS-80 system.
Stay tuned to this text. . . .

Functional Blocks

All computer systems are made up of three rather distinct
parts shown in Figure 1-1. The cpu, or central processing ?tnit,

is the chief controller of the computer system. It fetches and
executes instructions, does arithmetic calculations, moves data
between the other parts of the system, and in general, controls
all sequencing and timing of the system. The memory of the
system holds a computer program or programs and various
types of data. The I/O, or input/output devices of the system,
allow a user to talk to the computer system in a manner in
which he is familiar, such as a typewriter-style keyboard or
display of characters on a crt screen.
As a TRS-80 user, you're undoubtedly familiar with these

component parts. You have a nodding acquaintance with RAM
memory from upgrading your system to 16K and perhaps
more than just a casual relationship with an expansion inter-
face and disc. To enable us 'to do assembly-language program-

n

ming properly, however, we are going to have to get more
familiar with memory and I/O and (much to the dismay of

our spouses, who are already computer widows or widowers)

rather intimately involved with the cpu portion of the TRS-80

system. In addition, in later chapters, we're going to leave an

old friend, BASIC, and strike up a relationship with assembly-

language principles.

What Are All These Ones and Zeros?

Up to this point in your programming career, you have

probably used decimal values for such things as constants,

CENTRAL

PROCESSING

UNIT

(CPU1

CHIEF CONTROLLER

RAM OR ROM. HOLDS

PROGRAMS AND
DATA

TRS-80

ALLOWS USER TO

COMMUNICATE WITH

SYSTEM

Fig. 1-1. Functional blocks of the TRS-80.

12

memory addresses, and POKEs. Assembly-language program-
ming makes extensive use of binary data and hexadecimal
data. Don't let these terms frighten you. They're really more
simple than decimal data. Binary representation is a way of
expressing numeric values using the binary digits of and 1,

rather than the decimal digits of through 9. Binary digits
represent an "on" or "off" condition. A wall switch is either
on or off. An indicator light is either lighted or unlighted. In
similar fashion, the transistors within the cpu portion of the
TRS-80 are either on or off and hold binary values.
Now we know that in a decimal number such as 921 the 9

represents 9 hundreds, the 2 represents 2 tens, and the 1 rep-
resents 1 units, as shown in Figure 1-2. In a binary number,

10 2 POSITION

W POSITION

10° POSITION

Fig. 1-2. Decimal notation.
2 I

iXl = 1

2X10 = 20

9 X 100 = 900

921

the position of the digits represent powers of two rather than
powers of ten. Instead of units, tens, hundreds, and other
powers of ten, a binary number is made up of digits represent-
ing units, two, four, eight, sixteen, and other powers of two, as
shown in Figure 1-3. Since there are only two binary digits,
the digit at each position represents either or 1 times the
power of two for that position.

^
If the binary number is treated as groups of four binary

digits, the binary number can be converted into a hexadecimal
number. Hexadecimal means nothing more than powers of
sixteen. The groups of four bits represent 0000 through 1111.
Now, 0000 through 1001 correspond to the decimal digits
through 9, and the hexadecimal digits for 0000 through 1001
are similarly designated through 9. This leaves the groups

13

of bits from 1010 through 1111. When the hexadecimal system

was first proposed, one of the more obscure computer scien-

tists proposed that the remaining- six groups be designated

actinium, barium, curium, dysprosium, erbium, and fernium.

Cooler heads prevailed, however, and the digits were named

A, B, C, D, E, and F.

In general we'll be working with groups of eight binary

digits or sixteen binary digits within the TRS-80. Binary digit

was long ago shortened to bit to prompt shorter lunches in

the computer science cafeteria when researchers started talk-

ing shop. Whenever bit is used, then, it will mean one binary

digit of either a 1 or 0. A group of four bits may be referred

t i i i 1 i

2
9 OR 512 POSITION

28 OR 256 POSITION

27 OR 128 POSITION

26 OR 64 POSITION

25 OR 32 POSITION

2< OR 16 POSITION

2 3 OR 8 POSITION

2
2 OR 4 POSITION

2 l OR 2 POSITION

2° OR 1 POSITION

1X1

0X2

0X4

1X8

1X16

0X32

0X64

1X128

1X256

1X512

Fig. 1-3. Binary notation.

1

8

16

128

256

512

921

14

to as a hexadecimal digit of through F. When this is done,
the suffix H is added. The symbol EH, therefore, represents
the hexadecimal digit E or the binary digits 1110. A group
of eight bits is commonly called a byte. A byte is made up of

two hexadecimal digits, since there are two groups of four
bits.

Don't be too worried about the use of bits, bytes, and hexa-

decimal digits at this point. We'll reiterate some of these basic

points as we go along in the text.

CPU, Memory, and I/O

Generally, all elements of the TRS-80 work with binary

data. Each memory location, for example, is made up of

eight bits, and can represent values from 00000000 through

11111111, or zero through 255 decimal. I/O devices such as

cassette tape or floppy disc communicate with the cpu by

transferring 8-bit bytes and converting between bytes of data

and bit streams. The cpu is similarly a binary digital device,

holding all data or control signals as discrete bits of infor-

mation.
Let's talk a little bit (no pun intended) about the cpu. As

we mentioned before, the cpu is primarily concerned with

fetching and executing instructions. What are the types of

instructions that the cpu can perform? Obviously, it would

be very difficult to implement an instruction such as "if this

is Friday blink the screen cursor on and off at location 512."

It would be possible to implement this instruction, but as you

might guess, it would be much more practical to implement a

basic set of general-purpose instructions such as "add two

numbers" or "compare the result with 67." As a matter of

fact the instruction set of the TRS-80 at this cpu level is

very similar to the instruction set of other microcomputers

and the instruction sets of even very large computers. The in-

struction set of the TRS-80 allows for adding two operands,

subtracting two operands, performing logical operations on

two operands (such as AND or OR), transferring 8 or 16 bits

of data between the cpu and memory or I/O devices, jumping

to another portion of the program (similar to GOTO or IF . .

.

THEN), jumping to and returning from subroutines, and

testing and manipulating bits.

Every application," including the Level I and II BASIC pro-

grams in ROM, and extending to such applications as high-

speed video games and business payroll is made up of se-

quences of these rudimentary instructions such as adds, com-

15

pares, and jumps. As a matter of fact, every program, even
those written in BASIC, ultimately resolves down to a se-
quence of these basic cpu instructions.

In older computer systems each of the component parts
literally occupied rooms. Today, almost the entire logic of the
cpu can be put on a single microprocessor chip about the size

of a postage stamp. The microprocessor chosen for the TRS-80
was the Z-80, originally designed by Zilog, Inc. The Z-80 is

a state-of-the-art (an engineering way of saying "modern")
microprocessor with a good instruction set. Since the cpu por-
tion of a microcomputer is now essentially its microprocessor
we'll look in detail at the Z-80 architecture in this chapter, and
at its instruction set in later chapters.
Memory within the TRS-80 system is made up of ROM,RAM, and dedicated memory addresses. We're all familiar

with RAM memory. That's the memory that holds our pro-
grams and data, whether they are BASIC programs or SYS-TEM types (assembly language), The minimum amount ofRAM we can have is 4K, or 4096 bytes, and the maximum
amount we can have is 48K, or 49152 bytes, for a system with
an expansion interface. The term RAM stands for £andom-
Access-Afemory and simply means a memory that we can both
read from and write into. ROM memory, on the other hand, is
i?ead-Only Memory. ROM in the TRS-80 holds the Level I
or Level II BASIC interpreter, and occupies 12288 bytes in
the Level II case. Try as we might, we can't POKE into theROM memory area. Each of the 61,440 locations of ROM andRAM can hold one byte, or 8 bits, of data. Each of these 61,440
locations is assigned a location number. ROM is assigned loca-
tions through 12287, and RAM is assigned locations 16384
through 65535.
Yes? A question from the back of the room? The gentleman

asks what locations 12288 through 16383 are used for? (These
TRS-80 owners-—you can't put anything over on them)
Locations 12288 through 16383 are not used for memory ad-
dresses in the conventional sense. These are dedicated loca-
tions that the cpu uses to address such things as the line
printer, floppy disc, real-time clock and video screen. It turns
out that the video display is indeed a RAM memory, but the

!i?r

n
}1

amm8: devices a**e only decoded as memory locations.
We 11 explain further in later chapters. Figure 1-4 shows the
memory mapping for the TRS-80.

It's important to know that data in memory can be either
an instruction for the cpu or data, such as a character for dis-
play. I see the same wise guy has his hand up ! The cpu doesn't

16

DECIMAL
ADDRESSES

HEXADECIMAL

ADDRESSES

8FFFH

CGOOH

Fig. 1-4. TRS-80 memory mapping.

know which locations hold data and which hold instructions.

The cpu blindly goes ahead and if a data byte is picked up
instead of an instruction, it will attempt to execute the data
as an instruction. The result will probably be catastrophic, and
is a program bug (you're certainly familiar with bugs from
your BASIC programs—in assembly language they are even
more prolific). Data and programs are therefore intermixed
in memory at the programmer's discretion (or indiscretion)

and the program should know how to jump around the data.

17

I/O devices may be considered in two parts. Firstly, there

is the physical I/O device, such as the cassette recorder, video

display-, keyboard, line printer, or floppy disc. Secondly, there

is the I/O device controller. The I/O device controller per-

forms an interfacing function between the cpu (microproces-

sor chip) and the I/O device. The controller matches the high

rate of data transfers from the cpu (hundreds of thousands of

bytes per second) to the I/O device (50 bytes per second for

Level II tape cassette). The controller may also encode the data

coming from the cpu into special format (video format for

the display, for example) and provide a handshake function

between the cpu and I/O device. (How are you, my name is

Bernie. Do you have the next data byte for me?) The I/O

device itself may be a device adapted to microcomputer use

such as the cassette recorder or video display or one specifi-

cally made for a microcomputer environment, such as the line

printer or floppy disc.

The Z-80: A Chip Off the Old Block

Now that we have an overview of the TRS-80, let's look at

the internal workings of the Z-80, or at least those parts that

RESULT OF ARITHMETIC

OR LOGICAL OPERATION

ARITHMETIC

AND LOGICAL

UNIT (ALU)

IRST

REGISTER

3PERAND

2ND
REGISTER

OPERAND

i ,

Mmom OPERAND "

memory

>

A F A' F"

8 C 8' C GENERAL-PURPOSE

D E D' E*
REGISTERS

r

H L H' V
IX

1Y

SP
SPECIAL-PURPOSE

REGISTERS
PC

I R

,

DATA TRANSFERS

BETWEEN REGISTERS

Fig. 1-5. Z-80 architecture.

18

we, as assembly language programmers, will want to be
aware of. Figure 1-5 shows the cpu register arrangement, the
ALU, or arithmetic and fogic unit, and the data paths we
should be concerned about.

In general, all data in the TRS-80 and most data within
the Z-80 is handled in 8-bit, or one-byte segments. The Z-80
is called an "8-bit" microprocessor for this reason. The cpu
(Z-80) registers are either 8 bits or 16 bits wide, and most

'Manipulations within the cpu are done 8 bits at a time.

)
There are 14 general-purpose registers within the cpu, des-

ignated A, B, C, D, E, H, and L and the "primed" counter-
parts A'. B', C, D', E% H\ and L\ Many of the arithmetic and
other instructions use the A regisjer conjmts as one of the
^operands , with the other operand c^ing

J
f?om~m^m^ry"'or'ail-'-

'

other i^egTs'teirFBTthis-reasonT-the-^A-^ regis ter cun"b-e~thOtrght^other r>

ot
l

as tiEh"e"
t'accumuiatoF>'Tegls Ler, which is an old term lhalrig

s till used today, m addition to being used separately as »-mt
register'STthere-are several sets of register "pairs" that form
16-bit registers when the 8-bit registers are used together.
These are B/C, D/E, H/L, B'/C D'/'E, and H'/L'. The register
pairs are used to perform limited 16-bit arithmetic, such as
adding two 16-bit operands contained in two register pairs,
or to specify a memory address.

At any time only one set of the registers, prime or non-\
prime, are active. Two Z-80 instructions select the current in--0

""

active set (prime) to become active and put the currently
active (non-prime) into an inactive state. The instructions,
therefore, are used to switch between the two sets as desired.
A second set does not have to be used, but simply makes more
register storage available if required.

The cpu registers are used to store temporary results, to
hold data being transferred to memory or I/O, and in general
to hold data that is being used for the current portion of the
program that is being executed. Data changes within the cpu
registers very rapidly as the program is being executed (tens
of thousands of times per second) so the cpu registers may
be thought of as a conveniently used, rapidly accessed, limited
memory within the cpu itself that holds transient data.

In addition to the general-purpose registers within the cpu,
there are special-purpose registers. The first of these is the
PC, or Program Counter. The PC is a 16-bit register that
points to the current memory location holding the instruction
to be executed. We mentioned previously that there were 65536
memory locations that could be used on the TRS-80. A 16-bit
register may hold a range of values from 0000000000000000

19

through 1111111111111111, or decimal through 65536 (hexa-

decimal 0000H through FFFFH). The PC can therefore ad-

dress (point to) any memory location for the current instruc-

tion. Instructions to the cpu are coded into one, two, three, or

four bytes and are generally arranged sequentially in memory,

starting from "low" memory to "high" memory. Figure 1-6

shows a typical sequence of instructions. As each new in-

struction is "fetched" the PC is updated by adding the number
of bytes in the instruction to the contents of the PC. The
result points to the next instruction in sequence. When a

"jump" is executed, the new memory location for the jump is

forced into the PC, and replaces the previous value, so that

the new instruction from a new segment of the program is

accessed. If one could look at the PC in the TRS-80 as a pro-

gram was running, the PC would be changing hundreds of

thousands of times a second as sequences of instructions were

executed and jumps were made to new sequences.

MEMORY

LOCATION OF

INSTRUCTION

4A00H

4A01H

4A02H

4A03H

4AQ4H

4A05H

4A06H

4A07H

4A08H

4AQ9H

4A0AH

4A0BH

4A0CH

CONTENTS

06H

00H

B7H

EDH

52H

FAH

OCH

4AH

04H

C3H

02 H

4AH

19H

INSTRUCTION

PROGRAM COUNTER
BEFORE EXECUTION

LDB.O 4A00H

OR A

SBC Hl.DE

4A02H

4A03H

JP M.DONE

[NCB

JP LOOP

ADD HL.DE

4A05H

4A08H

4A09H

4A0CH

Fig. 1-6. Typical sequence of instructions.

The SP, or Stack Pointer, is another 16-bit register that

addresses memory (Figure 1-7). In this case, however, the

SP addresses a memory stack area. The memory stack area

is simply a portion of RAM used by the program as temporary

storage of data and addresses of subroutines during subrou-

tine calls. As the SP is 16 bits, any area of memory could

conceivably be used, as long as it was RAM and not ROM. In

practice, high areas of RAM memory are used, as the stack

builds down from high memory to low memory. In a 16K
RAM system, for example, the stack might start at 32767

(don't forget about that initial 16384 ROM and dedicated

20

MEMORY

ADDRESSES

"TOP OF STACK"

STACK

BUILDS

DOWN

15

STACK POINTER

ADDRESS OF "TOP OF STACK'

LOW
ADDRESSES

Fig. 1-7. Memory stack.

memory area) and build downward. Well, it appears that the
programmer in the back wants an explanation of the stack
action. We'll give a brief one here and give a more detailed
one in a later chapter. The stack is a LIFO stack, which stands
for "last-in-first-out." A good analogy is a dinner plate stacker
found at some restaurants. The last dinner plate put on the
stack is the first taken off. As more and more plates are put
on the stack, the stack increases in size. If the reader can
visualize data being put on the stack in this fashion, it will
be somewhat similar to Z-80 stack action.
Two additional cpu registers, IX and IY, are used to modify

the address in an instruction. This permits indexing opera-
tions which allow rapid access of data in tables. Indexing op-
erations and the use of IX and IY will be discussed in detail
in Chapter 3.

The I and R registers are two registers that the reader
probably will not use in his TRS-80 system. The R register
is continually used by TRS-80 hardware to refresh the dy-
namic RAM memories used in the TRS-80 system. The 8-bit
value in the R register is continually incremented by one to
cycle the register from 0000000 through 1111111 and around

21

again to provide a refresh count for dynamic memory refresh,

which restores the data in RAM. The 8-bit I register is used

for a mode of interrupts not currently implemented in TRS-80

hardware.
There are other cpu registers, of course, but the foregoing

registers are the only ones that are accessible by an assembly-

language program. The other registers in the Z-80 cpu hold

the instruction after it is fetched, buffer data as it is moved

internally and transferred externally, and perform other ac-

tions required for instruction interpretation, instruction im-

plementation, and system control.

The arithmetic and logic unit is the portion of the cpu

that, as the name implies, performs the addition, subtraction,

ANBing, ORing, exclusive ORing, and shifting of data from two

operands. The result of these operations generally goes to a

cpu register, although it may also go to memory in some cases.

A set of flags are set on the results of the arithmetic or logical

operation. For example, it is convenient to know when the

result is zero after a subtract operation. A zero flag is set if

this is the case. There are eight flag bits that are treated to-

gether as a cpu register, even though they are not used in

the same fashion. The flag registers are called F and F'. When
used in register pair operations the A and F or A' and F'

registers would be grouped together. The flags will be further

discussed in this section and in chapters dealing with specific

sets of instructions. For the time being Table 1-1 shows the

names and functions of the flags.

Table 1-1. CPU Flags

Name Function

Sign(S> Holds the sign of the result. if positive,) if negative

Zero(Z) Holds the zero status of the result 1 if zero, if non-zero

Haif-

carry(H)

Holds the half-carry status of the result, if no half-

carry, i if half-carry. Not generally accessible by pro-

gram.

Parity/

Overflow

(P/V)

Holds the parity of the result or the overflow condition.

If used as parity, P ~ if the number of one bits in the

result is odd. or P = 1 if the number is even. If used as

overflow flag, V — if no overflow or V = 1 if over-

flow.

Add /sub-

tract^)

Add or subtract condition for decimal instructions. Add

= 0, subtract == 1. Not generally accessible by program.

Carry{C) Holds the carry status of the result, if no carry, 1 if carry

22

Data flow between the cpu and remaining TRS-80 system
is shown in Figure 1-5. Almost all data within the system uses
the cpu. As a program is being executed, the instruction bytes
making up the program are continually being fetched from
RAM memory and placed into the cpu instruction decoding
logic. If an instruction is four bytes long, four separate mem-
ory fetches are made to RAM memory, with the PC pointing
to each sequential byte in turn. Once the instruction is de-
coded, additional memory accesses may have to be made to
get the operand to be used in the instruction. The instruction
to add the contents of the A register and location 16400
(401OH) calls for the cpu to not only fetch the instruction,
but to fetch the value found at location 16400 to be added to

the value found in the A register. Similarly, the results of
operations may be stored back into memory. In addition to

transferring instruction bytes and operand data between it-

self and memory, the cpu also communicates with I/O de-
vices such as the line printer and cassette. The cassette in
Level II BASIC operates at 50 bytes per second. Each byte
on a write (CSAVE) is held in a cpu register and written
to the cassette interface logic one bit at a time. When a print
operation on the system line printer is done (LPRINT), a
byte of statics from the line printer is read into a cpu reg-
ister and checked. If the status indicates the line printer is

ready to receive the next byte, the byte representing character
data is transferred from a cpu register to the line printer.

Note that in both the cassette and line printer cases the data
may have been initially contained in a buffer in memory as
a cassette program or print line, but that it is transferred
from memory to the cpu register and from the cpu register
to the I/O device a byte at a time. Although it is possible to

bypass the cpu and transfer data between the I/O device and
memory using a Z-80 technique called cZirect-memory-access,

or DMA, the TRS-80 does not currently use this method and
we will not be describing it in this text.

In this chapter we've looked at the architecture of the
TRS-80 and especially at the internal architecture of the Z-80
microprocessor used in the TRS-80. In the next two chapters
we'll investigate two more topics closely associated with the
Z-80, the Z-80 instruction set, and Z-80 addressing modes.
After that we'll call a halt to theoretical discussions and get
our hands dirty (figuratively, anyway, unless you code with
a leaky pen) in learning how to use the assembler, editor,
and T-BUG.

23

In this chapter we will discuss the instruction set of the

TRS-80 system. The instruction set of the TRS-80 at the

assembly-language level is really the instruction set of the

Z-80 microprocessor in the TRS-80 as we pointed out in the

last chapter. If you have looked at the numeric list of the in-

struction set in the Radio Shack Editor/Assembler Manual

(26-2002), you may have been one of the recent wave of

trauma victims that have suddenly appeared all over the

country. There are many different combinations of instruc-

tions ! (There are well over five hundred, as a matter of fact I)

This chapter, among other things, will attempt to prove that

this massive, confusing list can be reduced to a tolerable

number of basic instructions. It will take some effort to learn

about the various instruction types, and a little more effort

to learn about the addressing modes covered in the next chap-

ter, but refuse to be intimidated ! There are hundreds of thou-

sands of assembly-language programmers in the country and

there is no reason you cannot be another.

The Z-80 Family Tree

One of the things that we might mention in passing con-

cerns the heritage of the Z-80 microprocessor. At many places

in the discussion of the instruction set in this book, the reader

may be prompted to say, "Why the devil did they do that?"
•?»»

24

One of the reasons that there are many different ways of doing
the same thing (say adding two operands) is related to the
predecessor of the Z-80, the 8080A, and its predecessor, the
8008. The 8008 is the grandfather of the Z-80. The 8008 grew
up in the early days of microcomputing, back in the early '70s
(this century). The 8008 was the first microprocessor on a
chip and had an instruction set of 58 instructions. Shortly
after the 8008 was introduced, another microprocessor, the
8080, was developed. The 8080 was a faster, more powerful
microprocessor than the 8008, and had an instruction set of
78 instructions. Eecently, a third generation of micropro-
cessor was developed—the Z-80. To compete in the hectic
microprocessor marketplace, the 8080 included the 8008 in-

8080,8008

PROGRAMS
RUN ON Z-80

8008 PRO-

GRAMS RUN

ON 8080

Z-80

INSTRUCTION SET

INSTRUCTION SET

INSTRUCTION SET

Z-80 INSTRUCTIONS

WILL NOT WORK ON

Z-80 OR 8080 IN-

STRUCTIONS WILL NOT
WORK ON 8008

Fig. 2-1. The Z-80 family tree.

structions in its repertoire, and the Z-80 includes the 8080
instructions in its repertoire. The reason for this downwards
compatibility is that existing programs can be executed on
the newer generations of microprocessors, saving costs on
software development. The situation for the instruction set
of the Z-80 is shown in Figure 2-1. All programs written for
both the 8008 and 8080 can be executed on the Z-80, assuming,
of course, that the limitations of the system are equal (such
as the same I/O device addresses, memory layout, and so
forth).

In carrying through the instruction set of the 8008 and 8080,
the Z-80 instruction set duplicates the architecture and gen-
eral approach of its two predecessors, but adds many new in-
structions of its own. If the reader sees many ways of doing
the same thing in future chapters, therefore, it is probably

25

related to the father's approach, or even the grandfather's.

Which approach is best, the experience of age, or the innova-

tion of youth? As in life, some of each.

How Long Is an Instruction?

The answer to this, of course, is "long enough to reach the

memory." Z-80 instructions are, in fact, one to four bytes

long with the average being about two bytes. This means that

in 4096 bytes of memory we can hold about 2000 assembly-

language instructions. This is quite a contrast to BASIC pro-

grams where each BASIC line probably takes up 40 characters

or so, allowing perhaps 100 BASIC lines. (Each assembly-

language instruction, of course, does much less than a BASIC

instruction, but does it much faster.) Many of the older 8080-

type instructions are one byte long, while the newer Z-80 type

instructions are four bytes long. The assembler program auto-

matically calculates the length of the instruction during the

assembly process, so you do not need to be concerned with

remembering instruction lengths.

im Sfiigg ORG 4mm ;S7HRT AT LOCBTIflB 4WH

4fS9iBi 88119 {h fcJfiH ;\m fi REGISTER KITH T
mm% W<2% I

'.'•

<3£2ffi&fi ;S70ET INTO CENTER

fffey t-i-jSsfi '??!, Z-J 1LOOP Jr LOOP ;LUUF Hu£

§8148 m 4R88H ;£D-5MT OF 4fl8»t

88888 TOTfiL mm
LOOP 4fff>

Fig. 2-2. Typical assembly-language listing.

To give the reader some feel for instruction lengths in a

typical program we will look at a typical assembly-language

listing, shown in Figure 2-2. The listing is the output display

or printed output of the assembler portion of the Editor/

Assembler after the assembly process.

The first column of the listing represents the location in

RAM where the program is to be stored. The value "4A00,"

for example, indicates that the "LD A,31H" instruction will

be put into memory locations 4A00H (18944 decimal) and

4A01H (it is a two-byte instruction). The next column is the

machine-language code of the instruction itself. For the "LD

26

A.31H" this amounts to two bytes (16 bits or four hexadecimal
digits). The "3E31" are the four hexadecimal digits repre-
senting the code. The next column is a line number for the
assembly, which is identical to the BASIC line numbers with
which you are familiar. The remaining columns represent the
assembly-language line for the instruction code; the first col-
umn is a label, the next is the operation code (a shorthand
representation of the instruction), the third is an operand
(in this case 31H (49 decimal). This format will be discussed
in detail in Chapter 4, so do not concern yourself with it at
this point. Do note the second column, however, and observe
how the instruction lengths vary from one to four bytes ; each
two hexadecimal digits are one byte.

Wait a Microsecond . . .

Another interesting attribute that we should discuss is in-

struction speed. Generally, the longer the instruction, the
longer it takes. The reason for this is that for each byte
of the instruction one memory access must be made. This
amounts to the cpu transferring one byte of instruction data
into an internal register for decoding. To make one memory
access in the TRS-80 takes about .45 microsecond, or about
y* millionth of a second. Add to this time some additional
overhead for executing the instruction and for obtaining oper-
ands from memory, and we find that TRS-80 instructions
range from 2.3 microseconds to 13 microseconds, with the
average being somewhere around 5 microseconds. To contrast
assembly-language code with BASIC coding, consider this

BASIC program

100 FOR 1 = TO 255

200 NEXT I

The short loop above takes approximately % second to exe-
cute in BASIC. A corresponding assembly-language program

100 LOOP DEC C jDECREMENT COUNT
200 JP Z,LOOP ;JUMP IF NOT ZERO

would take about 2 milliseconds, or two thousandths of a sec-
ond, approximately 350 times as fast!

The extremely fast speed of assembly-language programs
(when compared to higher-level languages such as BASIC)
makes this type of programming excellent for such applica-
tions as real-time game simulations, fast business sorts, or

27

any task that might take prohibitive amounts of time with

other methods.

Instruction Groups

Now that we've discussed some of the attributes of in-

structions, let's look at how we might whittle down that set

of Z-80 instructions from sawmill size into at least a cord of

wood. We'll do this by dividing the instruction set into six

different groups

:

Data Movement
Arithmetic, Logical, and Compare
Decision Making and Jumps
Stack Operations

Shifting and Bit Operations

I/O Operations

Data Movement: Loads, Stores, and Transfers

Much of the time in any program, whether it is BASIC or

assembly language, is spent moving data from one place to

another. In assembly-language programs the cpu registers

are used for very temporary storage while RAM memory is

used for data that may be somewhat less volatile. If one looks

at the TRS-80 system components of cpu, memory, and I/O

devices, one can say that data in the cpu is transient, data in

memory is active for program usage, and data stored on audio

cassette tape or floppy disc is most permanent. In any event,

data is constantly being moved from cpu registers to other

cpu registers, from cpu registers to memory, from memory
to cpu registers, and from one memory area to another mem-
ory area.

The general term for moving data from memory to a cpu
register is "load." Data is said to be loaded into a cpu register.

Remember, now, that the data we are talking about is operand

data rather than the data associated with the instruction op-

eration itself. The data associated with the instruction itself

is automatically brought into the cpu instruction decoding

logic in the course of normal program execution as the PC
(program counter) points to each instruction in turn. An
example of this difference would be the instruction "LD B,101"

which loads the value of 101 decimal into the cpu B register.

In many other microprocessors, the action of transferring

data from a cpu register to memory is called a "store." In the

28

Z-80 microprocessor of the TRS-80, however, the term load
is used to apply not only to transferring data from memory
to a cpu register, but also in transferring data from a cpu
register to memory. The instruction mnemonic, or shorthand
symbol, for a load operation is "LD." Any time you see an
"LD" on an assembly listing you know that data is being
moved between cpu registers or between cpu registers and
memory. The instruction

LD A,B .-LOAD A WITH B

for example, takes the contents of cpu register B and puts
it into cpu register A, leaving the B register unchanged. This
last point is an important one: All loads copy data, rather
than transferring it. The source of the data remains un-
changed, whether it is in memory or a cpu register.
Another example of a load is the Instruction

LD (4234H),A :STORE A REGISTER INTO LOC 4234

H

which takes the contents of the cpu A register and copies it

into RAM memory location 4234H (16948 decimal).
We mentioned in Chapter 1 that the general-purpose cpu

registers were 8 bits wide, but that sometimes they were
grouped as register pairs of 16 bits. To refresh your memory
(no pun intended), the register pairs were combinations of
cpu registers B and C, D and E, and H and L. The load in-
structions give us the ability to move data one byte or two
bytes at a time using single registers or register pairs.
When data is moved one byte at a time, the eight bits of

the source operand are copied into the destination register or
memory location. Of course the bits are copied with the same
orientation. LoaDing the H register with 01100001 from the
L register produces 01100001 in the H register, and not an-
other arrangement of bits.

When data is moved two bytes at a time, the 16 bits are
copied from one register pair to another, or between a register
pair and two memory locations. Let's see how this works.
Suppose that in register pair H,L we have the decimal value
1000. Now if we convert decimal 1000 into binary we have

BIT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

1

BIT

1 I

I 1 i i

H (MOST SIGNIFICANT}

L (LEAST SIGNIFICANT)

Fig. 2-3. Register pair data arrangements.

29

0000 0011 1110 1000, after we have added the necessary lead-

ing zeros to make up 16 bits. Figure 2-3 shows how that value

is arranged in the H and L registers. The upper 8 bits (one

byte) is in H and the lower 8 bits is in L. The same arrange-

ment holds true for B and G and D and E. B and D are always

the upper, or most significant, registers, while C and B are

always the lower or least significant registers.

That's easy enough to remember if you think of BC, DE,
and HL and remember H(igh) and L(ow). And to answer

that same heckler from the back of the room, yes, this was
the reason for the 8008 designation of "H" and "L." But what

happens in memory when a register pair is stored? When a

register pair such as H and L are stored by the instruction

LD (4A0AH),HL .-STORE H AND L INTO 18954

the low or least significant register, in this case L, is stored

in the memory location specified, in this case 4A0AH. The

high, or most significant register, in this case H, is stored in

the next memory location, in this case 4A0BH (18955). This

arrangement of low order byte folloxoed by high order byte

holds true for all types of data within a Z-80 assembly-lan-

guage program. As one would expect, data loaded from mem-
ory into a cpu register pair restores the register pair in the

same fashion. Figure 2-4 shows the store described above.

H {HIGH}

L (LOW)

4A0AH

4A0BH

{LOWS

(HIGH)

LO (4A0AH).HL'

Fig. 2-4. Memory arrangement for 16-bit data.

A group of load instructions called the block moves enables

from one to 65536 bytes to be moved in a single instruction,

or in a very few instructions. These load instructions avoid

the overhead of moving data in a long sequence of instructions

and are a powerful feature of the Z-80. The four block moves
will be discussed in detail in Chapter 6.

We won't attempt to list all of the possible loads in this

section. Many of them are dependent upon the addressing

30

INSTRUCTION IMMEDIATE FIELD

MEDIATE FIELD

REGISTERS (8,16 BITSl

|_

REGISTER TO

STACK OR
STACK TO
REGISTER

(16 BITS}

MEMORY STACK

REGISTER TO REGISTER

(8 BITS)

•• REGISTER TO

MEMORY OR

MEMORY TO

REGISTER (8,16 BITS}
|

CURRENT SET Of

CPU REGISTERS (NON-

PRIME) AND IX.iY.SP

,

REGISTER TO

I/O OR I/O

TO REGISTER (8 BITS?

I/O DEVICES

Fig. 2-5. Data transfer paths.

mode used in the instruction, which will be covered in Chapter
3. What we will do, however, is to illustrate the ways in which
8- or 16-bit data can be transferred from one part of the sys-

tem to another by the use of LD instructions. Figure 2-5 shows
the paths and indicates the types of instructions available in

the Z-80 to perform the transfers.

Arithmetic, Logical, and Compare

The worst part in understanding this group is the pronun-
ciation of "arithmetic." Contrary to what you learned in P.S.

49, the adjective is pronounced so that the last two syllables

rhyme with the last two of "charismatic." Novice program-
mers have been dismissed on the spot for the use of the com-
mon pronunciation ! This group includes instructions that add
and subtract two operands, instructions that perform logical

operations of ANDing, ORing, and exclusive ORing, and compare
instructions, which are essentially subtracts.

The most common type of arithmetic is the simple add in-

struction. Suppose that we have two 8-bit operands (two one-
byte operands) in cpu registers A and B, as shown in Figure
2-6. When the instruction

ADD A,B ,-ADD REGISTER B TO REGISTER A

31

is executed in the program, the contents of register B (the

source register) will be added to the contents of register A
(the destination register) and the result will he put into the

A register with the B register unchanged. All 8-bit arithmetic

and logical instructions operate in the same fashion; the

result always goes to the A register, and one of the operands

must have originally been in the A register. The instruction

SUB <HL) .SUBTRACT LOCATION 4400H(HL) FROM A

takes the contents of location 4400H, subtracts it from the

contents of the A register, and puts the result into the A reg-

ister, leaving the contents of location 4400H unchanged.

When an arithmetic instruction such as an add or subtract

is executed, the flags are set on the results of the instruction.

If the result of the subtract were zero, for example, the "Z"

flag would be set to a 1 ; if the result were non-zero, the Z flag

would contain a 0. A decision could then be made by a jump-

type instruction later in the program that would test the state

of the zero and other flags. The flags will be further discussed

in the appropriate material for the instruction group. Except

for the two special adds and subtracts that add in the carry

flag, that's about all there is to the 8-bit arithmetic group. As

with the loads, there are many varieties of addressing modes

that may be used, and these are discussed in the next chapter.

The logical instructions in this group work in similar fash-

ion to the arithmetic instructions. An 8-bit operand from

BEFORE ADD

BIT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

1

BIT

1 i i 1

1 i i i

A <43)

(29)

AFTER ADD

i i A {72}

1 1 t 1 {29}

Fig. 2-6. Sample ADD operation.

32

memory or another register is used in conjunction with the

contents of the A register. The result is put into the A reg-

ister and appropriate flags are set. The functions that may be

performed are ANDing, ORing, and exclusive ORing. You may
be familiar with these functions from BASIC. When two bits

are ANDed, the result bit is a one only if both operand bits are
a one. When two bits are ORed, the result is a one if either

bit or both bits are ones. When two bits are exclusive ORed,

the result bit is a one if and only if one or the other bit is a
one, but not both. For 8-bit operands, each bit position is con-
sidered one at a time, as shown in Figure 2-7. Here again
there are many addressing modes possible.

AND OPERATION

i i i i

1 i l] 1 i

i i i

OR OPER ATION

I I 1 i

1 I i i t] I

i 1 i l 1 i I

EXCLUSIVE OR OPERATION

1 i I i A

A REGISTER

A (AFTER)

A (AFTER)

1 1 1 i I 1

i I I 1 A (AFTER)

Fig. 2-7. Logical operations.

Compare instructions are very similar to subtracts. An
operand from memory or another cpu register is subtracted
from the contents of the A register. The flags are set as in

the subtract. The result, however, does not go to the A register,

but is discarded. A compare allows testing of an operand by

33

setting the flags without destroying the contents of the A
register, a useful instruction. There is only one compare, the

"CP" instruction, which again has several addressing modes.

In addition to the single compare instruction, there is a
block compare set of instructions that allows an 8-bit com-
pare of one operand to a specified block of memory locations.

This is one of the most powerful features of the Z-80, as it

is much faster than a software routine that does the same
thing, as would have to be implemented in the 8080A. There

are four block compare instructions and these will be dis-

cussed in detail in Chapter 6.

The instructions in the above discussion were 8-bit instruc-

tions ; that is, they operated with two 8-bit operands. The A
register was used in these instructions as an accumulator to

hold the results of the operation. The Z-80 also allows a 16-bit

add or subtract operation that uses the HL register pair in

much the same way as the A register is used in 8-bit opera-

tions. In these adds and subtracts, a 16-bit operand from an-

other register pair is added or subtracted from the contents

of HL, with the result going to HL. The flags are set on the

result of the add or subtract. The Z-80 also allows index reg-

ister IX or IY (two 16-bit registers) to be used as the destina-

tion register in place of HL.
The remaining instructions in this group are the increments

(INC) and decrements (DEC). These instructions are useful

for adding one or subtracting one from the contents of a cpu
register, a cpu register pair, or a memory location. Almost
all assembly-language programs are continually incrementing
or decrementing a count used as a loop control, index, or sim-

ilar variable, and the INCs and DECs are more efficient than
adding one or subtracting one by an ADD or SUB. Either
single cpu registers, register pairs, or memory locations (8
bits) may be altered by these instructions.

Figure 2-8 illustrates the actions of the arithmetic, logical,

and compare instructions and shows which cpu registers are
used for operands and what types of instructions are available.

Decision Making and Jumps

There are only two ways to alter the path of execution of

a program from BASIC, unconditionally or conditional upon
some result, such as a variable being greater than a specified

value. The Z-80 instructions "JP" and "JR" differ only in

addressing mode and cause an unconditional jump to a speci-

fied location, exactly identical in concept to a BASIC GOTO.

34

RESULT

TO A REG

ADDS.SUBTRACTS.

COMPARESXOGICAL
(8 BITS!

MEMORY

A

.

OTHER REG

OR MEMORY

REG OPERAND
+ i

INCREMENT

A nm OF MEMORY
LOCATION

INCREMENTS

OF SINGLE

REGISTER + ' H L
* p

B CINCREMENTS . ,

OF REGISTER
D E

IX

IY

HL, IX. IY OTHER
REG PAIR

1

ADDS.SUBTRACTS

{16 BITS) OF HL.

IX.IY AND OTHER

SP

RESULT TO

HL.IX.OR IY

Fig. 2-8. Arithmetic, logical, and compare action.

Of course, in assembly-language jumps, a memory location is

specified, rather than a line number. The instruction below
will jump to Level I or II ROM

JP G66DH :JUMP TO ATTENTION

A similar type of jump can be made conditional upon the set-

tings of the cpu flags. The flags, in turn, hoid the conditions of

an add, subtract, shift, or other previously executed instruc-

tions. These conditions are the conditions described in Chapter
1—zero (or non-zero) result, positive or negative result, two
types of carry, parity (essentially a count of the number of

"one" bits in the result), and overflow. The conditional jumps
are the only way the program has of testing the results of an
arithmetic or other operation, except for the conditional calls,

which are very similar. Let's see how they work

:

CP

jp

TOO

Z.42AAH

.-COMPARE A REGISTER TO 100

.-JUMP TO 17066 IF A = 100

35

The two instructions above cause the assembly-language

program to jump to location 17066 (42AAH) if the contents

of the A register are equal to 100. The CP (compare) instruc-

tion subtracts 100 from the contents of the A register. The
zero flag is set if the result is zero, that is, if the A register

holds 100 before the compare. If the A register does not con-

tain 100, a value other than zero will result and the zero flag

will not be set. The jump to 42AAH is made, therefore, only

if the A register contained 100.

The Z-80 instruction set also has a number of instructions

that are equivalent to BASIC GOSUBs. These are the CALL
instructions. CALLs are used to conditionally go to a subrou-

tine on the settings of the same flags used by jumps, or to

unconditionally transfer control to a subroutine. When the

transfer is made, the cpu remembers where the return point

is in similar fashion to saving the next BASIC line number.
The following instructions CALL a subroutine to calculate

the number of TRS-80 systems (why not?) and to return at

location 4801H

(47FE) CALL 4C00H ;CALCULATE NUMBER OF SYSTEMS
(4801) ADD 2 ,-ADD IN MINE AND URSULA'S

Note that in the above code the first instruction was located

at location 47FEH, and that the next was located at 47FEH
plus the length of the CALL (3 bytes), or 4801H (we'll get

the reader used to hexadecimal yet!). While there are a few
special jump instructions not mentioned, 99% of all jump and
CALLS will be similar to those shown above.

Of course, as in BASIC, every CALL must have a RETurn.
The Z-80 has two types of returns (that's correct!) condi-

tional and unconditional. The unconditional RET always re-

turns to the location following the CALL, while the condi-

tional RET returns conditionally upon the flag settings. And
that's about all there is to jumps. CALLs, and returns

!

Stack Operations

The stack area of memory was mentioned in the first chap-
ter. Recall that the stack area was used to store data and
addresses on a temporary basis. The first use of the stack by
Z-80 instructions has already been mentioned; CALLs auto-
matically save the return address in the stack as the call is

implemented. Let's look again at the last example, the CALL
to location 4C00H instruction which was located at RAM
memory location 47FE. When the CALL is made the PC (pro-

36

MEMORY

MEMORY
STACK

(SOME-

WHERE
IN RAM)

01H

48H

STACK POINTER

POINTED HERE
BEFORE CALL

AND POINTS

HERE AFTER CALL

47FEH CD

47FFH OOH

4800H 4CH

4801H

CALL 4C00H

(NEXT 1NSTRUCTIOM-

. EXECUTION OF THIS IN-

STRUCTION CAUSES CONTENTS
OF PC TO BE PUT IN STACK

PC AT CALL

-INSTRUCTION

POINTS HERE

(4801 Hi

Fig. 2-9. CALL stack action.

gram counter) points to location 4801H, the next instruction
(the PC is updated before the instruction is executed). As
the CALL is implemented, the contents of the PC is pushed
into the stack as shown in Figure 2-9. Each time the stack
is used, of course, the SP (stack pointer) register is decre-
mented to point to the next location to be used, or the top of
stack. Why is the next location called the top of stack, when
it looks like the bottom of stack? It's all in how one looks at it.

The reader may optionally turn the book upside down to get
a better picture of this action. When the RETurn associated
with the CALL is executed later in the program, the return
address is retrieved from the stack and put into the PC to
effectively cause a jump to the return address as shown in
the figure.

CALLs and RETs cause automatic stack action. The pro-
grammer may, however, temporarily store data in the stack
by executing a PUSH instruction. PUSHes store a register

pair into the stack area as shown in Figure 2-10. The data
may be restored into the same or different register pair by a
POP instruction. Of course the data comes off the stack when

37

a POP is executed in the same fashion it went in by the PUSH,
with the most significant byte going to the high-order register

(H, B, D, or the high-order portion of IX or IY) and the low-

order byte going to the low-order register (L, C, E, or the

iow-order portion of IX or IY). The following two instruc-

tions PUSH the contents of register pair BC onto the stack,

and then POP the data into register pair HL. This is a way
of transferring data between BC and HL, as there is no other

instruction that is able to perform this action.

PUSH

POP
BC ;CONTENTS OF BC TO STACK

HL ;Hl NOW HAS CONTENTS OF BC

In addition to use of the stack by CALLs, RETs, PUSHes,
and POPs, certain other instructions associated with inter-

rupts and the interrupts themselves cause use of the stack.

We will not be illustrating the use of interrupts in any detail,

since they go beyond the scope of most assembly-language

applications.

Shifting and Bit Operations

In the instructions discussed so far, we've covered a lot

of ground. In fact, any computer program we want could be

MEMORY
STACK

(SOME-

WHERE
IN

RAM)

ZOH

30H

STACK POINTER POINTED

'HERE BEFORE PUSH

AND POINTS

-HERE AFTER PUSH

/

E5H
PUSH HL •>

(NEXT INSTRUCTION)

EXECUTION OF THIS

INSTRUCTION CAUSES

CONTENTS OF HL

TO BE PUT IN STACK

30H 20H

Fig. 2-10. PUSH stack action.

38

written in just those instructions (in fact, any computer pro-

gram could be implemented in an eight or ten instruction

machine, if it were carefully designed!). The instructions in

this group, however, are niceties that make handling of bits

and fields somewhat easier.

The shift instructions allow a single register to be shifted

right or left. The shifting action can be visualized as pushing
in another bit at the right or left end of a cpu register. As the

cpu register can only hold 8 bits, a bit is "pushed out" from
the other end of the register. When a zero is pushed into the

end and the bit that is pushed out is discarded, the shift is

said to be a "logical" shift. When the bit pushed out is car-

ried around and pushed into the register from the other end,
the shift is said to be a "circular" shift or a "rotate." The Z-80
has both logical shifts and rotates and also has a type called

an "arithmetic" shift used for working with signed numbers.
All of the shifts can be used with the A register, and some
can be used with other cpu registers and with memory loca-

tions. Figure 2-11 shows some common shifts in the Z-80,

ROTATE SHIFT

,

7 6 5 4 3 2 10

LOGICAL SHIFT

7 6 5 4 3 2 10

ARITHMETIC SHIFT

7 6 5 4 3 2 1

»

LOST

LOST

DATA "RECIRCULATES" FROM

ONE END TO THE OTHER.

RIGHT OR LEFT ROTATION

POSSIBLE.

DATA PUSHED OUT ONE
END IS LOST. ZEROS

PUSHED INTO OTHER END.

RIGHT OR LEFT SHIFT

POSSIBLE.

SIGN BIT (7) IS RETAINED.

REST OF DATA SHIFTED

RIGHT INCLUDING BIT

7 INTO BIT 6.

Fig. 2-11. Shifts in the Z-80.

Shifts may be used for a variety of reasons in computer
programs including alignment of fields (subdivisions within
bytes), multiplication and division, testing of individual bits,

and computation of addresses. We'll say more about shifts in

Chapter 8.

Bit operations allow any bit within a cpu register or mem-
ory location to be tested, set to a one, or set to a zero. As
there are eight different bit positions that can be involved,

many cpu registers, and many different ways of addressing

39

memory, it's easy to see why there are so many different bit

instructions listed in the list of all Z-80 instructions. However,
as with a lot of the instructions, they all resolve down to only

three types, BIT, SET, and RES, which perform the test, set,

and reset functions. These three are also covered in Chapter 8.

I/O Operations

The last group of instructions we'll discuss here are the

I/O instructions. There are really only two in the Z-80, IN
and OUT. All the IN does is to transfer one byte of data into

a cpu register from an external device, such as cassette tape.

The OUT outputs one byte of data from a cpu register to an
external device. Although the original register used for these

was the A register, the Z-80 added the use of other cpu reg-

isters as the source (OUT) or destination (IN) for the input/

output operation. Another powerful feature the Z-80 added to

the basic 8080A instruction set was the ability to perform a

block input/output where the Z-80 will automatically transfer

a block of data into an input area or output a block of data

from an output area. The input "areas" in this type of opera-

tion are called I/O buffers or simply "buffers." More about

input/output operations in Chapter 10.

A Program of a Thousand Locations
Begins With the First Bit

The above homily was found inscribed on the first real dig-

ital computer, Babbage's Folly of a hundred years ago. It

still holds true today. None of the instructions discussed here

is that sophisticated; most are very easy to comprehend. If

you will believe that and the idea that there are many ways
to write a program that will do a specific task, you are pre-

pared to advance into the ranks of assembly-language pro-

grammers. In the next chapter we will look at the last tedious

description of the Z-80 instructions, their addressing modes.
We will then be in a position to "lay down some code" and
vindicate Babbage,

40

CHAPTER 3

The last chapter covered the types of instructions that are
available in the Z-80 of the TRS-80. We warned the reader
not to be intimidated by the many different instructions as
they could really be grouped into a much smaller number. In
this chapter we will talk about another factor that makes life

interesting for Z-80 programmers— the wide variety of ad-
dressing modes that are available in the Z-80. Many instruc-

tions have several types of addressing modes, and the choice

must be made of which one to use to do a certain task. Here
again the reader shouldn't be frightened by the addressing
modes available, as they are all readily understood.

Why Not One Addressing Mode?

If all instructions performed different functions, but worked
with operands from the same place and operands of the same
number, we could, in fact, have one addressing mode. How-
ever, we know from the last chapter that this is not true. We
can add two operands from two cpu registers or one operand
from a cpu register and one from memory. We can add two
register pairs. Obviously the ADD instructions for these cases

must be different, as they specify different locations for the
operands. There are a few other instructions that we did not
mention in Chapter 2 that require no operands. One example is

SCF, which sets the carry flag. It would be foolhardy (or at

41

least ill advised) to attempt to make the instruction format

for this type of instruction the same as the instruction format

for an ADD.
To further complicate the addressing situation, we must

consider the grandfather and father of the Z-80, the 8008 and

8080A, and their addressing modes. The 8008 had a very

limited addressing capability. To address an operand in mem-
ory, the HL register pair had to be loaded with the 16-bit value

representing the operand's location. If a load of the A register

from memory location 20AAH (8362) was to be performed,

the HL register pair was first loaded with 20AAH, and then

a "LD (HL)" instruction was executed to perform the load.

The HL register pair was used in this fashion as a register

•pointer to memory for most instructions involving an operand

in memory. The 8080A, however, improved upon this type of

addressing by allowing direct addressing of memory for

certain instructions. With the 8080A, the instruction "LD
A,(20AAH)" could be executed to directly load the A register

with the contents of location 20AAH, without having to first

point to that location with the HL register. Of course the

8080A retained the earlier addressing mode of the 8008. The

Z-80 further expanded upon the 8008 and 8080A addressing

capability by adding indexed addressing and other addressing

modes, which permitted such operations as "LD A,(IX+123)"
where index register IX points to the start of a table at

.20AAH, and the "+123" refers to the 124th entry in the table.

"And that, Jimmy, is why we have the various addressing

modes in the Z-80 today." "Gee, Mr. Computer Science, could

we look at the Z-80 addressing modes in more detail now?"
I thought he'd never ask . , .

Implied Addressing: No Addressing at All

The first of the addressing modes is implied addressing.

This mode is used for simple instructions that require no oper-

ands, such as the SCF instruction which sets the carry flag.

Other instructions of this type are CCF.
r
Complement Carry

Flag, DI, .Disable interrupts, EI, Enable interrupts, HALT,
Halt CPU, and NOP, No Operation, to name a few more. Be-

cause these specify a simple action and no operand, they can

generally be held in an instruction of one byte, as is shown
in Figure 3-1. Every time the cpu encounters the SCF instruc-

tion it will set the carry flag in the cpu and fetch no more
bytes; the cpu knows the SCF instruction is only one byte

long, as it knows the lengths of all other instructions.

42

ACTION:

CARRY

FLAG

BIT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

i

BIT

I i 1 I 1 BYTE

8 BITS = I BYTE

SET CARRY FLAG (SCR = 00110111

8IT CONFIGURATION IN ONE BYTE

Fig. 3-1. Implied addressing.

Immediate Addressing

In immediate addressing the operand is contained within
the instruction itself, rather than in a memory location. This
type of addressing is used to load or perform arithmetic or
logical operations with constants. Suppose we want to add 23
to the contents of the A register. One way to do this would
be to have the value of 23 in a memory location and then per-
form the ADD as in

LD B
r
A

LD A,(2I11H)

ADD A.B

MOVE A TO B

211 1H (8465) CONTAINS 23

ADD A REG AND B REG

If we had to use many constants throughout the program,
however, the program would be filled with locations that held
constants of various values, and we'd have to recall where
each one was located.

Immediate addressing gets around this problem by allowing
an instruction such as

ADD A,23 ;ADD 23 TO THE A REGISTER

The actual appearance of the "ADD A,23" is shown in Figure
3-2. The first byte of the instruction is the operation code of
the instruction, the code that tells the cpu what the instruction
is and how long it is (the implied type of instructions really
had a one-byte operation code). "Operation 'Code" has been
shortened to "opcode" (those long cafeteria lunches again).
In general, the first byte of an instruction in the Z-80 is the
opcode, but some instructions have two bytes as opcodes. The
second byte of the "ADD A.23" is the immediate data value
of 23 decimal or 17H. The data value is in the instruction it-

43

self, rather than in another memory location located far away
from the instruction.

Both 8-bit and 16-bit (one and two byte) immediate in-

structions are available in the Z-80. The one byte immediate

instructions load a register or allow arithmetic or logical op-

erations on the A register. Some samples are

LD H.100 .-LOAD H REG WITH 100

LD A,0FBH .-LOAD A REG WITH -5
ADD A.50H ;ADD 50H (80) TO A REGISTER

AND A,7 :AND LOWER THREE BITS

The two byte immediate instructions in the Z-80 are used

to load register pairs with constants. The instruction

LD BCJ000 ?LOAD BC WITH 3000

loads register pair BC with a constant value of 3000 decimal.

As two bytes are involved in the data, the immediate data

value in the instruction is contained in bytes 2 and 3 of the

instruction, as shown in Figure 3-3. Byte one is the opcode for

a "LD BC" type instruction. Note that the hexadecimal repre-

sentation of 3000, 0BB8H, is reordered least significant byte

first in the instruction. As we mentioned earlier, all 16-bit

data is handled in this manner in the Z-80. // you are doing

assembly-language programming, you will never have to

SAMPLE
ACTION: 10

I
0101 0| 01 01 It 11

+ 00010111

loloioiiliioiuoi

A= 3

26

A = 26

OPCODE BYTE

11000110 = C6H

BiT

7

BIT

6

BIT

5

BIT

4

BiT

3

BiT

2

BiT

i

BIT

J

1 i 1 1

1 i i i

BYTE0

BYTE1

BOTH BYTES TAKEN TOGETHER MAKE
UP AN 'ADD A.23- INSTRUCTION

IMMEDIATE
DATA VALUE

00010111 = 23 10 = 17H-

Pig. 3-2. Immediate addressing, 8 bits.

44

ACTION;

10 n 10 u 10 oo = aooojo

\

BIT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

1

BIT

1

I 1 1 i

1 i i

OPCODE BYTE

00000001 = 01H

BYTEO

BYTE1

BYTE 2

MOST SIGNIFICANT

BYTE

OlOlQlOlllOllll 1 1 01 1 1 1 1 1| | Q| Q| = 300Q 10

LEAST SIGNIFICANT/
BYTE

THREE BYTES TAKEN TOGETHER MAKE
UP A ID BC.3000" INSTRUCTION

Fig. 3-3. Immediate addressing, 16 bits.

worry about putting data in the right order; the assembler
program will do it for you. When the assembler sees the "LD
BC3000" it will generate a 3-byte instruction, with the data
reversed in the second and third bytes. If you are "patch-
ing" code in machine instructions, however, or entering in-
structions in machine form (and there are some occasions
when this must be done), you must be aware of this format.

Register Addressing

When a program adds two operands from cpu registers, the
cpu knows that one of the operands (the destination) is in
the A register. The location of the second operand (the source)
must be coded in the instruction, however. Now, we have 14
general-purpose cpu registers, A, B, C, D, E, H, and L and
their primed equivalents. As only one set, the primed or non-
primed, is active at any given time, there are really only seven
registers that may be used in an ADD operation with the A
register. Does it sound reasonable to have a one-byte operation
code, followed by two bytes indicating the code for the cpu
register? Not at all. Since in three bits we can express the

45

numbers through 7 (000 through 111 binary), we can in

fact code those register names into a three-bit value contained

within the instruction itself. This code is called a field, since

it is smaller than a byte. Its use is shown in the "ADD A,D"

instruction of Figure 3-4 which adds the D register to the A
register. The register field value of 010 signifies that the D
register will be used in the ADD. Note that the instruction is

only one byte ; that byte includes both opcode information and

the register field information.

ACTION" lolQlOlOllUlllll A - 15

+
I
o 1 1 1

o
i
o

I
o

1
oToTol D = 64

IQIIIQIOUIIIIHI A= 79

BiT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

i

BIT

i 1 BYTEO

THESE BITS DEFINE

THE OPERATION

THIS FIELD DEFINES

THE D REGISTER

THE EIGHT BITS TAKEN TOGETHER

DEFINE AN "ADD A.D" INSTRUCTION

Fig. 3-4. Register addressing.

In addition to register fields that specify single cpu reg-

isters, certain instructions specify register pairs. There were

originally four register pairs in the 8080A, A and flags, B and

C, D and E, and H and L. Because of this many instructions

will have a two-bit field (not a value judgment) that is used

to specify one of the four original pairs. An example of this

would be the "ADD HL,BC" instruction which adds register

pair BC to register pair HL. As Figure 3-5 shows, a two-bit

field within the two-byte instruction is used to specify a code

of 00 for register pair BC.
With the expanded instruction set of the Z-80, however,

fields must also specify the additional 16-bit registers of IX
and IY, as shown in Figure 3-6. Here the instruction is an

"ADD IY.SP", in which the contents of the 16-bit SP (stack

pointer) register is added to the IY register.

46

SAMPLE

ACTION: i 1 OOOQOOOOl 1Y = 256 IO

+
1010000001000000011 SP = 16384 10

01000001 OOOOOOOOi IY » 16640
i0

BIT

7

BIT

6

BIT

5

BIT

4

BiT

3

BIT

2

BIT

i

BiT

1 1

.,

BYTEO

\ THESE BITS

\ (FIELD} DEFINE THE
\ BC REGISTER PAIR

THESE BITS

DEFINE THE
OPERATION

THE EIGHT BITS TAKEN
TOGETHER DEFINE AN

"ADD HL.BC" INSTRUCTION

Fig. 3-5. Register pair addressing.

Once again, the assembly-language programmer need not
be concerned with constructing the instruction with the proper
codes in the fields, but may infrequently need to investigate the
machine-language code spewed out by the assembler.

SAMPLE
ACTION: IQOOQOOOf 000000 Q-Ql 1Y=256 10

_ , +
|Q1000000|000000 "0] SP =

16384i

10 1 OOQOOOOOj |y = 16640
10

BIT BIT BIT BIT BIT BIT BiT BIT

7 6 5 4 3 2 10
1 I 1 i 1 i 1

1 i i 1

BYTEO

BYTE 1

THESE BITS (FIELD)

DEFINE THE SP. THE

REMAINING 14 BITS

DEFINE THE OPERATION

THE TWO BYTES TAKEN TOGETHER
DEFINE AN "ADD IY. SP" INSTRUCTION

Fig. 3-6. Index register addressing.

47

Register Indirect

We mentioned this form of addressing earlier in the chapter.

This was the main method of addressing memory in the 8008,

and it used the HL register to point to the memory location

of the operand. The 8080A added the capability to use BC and

DE as "pointers" for loading the A register and storing the

A register. You may be asking why this method should even

be used in the Z-80. The answer is that many instruction types

do not allow the operands to be addressed directly. While it

is possible to load the A register from a memory location di-

rectly specified in an instruction [such as "LD A,(1234H)"]»

it is not possible to add a memory operand directly to the A
register from memory [such as the invalid instruction "ADD
A,(1234H)"]. It is possible, however, to set up the HL reg-

isters as a register pointer and then do an ADD, such as "ADD
A,(HL)" or to set up the HL registers and do a variety of

other things. In general, the only direct way into the cpu reg-

isters is through the A register. It alone is the only register

(with two exceptions that permit the HL register pair to be

loaded or stored) that can be loaded or stored by an instruction

that specifies a direct memory address. Other registers in the

cpu must use register indirect means to load or store data,

or some form of indexing covered below. To show how this

works, consider the following instructions which load the B,

C, and D registers with the contents of memory locations

1000H, 2000H, and 3000H. Two ways of doing this are shown,

one by loading the memory location into the A register, and

then transferring it to the other cpu register, and the second

by using the register indirect method.

(i)

(2)

LD A,(1000H)

LD 8,A

LD A,(2000H)

LD C,A

LD A,{3000H)

LD D,A

LD HLJ00OH
LD B.{HL)

LD HL,2000H

LD C,{HL)

LD HL.3000H

LD D,{HL)

•GET CONTENTS OF 1000H

TRANSFER TO B

;GET CONTENTS OF 2000H

TRANSFER TO C

GET CONTENTS OF 3000H

TRANSFER TO D

SETUP POINTER REGISTER PAIR

LOAD B WITH CONTENTS OF 1000H

SETUP POINTER REGISTER PAIR

LOAD C WITH CONTENTS OF 2000H

:SETUP POINTER REGISTER PAIR

LOAD D WITH CONTENTS OF 3000H

The register indirect method of addressing is used for many
different types of instructions including loads, arithmetic,

logical, and shifts. It is always used with 8-bit (one byte) type

of operations. Because it does not have to specify a memory

48

location, it is usually a one-byte instruction, and really comes
close to being an implied addressing type. A typical register
indirect instruction is shown in Figure 3-7 which shows a
rotate-type of shift performed on the memory location ad-
dressed by the HL register pair used as the pointer.

SAMPLE
ACTION: BEFORE j

Q 1 Q 1
j
Q l] HL = 16641

001 1001 1
MEMORY LOCATION

16641

AFTER iOlQOQOOljOQQOOOOlf HL = 16641 (UNCHANGED)

1001 1001 MEMORY LOCATION

16641

BIT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

i

BIT

1 1 i i 1

1 1

BYTE0

BYTE 1

THE TWO BYTES TAKEN TOGETHER DEFINE

AN -RRC (HL)" TYPE INSTRUCTION WHICH

USES HL TO DEFINE A MEMORY
LOCATION FOR A ROTATE.

Fig. 3-7. Register indirect addressing.

Direct Addressing

Direct addressing is used with two general types of instruc-
tions, loads and jumps. We have been speaking of loading the
A register directly and contrasting it with indirect means.
When a direct instruction of this type is used, the second and
third bytes of the instruction hold the 16-bit (two byte) mem-
ory address of the memory location to be used. The instruc-
tions "LD A,(4000H)" and "LD (4000H),A", which load A
with the contents of location 4000H (16384) and store the
contents of A into location 4000H, respectively, are shown in
Figure 3-8. The two bytes representing the address are re-
versed, with the low order byte first, and the high-order second.
The HL register pair may also be stored or loaded directly

with this type of addressing. In this case the register pair is

stored in two memory locations as two bytes of data are in-

49

SAMPLE
ACTION: 000111 1 i

*

MEMORY
LOCATION 4QQ0H

"LDA.WQQQH)"

THIS BYTE DEFINES THE OPCODE 3AH

BIT

7

BST

S

BST

5

BIT

4

BIT

3

BST

2

BIT

I

BIT

i 1 i i

i

1 1 1 Q I 1 1 OTOTO" I
Q I 1 1 1 1 01 1 = 4000H = 16384io

''BIT

7

BIT

6

BIT

5

BST

4

BIT

3

BIT

2

BIT

1

BIT \
\

i 1 1

/

'

1

^THiS BYTE DEFINES

THE OPCODE 32H
SAMPLE
ACTION:

'LD{4Q0OH).A*

BYTEO

BYTE 1

BYTE 2

T
MEMORY

LOCATION 4000H

00011 i 1 1

Fig. 3-8. Direct addressing.

volved. As usual, the first (lowest) holds the low-order byte

and the next (highest) holds the high-order byte. The address

used in the instruction itself points to the first byte of memory
to be used. The instruction "KD HL,(5000H)" will load reg-

ister L with the contents of memory location 5000H (20480)

and register H with the contents of location 5001H (20481)

as shown in Figure 3-9. Register pairs BC and DE and SP, IX,

and IY may also be loaded or stored directly.

Direct addressing is also used with CALLs and jump in-

structions. All CALLs are direct addressing types, and all

jumps are direct addressing except for the relative type of

jumps covered later in this chapter. The format for CALLs
andyJP-sJs showji in Figure 3-10. The first byte specifies the

opcode for the instruction and informs the cpu whether the

instruction is conditional or unconditional and whether it is

50

OPCODE BYTE = 2AH

BIT

?

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

1

BIT

i i 1

1 1

BYTE

BYTE!

JBYTE2

MS BYTE LS BYTE,

l0|l|0|l|0|0|0|0|0|0|0|O|0|0|0|Ql = 5O00H

THESE THREE BYTES TAKEN
TOGETHER DEFINE AN ID HL.

(50O0H1" INSTRUCTION

ACTION:

MEMORY LOCATION

50DOH

MEMORY LOCATION

5O0IH

Fig. 3-9. Direct addressing involving HL.

a jump or CALL. The second and third bytes are the address
of the jump location or CALL location. This data is not used
to reference a memory location as with other types of instruc-
tions, but is simply jammed into the program counter to re-
place the "next instruction" address that was automatically
calculated when the instruction was first accessed. The effec-
tive action is a jump or CALL to the location specified. As
usual, the 16-bit address is in reverse order in the instruction.

2 i o

MEMORY
LOCATION

4FF8H

4FFCH

4FF0H

4FFEH

4FFFH

SOOOH

5001H

JUMP OR CALL OPCODE

LEAST SIGNIFICANT

BYTE OF JUMP ADDRESS

MOST SIGNIFICANT

BYTE OF JUMP ADDRESS

BYTE

C3H

00H

50H

C6H

03H

C6H

04H

JP 5000 H INSTRUCTION < EXECUTE

ADD A.3 INSTRUCTION I (BYPASS)

ADD A,4 INSTRUCTION < EXECUTE

Fig. 3-10. Jump and CALL format.

51

Relative Addressing

Relative addressing is used only for relative jump instruc-

tions; no other types of instructions use the relative type of

addressing, including CALLs. The relative jump uses two

bytes to specify the instruction, one byte for the opcode, and

one byte for the memory address. Oh, oh ! There's that kid in

the back of the class again. He's asked a very valid question

—

how can one byte specify a memory location when it takes 16

bits or two bytes to specify a memory location value of 000OH
to FFFFH (0 to 65535). It would appear that we can't jump

to anything other than locations through 255, the values

that can be held in one byte. Not true ! What if we used that

one byte to find the memory location by adding the contents

of the program counter (PC) to the value found in the byte.

The new address or effective address would be the address in

the PC plus the value in the instruction byte. What's in the

PC? Well, we know that the PC points to the next instruction

after the jump. If we add the value in the instruction to the

PC we get a value that points to the next instruction -128

through the next instruction plus 127, depending upon, what

was in the instruction byte displacement In fact, with this

type of instruction we can jump within a limited range of

256 bytes of the instruction itself. Since most of the jump des-

tinations within a typical program are close to the jump in-

struction, this appears to be a valuable instruction, as it saves

one byte of instruction length over a regular JP, Let's see how
this works. Suppose that at location 4300 we have a jump to

location 4350H. After the "JR 4350H" instruction has been

fetched, the PC points to location 4302H, the next instruction.

If we look at the second byte of the JR instruction, we find

that the assembler has put a 4EH there. Adding the 4EH and

4302H we obtain 4350H, which is the jump address (effective

address) that is jammed into the PC to cause the jump. This

process is shown in Figure 3-11.

The second byte of the JR instruction actually holds an 8-bit

signed value in this case. Rather than representing a range of

binary values from through 255, the displacement in the

second byte represents a range of -128 through +127. Binary

numbers in this two's complement form will be discussed

further in Chapter 6, but for now just remember that the

displacement may also be negative in a JR. Of course in the

JR, as in other instructions, the programmer does not have

to tediously compute the value to be put into the displacement

byte ; the assembler will automatically do it for him. (That's

52

MEMORY .

LOCATION

7 6 5 4 3 2 I \

!

ADD A.5 <J

JR 4350H <!

LD A.(50OOH) \

ADD A,B

LD (5O00HLA

LD A,(6O00H) /

i

TO /
4350H

AM = 4302H
PER

MENT = 4EH

IVE = 4350H

SS

PROGRAM COUNTER
AFTER BYTE FETCHED

42FEH C6H 42FFH

42FFH 05H 4300H

4300H 18H 4301H

4301H 4EH 14302HI

4302H 3AH 4303H

4303H QOH 4304H

4304H 50H 4305H

4305H 80H 4306H

4306H 32H 4307H

4307H 00H 4308H

4308H 50H 4309H

4309H 3AH 430AH

430AH OOH 4308H

430BH 60H 430CH

PROGF

COUN

+
DISPLAC!

EFFEC1

ADDRE

Fig. 3-11. Relative jump action.

why we have computers!) You'll see in the next chapter that
the instruction referenced may actually be given a name,
much in the same fashion as a BASIC variable name, which
the assembler will use in figuring out what the displacement
should be.

A Special Type of Call

The RST, or Restart instruction, started out in the 8080

A

as an instruction geared for interrupts to the microprocessor,
special signals to the cpu that signal external events such as
typed characters or "line printed." In the TRS-80, however,
the RST instruction is used for a second purpose, that of a
"short" CALL, to call a subroutine. The RST permits a call

to one of eight memory locations located at either 0000H,
0008H, 0010H, 0018H 0020H, 0028H, 0030H, or 0038H (dec-
imal

? 8, 16, 24, 32, 40, 48 or 56). As the RST is only one byte

53

long, it saves two bytes over a normal GALL instruction and

is valuable for commonly used subroutines that would be fre-

quently called in a program.
The appearance of an RST is shown in Figure 3-12. There

is a three-bit field that specifies which of the eight locations

is being CALLed as a subroutine. The actual location ad-

dressed is found by multiplying the contents of the 3-bit

BYTEO

BIT

7

BIT

6

BIT

5

BIT

4

BIT

3

BIT

2

BIT

1

BIT

1 i X X X i i 1

FIELD DEFINING

MEMORY LOCATION

000 = O00OH

001 » 0008H

010 = 0010H

011 = 0018H

100 = 0020H

101 = 0028H

110 = 0030H

111 = Q038H -*

MEMORY LOCATION

FOR CALL ACTION

Pig. 3-12. Restart instruction.

field by eight. Naturally, the program does not have to do

this dirty work, but simply specifies an

RST 18H ;CALL ADDITION SUBROUTINE

or similar instruction to generate the instruction.

Indexed Addressing

This is one of the powerful addressing modes added to the

base 8080A instructions by the Z-80. Indexing allows the as-

sembly-language program to easily access data that is ar-

ranged in contiguous tables. Suppose, for example, that we
have a table of employee data as shown in Figure 3-13. Each
employee record has name, address, marital status, number
of TRS-80 systems owned, and other relevant particulars. It

54

would be nice to have the capability to access data grouped
around a particular employee record in the table. We know
that we could do this by other addressing means, such as
loading the A register directly but this is not an elegant way
to do things, and we would like to consider ourselves sophis-
ticated programmers. Take heart ! The Z-80 indexed address-
ing capability affords an elegant solution (or at least a nice
one . . . well, it's pretty good . . .)

.

Initially the program loads the value representing the ad-
dress of the table entry into an index register, in this case
IX, although IY could have been used as easily. Now, to access
any data near the record, it's simply a case of using an in-

EMPLOYEE DATA
TABLE

EMPLOYEE
RECORD

EMDTAS EMPLOYEE #1

EMPLOYEE #2

EMPLOYEE #3

EMPLOYEE #H

NAME
20 SYTES

ADDRESS

35 BYTES

TELEPHONE
10 BYTES

M|S[TJ Z j ND"

*

i Of TRS-80S

+

+20

+ 55

+ 100 (101ST BYTE)

Fig. 3-13. Indexed-addressing table example.

dexed instruction. If the index register had been loaded with
5000H, the instruction

ID B,(!X+ 100) .-GET # OF TRS-80S

would load the 101st entry, the number of TRS-80 systems,
into the cpu B register. In other words, the cpu creates an
effective address, similar to the relative jump effective address,
by adding the contents of the index register with a displace-
ment byte from the instruction. In the case above, the instruc-
tion would appear as shown in Figure 3-14. The first two
bytes are opcode and a register field that specifies the register

55

LD B,(1X + 100}

7 6 5 4 3 2 i

i 1 1 i 1 1

JjLJL 1 1

i 71 1

REGISTER FIELD.

SPECIFYING B

OPCODE

>SIGNED DISPLACEMENT

01100100 = IOOio = 64H

(IX) = 5000H

D1SPL. 64H -

50G4H « EFFECTIVE ADDRESS

EMPLOYEE RECORD

Fig. 3-14. Indexing into table.

to be loaded. The next byte is a signed displacement that is

added to the IX register to form the effective address ; in this

case the displacement is 64H as shown. The effective address

calculated for the access here is 5000H + 64H or 5064H, the

memory address of the number of TRS-80 systems for em-
ployee number one.

Indexing using the IX or IY registers may be used for a

variety of Z-80 instructions, but, of course, is always used

when the address of a memory operand is used in IX or IY.

BIT NUMBER 7 6 5 4 2 i

MOST
SIGNIFICANT

BIT

POSITION

LEAST

SIGNIFICANT

BIT

POSITION

Fig. 3-15. Bit numbering.

56

We will speak more of indexing in Chapter 9, where table and
other data structures are discussed.

Bit Addressing

All of the addressing done in the preceding sections refer-
enced a memory location or cpu register byte. The bit address-
ing mode, used in the bit instructions, references a single bit

somewhere in memory or a cpu register. The format of this

addressing mode specifies a bit position from 7 through 0. The
instruction

SET 6,(HL) .-SET BIT 6 OF MEMORY BYTE

sets bit 6 of the memory location pointed to by the HL register
pair pointer. Bits in memory, cpu registers, or other TRS-80
system components are always numbered as shown in Figure
3-15. The most significant bit (msb) is numbered bit 7, and the
least significant bit (Isb) is numbered bit 0. These numbers
correspond to the power of two represented by the bit position
(bit 7 is 128, 6 is 64, etc.).

This addressing mode is used with the instructions of the
bit instruction group only, the BIT, SET, and RES instruc-
tions. The bit addressing mode allows other addressing modes
to be used in the instruction (as do other instructions, in
fact), so that bit addressing may be used in conjunction with
register indirect, indexed, or register addressing.

Conclusion and Confusion

This concludes the discussion of addressing modes used in

the Z-80. The worst problem in the use of the addressing modes
is not in understanding what they do, but in remembering
which instructions use which addressing modes. I'm afraid
that there is no magical solution to this except reference to

Appendices I and II and experience. The saving grace is that
there are always many ways to code a particular program,
both in terms of which instructions to use and what their

addressing types should be. There is no one correct solution to
any programming problem, and there are very few "bad"
programs either.

In the next chapter we will look into the use of TRS-80
Editor/Assembler and T-Bug packages and assembly-language
and machine-language coding. If you have made it through
these first few chapters, you have an excellent chance of be-
coming a certified TRS-80 assembly-language programmer

!

57

Now that you have digested the necessary background in-

formation on the TRS-80 and Z-80 (hope it wasn't too Ming)

,

we are ready to assemble some assembly-language programs

and run them. There are basically two ways to construct and

implement machine-language programs for the TRS-80. The

first way is by machine-language coding and the second is by

assembly-language coding. In the first method, a program is

written out, or coded, on paper and manual methods are used

to construct the proper sequence of instructions for the Z-80

;

the program is actually coded in machine language. In the

assembly-language method, the Editor/Assembler is used to

translate a symbolic form of the instructions into machine-

language, which is then loaded into the TRS-80 by the loader

portion of the Editor/Assembler. Is the Editor/Assembler

really necessary? For all programs over one instruction in

length, the Editor/Assembler is almost a necessity for ease

in editing, assembling, and loading programs. Machine-lan-

guage can be employed in place of the Editor/Assembler, but

only if the user likes to do tedious and exacting work. The

exception to this is that some machine-language coding will

give the TRS-80 user great insights into the way the Assem-

bler constructs programs. Once he has this insight he then

will probably want to do all of his coding in assembly language.

58

Machine-Language Coding

To show the reader how machine-language coding is done,
let's write a program to write a "1" at the center of the video
display. We know from BASIC that the video display has
1024 different character positions, 64 on the first line, 64 on
the next, and 64 on each of the 16 lines making up the screen.
We also might know that each character position has a video
display memory location associated with it, starting at mem-
ory location 3C00H (15360) and ending at 3FFFH (16383).
If we wish to display a "1" in the exact center of the screen,
or as close as we can get, we would have to store that "1" in
the memory location associated with line 9, 32 characters over.
This will be location 15360 + 8 lines at 64 characters per line

+ 32 characters or 15360 + 512 + 32 = 15904 (3E20H). See
Figure 4-1 for a diagram of the screen and memory asso-
ciated with it.

Now that we know ivhere to store the "1," how do we store
it? The first thing that comes to mind is a store instruction.

64 CHARACTERS

LINE!

LINE 16

15360

15361

t

16382

16383

t

3FFEH

3FFFH

LINE 16.CHARACTER 63

LINE 16.CHARACTER 64

Fig. 4-1. Screen addressing.

59

We can load the "1" into a cpu register and then store it into

location 3E20H. One question that comes to mind is the code

for the "1." This is a 7-bit ASCII code representing the alpha-

betic characters, numeric values, and special characters as

shown in the Level II or Editor/Assembler manuals. The code

for a "1" is the value 00110001 or hexadecimal 31H (the 8th

bit is set to a zero). The following instructions load the A
register with the code for a one and then store it into loca-

tion 3E20H.

LD A.31H ;LOAD A REGISTER WITH "V
LD <3E20H),A :STORE "V INTO CENTER OF SCREEN

The first instruction in the above program is an immediate

addressing type load which loads "1" from the immediate

data in the instruction into the A register. The next instruc-

tion stores the A register into location 3E20H. The paren-

theses around the 3E20H indicate an address rather than a

data value.

Well, it appears that this program should work. Our next

task is to translate the mnemonics for the instructions into

the actual opcodes, data fields, and addresses that can be input

to the Z-80. We know from our discussion in the last chapter

that the 8-bit immediate instructions have one byte for the

opcode and one byte for the immediate value. If we look in

the Editor/Assembler manual, we find that the opcode for the

LD A is 00RRR110, where "RRR" represents the register code

for the cpu register to be used. For an A register load, this field

is 111, so we now have 00111110, or 3EH. Let's write the op-

code down opposite the instruction.

3E 31 LD A,31H :LOAD A REGISTER WITH "?"

LD {3E20H),A ;STORE "1" INTO CENTER OF SCREEN

We've also written the immediate data value of 31H to be

loaded into the A register. Now let's look at the second in-

struction. As this is a direct store, we know that it must con-

tain a two-byte address for 3E20H. In this case the opcode is

one byte long and is a 32H, with no fields. The address of

3E20H is put in reverse order into the second and third bytes

of the instruction and the opcode is put into the first as follows

3E 31 LD Af
3TH ;LOAD A REGISTER WITH "1"

32 20 3E LD (3E20H),A ;STORE "1" INTO CENTER OF SCREEN

About the only thing left in this program is to decide where

in RAM it is to reside. In most programs we must know this

before we start a manual or automatic assembly process, since

many of the jump and CALL addresses are direct addresses

60

that refer to locations within the program. A good area for all

systems, Level I or II, 4K and larger configurations would
be near the end of the 4K RAM area or 18944 [the RAM
area starts at 16384, and 18944 is 16384 plus 2560 or 18944
(4A00H)]. We will now assign the locations for the two in-
structions at 4A00H and 4A01H plus two bytes for the length
of the LD A,31H or 4802H.

4A00 3E 31 LD A.3IH ;LOAD A REGISTER WITH "1"

4A02 32 20 3E LD (3E20H).A ;STORE "1" INTO CENTER OF SCREEN

In the process of hand-assembling the program above, we
have had to do a number of things the Editor/Assembler could
have done much more easily. We had to look up the opcodes for
each of the instructions, insert the proper code for the A regis-
ter in the first instruction, reverse the address and put it into
the second instruction, find the length of the instructions and
properly- calculate the locations for each instruction, and find

the code for the "I", All of these things could have been per-
formed easily by the Editor/Assembler, leaving us free to
concentrate on the logic of the program. In addition, the As-
sembler performs many other functions, such as data error
checking, relative address range checking, checks on the num-
ber of operands, and so forth. For these reasons, we will be
concentrating on use of the Editor/Assembler in the remain-
der of this book, although the reader may do his own machine-
language coding from the instructions in the text, if he chooses
to do so.

The TRS-80 Editor/Assembler

The TRS-80 Editor/Assembler is a program and documen-
tation for 16K Level I or II systems. In the remainder of the
book, we will assume that the reader has access to the Editor/
Assembler and to the Editor/Assembler User Instruction
Manual (#26-2002), The description in this chapter is meant
to supplement the descriptions and operating procedures
found in that manual.
As an example of edit and assembly of a new program, let's

take the huge two-instruction program we did in machine
language, edit and assemble it, load it, and execute it on the
TRS-80. The two instructions we had originally were in sym-
bolic form, that is we used symbols such as A to represent the
A register code of 111.

LD A.31H ,-LOAD A REGISTER WITH "1"

LD <3E20H).A ,-STORE "1" INTO CENTER OF SCREEN

61

ORG 4A00H
LD A..31H

LD (3E20H),A

END 4AO0H

Before we begin editing and assembling, we need a few more

things in this program and every program to put the program

in proper format for the assembler. An "ORG" statement tells

the assembler where the program will reside after it has been

loaded. Without an ORG (ORiGin) the assembler could not

assemble the direct addresses used in some of the instructions.

We'll use the same origin as in our machine-language version,

4A00H, the % point of 4K RAM.
START AT LOCATION 4A00H

LOAD A REGISTER WITH "V
STORE "V INTO CENTER OF SCREEN

END-START OF 4A00H

As the ORG statement does not actually generate a machine

language instruction as do the two LDs, it is called a "pseudo-

operation" or "pseudo-op." In place of an opcode, pseudo-ops

have mnemonics which tell the assembler what to do for pro-

gram origin, end, and data. The ORG pseudo-op has one op-

erand associated with it, a value indicating where the origin

is to be.

Another pseudo-op that is an absolute necessity is the END
pseudo-op. END, of course, tells the assembler that it has

reached the end of the assembly-language program. It may
or may not have an operand. If it does, the operand indicates

the starting point for a program after the load. Here the

starting point is 4A00H, so we have specified this value as an

operand for the END.
Now before we enter this short program, we should really

check over the logic of the program itself. This is called "desk

checking," and saves reediting and reassembling the program
several times. We may still have to change the program in the

general case, but a good desk check will reduce the number of

times that the program has to be edited and assembled. The

only flaw in the program seems to be at the end. When the

program is loaded and run the first LD will load the "1" into

the A register and the next LD will store the "1" in A into

location 3E20H, the center of the screen. What instruction is

executed next? The one following the LD (3E20H),A. Since

we have not specified another instruction after the second,

however, there will be no third instruction, or if there is, it

will be purely coincidental. This means that after executing

the two instructions in the program, the cpu will go merrily

on its way, attempting to execute what is referred to as gar-

bage. We must terminate the program properly. One way to

terminate the program would be with the addition of a third

instruction that jumps to a known set of code, or a known

62

return point for Level I or Level II BASIC. We'll add a jump,
but we'll simply jump to the jump itself to create an endless
loop of jumping to the jump to avoid executing meaningless
instructions that would cause unexpected results.

LOOP

ORG 4AO0H
LD A.31H

LD (3E20H),A

JP LOOP
END 4A00H

START AT LOCATION 4A00H
LOAD A REGISTER WITH "I"
STORE "T"INTO CENTER OF SCREEN
IOOP HERE

END-START OF 4A0OH

We've introduced an important concept here. We did not
have to calculate the location of the JP instruction ourselves.

We gave the JP instruction a label of "LOOP," and let the
assembler figure out that the "JP LOOP" is equivalent to "JP
4A05H." The reference to LOOP is a symbolic address.

Editing New Programs

We are now ready to use the Editor./Assembler. Load the
Editor/Assembler using the procedures outlined in the Editor/
Assembler manual. After a successful load, the program will

display the prompt "*?" on the video. Now type 1100,10, fol-

lowed by an ENTER. This puts the Editor into the insert mode
and allows us to enter a number of lines starting with line

number 100, and incrementing by 10 for each line. Now type
in the five lines. The -* (right arrow) may be used to tab to

the next column, the «- to backspace for error correction, and
the ENTER must be used to indicate the end of each line.

After you've entered the five lines, press BREAK and the
program will return to the "*" prompt. The entire dialogue
is shown in Figure 4-2.

The editing process is now complete. The Edit buffer has
five lines of text duplicating what we have typed in. As a
check on our input we can Print the edit buffer by the com-
mand "*P#:*", which will display the entire text buffer of

SPECIFIES "INSERT" TEXT

"STARTING AT LINE 100

WITH LINE INCREMENTS OF 10

•1100,10-
OOIOO ORG bAOOH (START AT LOCATION 'iAOOK
00110 L3 A, 3UI iLOAD A REGISTER KITH "'."

00120 LD (3S20>[),A iSTQRE "5" IKTO C31TER
00HO LGOP J? LOO? (LOOP HERE
OOlUa Z!IB &AQOH jSIB-START Or 'fAOOIl
oot;

TEXT

INPUT

.BREAK KEY

PRESSED HERE

Fig. 4-2. Editing operations.

63

five lines. The editor does not check the text we are inputting,

and will not catch any errors in syntax or mispellings (even

TRS-80 programmers have been known to make occasional

mistakes).

Assembling

Now we are ready to assemble. Type "*A" for assembly,

and the Assmbler portion of the Editor-Assembler will as-

semble the five lines, displaying the assembled code on the

screen as shown in Figure 4-3. The right-hand section of the

listing is the source code that we have just entered; the left

hand side of the listing is the machine code information that

will be loaded into the TRS-80. The first column shows the

locations for the instructions, starting at location 4A0OH, and

incrementing for each instruction, dependent upon instruction

length. The next column shows the actual machine code for

the instruction. This will range from one to four bytes, de-

pendent upon the type of instruction and its addressing modes.

The next column gives the line numbers, starting with line

number 100, as we specified.

mm ORG mm ;S1HRT BT LOTION 4ffl9H

#13Bi 88110 LD ftJiB ilM 8 AGISTER WITH T
•ff}&2 32233£ 68128 LD CiEma ;STORE T INTO CENTER

4/gfi C3854A 88138 LOlP JP LOOP .rDJP HERE

%m EM) *m ;8MHRT IF 4fi88H

88888 TOM.

!

LOOP 4U85

Fig. 4-3. Assembly operations.

Where is the machine language code at this time? It is in

a buffer ready to be written to cassette tape or disc. We will

use cassette tape to make it more general for all TRS-80 users.

After preparing the tape, press ENTER and the Assembler

will write out the machine code to cassette. Notice that nothing

has been executed in the program to this point. The actions

so far have been analogous to hand assembling the instructions

and writing down the machine code to be loaded and run. The
cassette tape has been used to write a file of object code repre-

senting the machine code of our short program. There's that

persistent kid from the back again. . . . The object code looks

very similar to the machine code, except that it contains addi-

64

tional data about the origin, file header information (the name
of the cassette file

—"NONAME" in this case), and other in-

formation that will help in the loading of the program.

Loading

We've assembled, edited, and now we are ready to load the
object code. After the load, the machine code will be at loca-

tions 4A00H through 4A07H and we can execute the program.
At this point we are done with the Editor/Assembler and can
go back to Level I or II BASIC. We must now use the SYSTEM
mode to load the object program; the SYSTEM mode is in-

herent in Level II BASIC but must be implemented by loading
a special SYSTEM tape in Level I BASIC (see the Editor/
Assembler manual for directions). The SYSTEM mode is

used to load assembler object programs, and to transfer con-
trol to the program after it has been loaded. After the SYS-
TEM prompt of "*?" type in "NONAME" to load the object

file from cassette tape. If a successful load is performed, the

prompt "*?" will again appear, indicating that the program
is now in memory at locations 4A00H through 4A07H. All

that remains now is to transfer control to the starting address
of the program at 4A00H. We do this by typing in the decimal
equivalent of 4A00H after a slash ("/") or simply by typing
in a slash, as we have indicated the starting address of the

program in the END statement, and this has been saved in the

object program. The result should be a "1" displayed in line 8

at the middle of the screen. Not a very impressive beginning
for a programmer who will revolutionize the field of assembly-
language computing, eh? But by the end of the book. . . ,

Assembler Formats

Now that we have successfully assembled our first program,
let us discuss assembly-language formats in a little more de-
tail. As we saw from the listing, the basic format of all as-

sembly lines is an optional label, an opcode or pseudo-op
mnemonic, operands to fit the instruction or pseudo-op, and
optional comments, as shown below.

THERE ADD A,(IY+ 100) ;THIS IS THERE

The label" may be one to six characters, the first of which
must be alphabetic. There are certain reserved words that
cannot be used for labels, such as register names (IX) and
flags (C). These are listed in the Editor/Assembler manual;

65

just remember to stay away from labels that are the same as

flags or registers, such as HL (they will assemble with an

error indication).

The opcode or pseudo-op must be one of the mnemonics
given in Appendix II or the pseudo-ops given later in this

chapter. These mnemonics follow the standard Zilog Z-80

mnemonics, and are also provided in the description of the

instructions in the Editor/Assembler manual.

The operands are in the third column of an assembly-lan-

guage line. The number of operands to use depends upon the

instruction and addressing type. As we know from Chapters

2 and 3, some instructions have no operands, such as SCF,
and others have one or two, such as "BIT 7,(HL). The oper-

ands may specify data, as in the immediate load

LD HL.3FFFH ;LOAD HL WITH 3FFFH

or addresses, as in the load

LD HL,(3FFFH> .-LOAD HL WITH CONTENTS OF 3FFFH

Note the difference in data and addresses. Except for jumps
and CALLS addresses are always enclosed by parentheses, and

data is never enclosed in this fashion. Jump and CALL oper-

ands are addresses not enclosed by parentheses. The formats

for Z-80 instructions are given in Appendix II and in the in-

struction descriptions of the Editor/Assembler manual. In

place of numeric operands for data or addresses, symbolic

names may also be used. These names must have a correspond-

ing label somewhere else in the program. An example of this is

LD ACCOUNT) ;LOAD COUNT OF COUNTS
LD B,(DUKE) ;LOAD COUNT OF DUKES

;{other code)

COUNT DEFB LOCATION HOLDING COUNT OF COUNTS
DUKE DEFB LOCATION HOLDING COUNT OF DUKES

Some instructions refer to flags; for example, the condi-

tional jumps that test a flag status for the jump. Certain

mnemonics are used for the flag=0 and flag==l. These are "C"
and "NC" for carry flag=l and carry flag=0, "Z" for zero

flag=l and "NZ" for zero flag=0, "PE" for parity even (P/V
flag=l) and "PO" for parity odd (P/V=0), and "M" for

minus (S flag=l) and "P" for positive (S flag=0). These
mnemonics are reserved for the use of flag references. An
example of an assembler line using a flag reference is

66

ADD A,37 ;ADD A AND 37
JP M.OMMY ;GO IF RESULT NEGATIVE

.-RESULT POSITIVE HERE

The comments column is also optional. When you are debug-
ging a program some dark and lonely night and wondering
what you did in those ten instructions that have no comments,
think back upon this advice : There are never too many com-
ments. A comment may also be used in a line by itself as in

the following code.

;THIS IS A ROUTINE FOR A STAND-UP COMIC
LD AXJOKE) ;GET JOKE FROM MEMORY
LD (LOC),A ;DEL!V£R

Just as BASIC allows various expressions, combinations of

symbolic variables and constants, so does the assembler allow

limited use of expressions. These are detailed in the Editor/
Assembler manual. Addition, subtraction, logical AND, and
shifts are allowed. We will only be using addition and subtrac-

tion in this book, and leave the use of the others to your ex-

perimentation. Addition and subtraction are represented by
"+" and "—", just as they are in BASIC, As an example of the

use of expressions in assembly language coding, let's use the

program we've been working with. We stored a "1" into the

center of the video display, which was really in the center of

the video memory area. We knew that the start of the video

memory was at 3C00H, and that we wanted to store the "1" at

the 512 + 32 character position on the screen. The following

code will perform the store.

.-STORE AN ASCII ONE NEAR CENTER OF SCREEN

LD A.31H .-ASCII ONE
ID (3C00H-f512+32),A .-CLOSE TO CENTER

The same technique could be used for subtracts, or with ex-

pressions consisting of symbolic labels and constants. Note
that in the expression, hexadecimal data was intermixed with
decimal data. Hexadecimal data is always suffixed by an "H"
to mark it as hexadecimal. In addition, hexadecimal data must
have a leading zero, if the hexadecimal value starts with A
through F, The value of AOOOH will confuse the assembler and
result in the assembler trying to find a label of AOOOH, rather

than treating it as data. Decimal values may simply be values

without either leading zeros or suffixes, as shown in the ex-

67

ample. We will use various expressions in the course of the

chapters involved with programming examples in this book,

so you will have a chance to see further use of them.

More Pseudo-Ops

When we wrote our first assembly-language program earlier

in this chapter we used two pseudo-ops, the END and ORG
pseudo-ops. The TRS-80 Editor/Assembler has six additional

pseudo-ops, DEFB, DEFW, DEFM, DEFS, EQU, and DEFL.
They are used to generate byte, word, and string data, to re-

serve memory, to equate a label, and to set a label.

The DEFB generates one byte of data rather than an in-

struction. Suppose that in the program we've been using we
wanted to store the ASCII one in memory as a constant value,

rather than loading it as an immediate value. The following

code would do exactly that. A 31H, the ASCII 1, would be

stored at location 4A09. When the program was executed, the

instruction at 4A00 would load the contents of "ASCONE"
into the A register,

88188 -mi TO JilTE 8 ONE BT CENIE? $ SCEEr?

4KS mm ORG iLqfSP ism bj umi® mm
mimm MM LP ft(DO itsm am with ib

mims. FS.--I) \n in KJb&Ah h ;hiM T INTO CENTER

mmm mmim TTi
LOOP

• ' f=p LCpr

iWli m5B fiSCONE DEFB m iflSCII OrE

ffi@0 mM BD jmsm of mm
8888B TOIL BldS
! fn"C> ifwv
Ufljr tnao

wm. *m

The DEFB can be used as many times as is necessary. Each
time it appears, one byte of data is generated. The DEFW, on
the other hand, DEFmea a Word of data, or two bytes. As we
are frequently working with 16-bit data for addresses or con-
stants to be used with register pairs, the DEFW is handy. The
following code generates both 8- and 16-bit constants by use
of DEFB and DEFW.
Of course the 16-bit values generated are in the usual re-

verse order. The most significant byte is last and the least sig-

nificant byte is first.

68

mmiWMBimiifms
4UHJ 8SU3 ORG 4S
4^8 80 88120 DB^ 6

fflBlH MM DEFB iiH

4r?±: IIo§ SlS? DEFM llii

tfWJ wTSS ScQ.y-3 L-'CTh EfiH

4^? DEFF §5178 DEFH -24

The DEFB may also be used to generate a one byte ASCII
value directly. This saves the programmer the trouble of look-
ing up an ASCII equivalent code for character data. Not only
does the assembler do this for one byte, but it also generates
a whole string of characters to be used for messages or other
purposes when a DEFM, or DEF'me Message is encountered.
The following code shows how the DEFB is used to generate
one byte ASCII values and how the DEFM is used to generate
a string of characters.

%!§ 86108 ORS 4BK?fj

m si mm defb t jfiscn ose

4fiE i!i 88l3j DEFB "'I"" JnbL-II I

ffiiS 39 irtUo yEFn '' Irfis tihnib HHNy HbiytLlNli''

4883 48 4884 49 4fS5 53 4fiaS 26 4>10? 42 4*188 45

i 488F 4E 4nl8 44 4fiii 28 4812 41 4813 5< 4fl

if -_q -rfitj t-j iHIo w tnlf ti mto 4t mu *7

4fiiii € 4MS 47 $$8 -98148 09

The resulting characters from DEFM are spread out over
the print lines of the listing, along with the location for each.

This makes it somewhat difficult to read, but it sure does beat

assembling the corresponding messages or one byte ASCII
data manually.
The DEFS pseudo-op is used to reserve .Space in the pro-

gram. Many times a section of memory must be set aside to

be used for a buffer, message area, matrix, or other reserved

69

4ffl9 mm ORG 4»'

em •IF' QMMI ;JUHP OVER BLFFB?

fififo
§8128 BUFFER DEFS 288 ;BUFFER fiRER

wt-3 Jew SG^?a prams i LD ft 11 ilffiTIflLEECffllff

8888 B8140 e§

W88T0TH EIs?0!5

t*jercF. ffEc

OfiTMJ 4KB

area. Although we could use a series of DEFBs or DEFWs to

generate the space by defining zeros or all ones, it is some-
what easier to use the DEFS pseudo-op. The DEFS in the

above code reserves 200 bytes of storage between the JP and
the LD instruction. (It would be very tedious to use 200

DEFBs or 100 DEFWs to do this, although we might do the

same thing by a new ORG.)
The first instruction appears at 4A00H through 4A02H.

Then 200 bytes (C8H) of reserved space are requested by the

DEFS. The next instruction appears at 4A03H plus C8H, or

4ACBH.
The EQU or EQUate pseudo-op is used to equate a label to a

value. The label can then be used at any time, without know-
ing the value. If we haven't exhausted the usefulness of our
first program, let us see how this works in a simple case. The
code below EQU&tes the label ASCONE to the value of ASCII
one. Any time we wish to load or otherwise handle an ASCII
one after the equate, we can simply use the label ASCONE,
instead of having to remember the value or having to load

the value from a constant location in memory.

4888 80180 ORG 4flB8H

mi mmmm m m mn one

4/89 381 mm LD R'fiSCfflE ;LfflD ffiCII BE

8680S TOTBL BKORS

/SCONE mn

Notice that when the ASCII one was referenced it was
treated as an immediate value, rather than an address. The
immediate load resulted in immediate data of one byte repre-

senting ASCONE, or 31H. The label may be an address as

70

88188 ORG 4ffi8H

€88 80110 BUFFER EBU 4C88H ;IHPUT BUFFER

m?m€ mM LD IL BUFFER iPOTTO BUFFS

3SSf> riTi \=j B®

ig8@7ulfl WM&
BiFFER €88

well, as in the case of the code above which loads the imme-
diate data value of BUFFER, representing a 16-bit address
value, into the HL register pair, thus causing the contents of

HL to point to a buffer area.

The last pseudo-op is DEFL. DEFL is similar to EQU in

that it sets a label equal to some value or expression. DEFL,
however, can be used many times for the same label, while

EQU may be used for a label only once in a program. As an
example of this, consider the code below. An ASCII "A" has
been defined by a DEFL as label ASCA with a value of 41H.
In fact, this is an upper case ASCII A. By changing the 6th

bit (bit position 5) from to 1, the ASCII upper case A may
be converted to a lower case A, We'll do this in the program
by using DEFL to redefine the value of ASCA as required.

4fi8@ WjM ORG

mi Mi£ fibffl DEFL

4JB8 3E41 MAB ID ftnSCfi .; LORD OFFER CnSE

m mm mm to ci»fi ; store in buffer

§8168

88178

m. 68180 HSCfi DEFL 'fl'+2SJ ;HSKRT TOLOffi?

4ffi5 3BJl ffllS8 IP ftffiCfi .iLOffl L8R GEE

SUM
SfiSifi £rsT'

71

Notice in the above code that ASCA was first recorded by
the assembler as a 41H, but when it was redefined by the sec-

ond DEFL it appears at 61H. (The intervening blank lines

represent other code in the program.

)

A Mark II Version of the Store "1" Program

We've discussed a lot of concepts in this chapter. Let's try

to clarify some of them by writing an expanded version of the

program to write a "1" near the center of the screen. In the

Mark II version we will write out an entire message to line

9 of the screen. From our earlier analysis, we know that the

screen video starts at address 3GOOH and ends at 3FFF. We
want to start the message at line 9, which is 8*64 characters

from the start of the screen memory, or 3C00H + 512. To sim-

plify matters we will write out an entire line of 64 characters.

We'll use register pair HL to point to each of the characters

in the message and index register IX to point to the next byte

of the video display memory. As we write out each character,

we'll adjust HL and IX by adding one to point to the next

character and next video memory address. To determine when
we've reached the end of the message, we'll put a zero at the

end and test for zero as we transfer each character. Zero
(null) is not a valid ASCII character, so we will know when
we have written 64 characters to the screen. The program for

this is shown below.

88188 iffiRK U ytRSld KITES j£SbHfi£ TO LINE 3

HHilfi .

3C88 ffiUS flDEO EfiO 3C66H ;i?ffi! OF SC8EEN VIDEO

#0 DDfizffiiE 68150 13 IX* WEBHS12 ;POIJff TO LIE 9

#8? 11 Mm LOOP U) ft. (ft) ;GET jST CffifiCIER

8 ;TESTFORENy

M Z\M. M W Di£

4ffiCWM 801S8 13 (Wtft ;STORE IN VIDEO

"SET >Li oSiL'O iiiL- riL i rii-t-
! Uf£ i~\M nLbbnui.

Mm Ms agin INC ix im we for "IDEO

&u2 £39748 8^0 Jp W ;CCWTIHE

&t\1 fm^r '"t?"? fifiMP JO Hill-— • EWy rCC ' ppB

72

MB 54 86248 HESSGE DEFM 'THIS 15 ibl HHm 11 \€EION

MS 43 4ffifl 49 4ftt£ 53 4fiiC 28 4fiiB 45 4fil£ 53

4/HF 28 4^8 54 4fi21 48 4fl22 45 4fl2< 28 4H24 4

6 #25 41 482S 52 4fi2? 4B 4B28 28 4fl2S 43 4fl

2K 4

y

4B2B 28 4H2C 5S 482P 45 4fi2E 52 4fi2F 52

4rO@ 49 4B31 4F 4ffi2 € 4fi8 20 4fi24 28 4ffi5 28

4fliS 28 4fli? 28 4fE8 28 4B33 26 4ffifl 28 4S3B

28 4H3C28 4aJD 28 4HjE2B 4fijF 28 4fl48 28

M.2S 4m 28 4/M5 28 4fl44 28 4H45 28 4846 28

484? 28 4B4S 28 4fi4S 28 4^4/5 53 4^8 28 4m 2

i 484D 28 4fi4£ 28 4H4F 28 4B58 28 4951 28 4B

£28 4fiS 28 4S54 28 4fl55 28 4fi5S 28 4857 28

4858 88 88258 KFB 8

i§0 882S8 END

18888 TGTnl ERRdS

HfE 4ftt5

IW 4fi8?

ESSE 4fii8

5MJ 4fi00

VIDEO JU88

The first statement puts the origin of the program at
4A00H, the location we have been using all along. VIDEO is

equated to 3C00H, the start of the video display area. The
next two instructions load HL with a 16-bit value representing
the start of the message and load IX with the start of line 9

(3C00H+512). The instruction at LOOP loads the next char-
acter from the message. To begin with, this is the first letter

of the message at 4A18H, but the contents of HL will be in-
cremented by one with each storage of a character. The LD
at loop uses register indirect addressing to load the memory
location that HL points to. As each character is loaded, the
instruction CP tests for a zero byte. A zero has been put at
the end of the message to indicate the terminating condition.
Notice that no other ASCII character in MESSGE is zero.

Normally, the JR, Z,DONE will not transfer control to loca-

tion DONE because the character will not be zero and the Z
flag will not be set. In every case except the last character the
program "falls through" to the instruction at 4A0CH which

73

stores the character in the location pointed to by the index

register IX. In this case the displacement of the index register

addressing is zero (the last byte) so the effective address is

simply the contents of the index register itself. The next two

instructions add one to the HL (message) pointer and IX

(video) pointer. The jump at 4812H loops back to location

LOOP where the process is repeated for the 64 characters of

MESSGE. On the 65th character, the byte is zero, the Z flag

is set on the compare, and the jump to DONE is taken. The

instruction at DONE jumps to itself to create an endless loop.

There are many ways that this program could be imple-

mented. Relative jumps could have been used in place of direct

jumps in two places, for example, or the loop may have been

made more efficient by using other types in instructions. How-
ever, as a second program, it is not a bad effort, and employs

quite a few of the things we have been discussing in the last

three chapters.

This program can be edited, assembled, loaded, and exe-

cuted in the same manner as the first we discussed, and the

reader is urged to do so.

Further Editing and Assembling

We have touched on a few basics in regard to editing and

assembling. A complete description of editing modes is cov-

ered in the Editor/Assembler manual. The editing functions

of the Editor/Assembler permit source lines to be deleted or

modified either on a line or character basis and are similar

to the EDIT mode of LEVEL II BASIC. There are additional

capabilities of the assembler that we haven't discussed, pri-

marily in regard to assembly options such as not producing

object code, listings, waiting on errors, and so forth. We will

attempt to fill in many of these as we give programming ex-

amples in the next chapter, but it would benefit the reader

to review the first portion of the Editor/Assembler manual

and run some practice examples in both the edit and assembly

mode.
In the next chapter we'll cover T-BUG and debugging of

programs. T-BUG is used to debug assembled and loaded as-

sembly-language programs, but may also be used to hand

assemble and load machine-language programs. If the reader

still isn't convinced of the merits of the Editor/Assembler, if

he has limited memory, or if he simply likes to do machine-

language coding, he will find the chapter very useful.

74

CHAPTER 5

T-BUG and Debugging

In the past chapters we've learned about the architecture
and instruction set of the TRS-80 and something about edit-
ing, assembly, and loading of an assembly-language program.
The actual sequence of events for an assembly-language pro-
gram is identical to BASIC programs. The program is first

defined by some type of specification—what will the program
do and how will the input and output look. The program is
then coded. After a desk check, the program is assembled and
reassembled if there are assembly errors. When an error-free
assembly has been achieved, the resulting program is loaded
and executed. Chances are the program will not run the first

time, and may not run the fifth time. That's where debugging
and a debug package, such as T-BUG comes in.

T-BUG is an assembly-language program that can be used
to debug assembly-language code, or to enter machine-lan-
guage code. T-BUG allows the assembly-language programmer
to print the contents of locations, to modify locations, to print
the register contents, and to debug small segments of code by
breakpointing. It would be virtually impossible to debug an
assembly-language program without some means to do these
things, as each program would have to be completely error
free before execution. There are very few programmers that
have written a moderately large error-free assembly-language
program that ran the first time i

Loading and Using T-BUG
T-BUG is loaded into Level I by the CLOAD command and

into Level II by the SYSTEM command with a file name of

75

"TBUG". After T-BUG has been successfully loaded, a prompt

sign of "#" will be present in the left hand corner of the

display.

Since we will be debugging all of the programs in the re-

mainder of the book using T-BUG, it is important to know

where in RAM T-BUG resides, so that we may avoid that area

of memory in assembling programs. Figure 5-1 shows the

memory mapping when T-BUG is present. Level II T-BUG
occupies 4380H through 4980H, or up to the first AOOH (2560)

locations of RAM. Level II T-BUG uses an "internal" stack

area starting from 4980H, so that no RAM outside of the first

1024 locations will be used by any T-BUG function. We will

be safe, then, in assembling our programs to run anywhere

in the RAM area above 4A00H. We will use 4AOOH as the

starting location for all of our programs, giving us 600H

(1536) bytes of memory for the reader with 4K of RAM (and

who must program in machine language) up to a maximum
of 44K for those readers with larger systems.

3FFFH

4000H

4980H

4A00H

4FFFH

5000H

TOP OF USER'S

MEMORY

BASIC AREA USED

FOR PROGRAMS IN THIS BOOK

ADDITIONAL AREA
AVAILABLE FOR

EXPERIMENTATION

Fig. 5-1. Memory mapping with T-BUG present.

T-BUG Commands

T-BUG has nine commands, all specified by one character,

M, X, R, P. L, B, J, F, and G. Some of the commands have

arguments (data associated with the command) and some

do not.

76

Let's load T-BUG and examine the commands available.
After a successful load the first 16 columns of the video dis-
play are cleared and the program displays a "#" at the upper
left column of the screen. The format of the M command is

#M aaaa where aaaa is a hexadecimal value (can't get away
from hexadecimal, can we!) representing the Memory location
we wish to examine. After the last digit is entered, T-BUG
will display a two digit hexadecimal value representing the
contents of the memory address. Try the M command with
a value of 4A00H. You will get a display of the contents of
4A00.

M4A00 21

Now hit the ENTER key, and you will find that the next loca-
tion will also be displayed.

#M4A00 21

4A0T FF

This process can be continued to display successive locations
until either memory or you are exhausted. Hitting an "X"
at any time terminates the memory display function and
brings you back to the monitor prompt again.

M4A00 21

4A01 FF

4A02 FF

4A03 FF

#

Entering data in place of ENTER will change the memory
location to the values entered. Two hexadecimal digits must be
entered. Let's go back to the original (Mark I) version of the
program to write a "1" near the center of the screen. The pro-
gram is shown below.

«S8 mm m mm ism ® uwm«
iwiBi mm lp fhim iim nmism Mm t
«E32SS3E mm ID (3£2ffi)ffl ;SlfflE "i" IfflB fflflH

4fS5£385ffl 88138 LOOP JP LOOP ;L0QP 1HE

$8 mm END 4tM iEND-SfflRT OF 4RB6H

6S388 TGTfii mm
iffiP

Starting at location 4A00H, let's enter the machine code for
that program. The entry will look something like this at the
end.

77

M 4A00 3E

4A01 FF 31

4A02 FF 32

4A03 FF 20
4A04 FF 3E

4A05 FF C3
4A06 FF 05

4A07 FF 4A

#

We can now go back and check the locations by the M com-

mand to verify that all data has been entered correctly. This

is really not so much a check on machine malfunction as it is

on operator malfunction.

The J, or Jump, command in T-BUG allows the user to

transfer control to a location for execution. Specifying J aaaa

causes the monitor to jump to location aaaa, where aaaa is

again a hexadecimal four-digit value. We could at this point

perform a J 4A00 to execute the Mark I version of the pro-

gram. If we do that, however, the program will be "hung up"

in an endless loop to itself at location 4A05. The only way to

get out of the loop in Level I is to reload T-BUG; in Level II

T-BUG may be reentered by a SYSTEM transfer to 4380H

(17280), but the recovery is still a nuisance.

The B command allows us to execute a program up to a

point where control is returned to the T-BUG monitor, thus

keeping the debugging from becoming a series of recovery

procedures as it goes off into cloud cuckoo land. The B com-

mand establishes a breakpoint. At the breakpoint location

control is returned to the monitor where locations or registers

may be examined, a new breakpoint may be established a little

further on, and the progress of the program may be checked:

Let us see how the breakpoint operates. In this simple pro-

gram, suppose that we want to stop at location 4A02 to verify

that 31H did in fact get loaded into the A register. The B
command would be

B 4A02

Now we could execute the jump to 4A00H to start execution by

J 4A00

The instruction at 4A00 would then be executed. After this

instruction the breakpoint would be encountered at 4A02 (an

instruction returning control to the T-BUG monitor) and
T-BUG would be reentered, with a display of the # in the
upper left-hand corner.

After the breakpoint, the first order of business is to exe-
cute an F command. Entering an F restores the instruction

78

that was temporarily replaced by the breakpoint. Entering
a breakpoint address causes the monitor to place a CALL in-

struction to the breakpoint-handling routine in T-BUG. Since
the CALL is three bytes long, it replaces the three bytes in
the program at the breakpoint instruction. The three bytes
of the program must be restored before proceeding and the F
accomplishes this.

Before proceeding the user can now examine memory loca-
tions or cpu registers to see what program actions have oc-
curred. About the only thing that can be verified here is that 31
was indeed loaded into the A register. We can examine the A
registers and all cpu registers by using the T-BUG R com-
mand (Register). The R command causes a display of all cpu
registers in the format shown in Figure 5-2. In our case the
display might look like the following.

FFFF FFFF

FFFF FFFF

3142 OOFD

41 E9 43 EO

FFFF FFFF

4980 4A02

The 31 in the A register position indicates that the A register
was properly loaded.

To continue from this point, another breakpoint must be
put into the program a little further on. In our program the
next breakpoint will be at 4A05 to prevent an endless loop.

Rather than a J command to resume execution, however, a
G (Go) should be used. The G command will cause resumption
of the program at the breakpointed instruction (4A02), with

AT* XX XX XX XX B'C

HI*D'E' XX XX XX XX

AF XX XX XX XX BC

HLDE XX XX XX XX

IX xxxx XXXX 1Y

PGSP xxxx XXXX

TWO HEX DIGITS /REGISTER

TWO HEX DIGITS /REGISTER

FOUR HEX DIGITS/ REGISTER

Fig. 5-2. T-BUG R command format

79

all registers properly restored and no ill efiectg from IftiWfflg

had the breakpoint. If the reader will execute the followijae-

sequence he will see the "1" written out to the center of the

screen, followed by the "#" for the 4A05H breakpoint at

the upper left hand corner of the screen.

F (to restore the 4A02 area)

#B 4A05 (to set a new breakpoint)

$: G {fo resume execution)

What if the user had wanted to change the contents of a

register location before proceeding from a breakpoint. This

is certainly possible, and necessary in debugging. The pro-

cedure is somewhat complicated, however. To change the con-

tents of a register, a memory location representing the cur-

rent contents of that register must be changed. The memory
locations representing all of the cpu registers are shown in

Figure 5-3. To change the D register, for example, memory

LEVEL

n

LEVEL

1

43B7H

43B8H

43B9H

43BAH

43BBH— 43BCH

43BDH

43BEH

43BFH

43C0H

43C1H— 43C2H

43C3H

43C4H

43C5H

43C6H

43C7H— 43C8H

43C9H

43CAH

43CBH

43CCH

43CDH— 43CEH

4825H FLAGS' ,

4826H A'

4827H C
4S28H B"

AREA'
4829H E'

48ZAH — D'

482BH L'

482GH H*

482DH FLAGS

482EH A

482FH C

4830H - B NON'

4831H E AREA

4832H D

1

4833H L

4834H H

4835H IX LOW

4835H --
IX HIGH

4837H IY LOW
4838H 1Y HIGH 16-BIT

4839H SP LOW REGISTERS

483AH SP HIGH

483BH PC LOW

483CK — PC HIGH

Fig. 5-3. T-BUG register locations.

location 43C4H must be examined by an M command and new
data entered. To change a 16-bit register, two memory loca-

tions must be changed, representing the high-order byte and

the low-order byte of that register, as shown in the figure.

To change the IY register to 4FE3H, for example, memory
location 43CAH must be changed to 4FH, and memory loca-

tion 43C9H must be changed to E3H. After the change in one

80

or more registers, a J (jump) or G (go) command must be
executed to effect the change.

T-BUG Tape Formats

As we mentioned earlier, debugging assembly-language
programs is a major part of the assembly-language program-
ming process. The object is to find as many bugs as possible
before reassembling the program to reduce the time spent in
editing and reassembling. As each bug is found it may be
corrected in machine language, if the user knows the instruc-
tion formats and addressing modes (see, we told you that it

would help to get a background in the instruction set). Of
course the user can avoid this approach and simply reassemble
the program each time bugs are found.
As a simple example of this patching technique, let's go

back to the code we've entered for the Mark I version of the
screen output routine. Suppose that we had found that instead
of writing a "1" to the screen, we should have written an
"*". Using T-BUG it is a simple matter to change the 31H in
the second byte of the first instruction to the code for an
asterisk, 2AH.

#AA4A01312A {hit X)

Suppose that we had wanted to insert code between two
existing instructions. That is a little more difficult to patch,
but still possible. If we had wanted to store one "1" in both the
32nd and 81st character positions we could patch in the in-
struction to store in 3E1FH (31st position) by putting a jump
to a patch area at 4A02, jumping out to the patch area, per-
forming the store in 3E1F, performing the store in 3E20H
(destroyed by the jump), and then jumping back to the in-

struction at 4A05. Of course, the patch area should be in an
area of memory unused by our program or by T-BUG. The
patches for this are shown below.

4A0O 3E (original LDA.3TH}
4A01 31

4A02 C3 (patched JP 4B00)

4A03 00

4A04 4B

4A05 C3 (original JP 4A05)

4A06 05

4A07 4A

81

4B00 32 (restored store to 3 E20H)

4B01 20

4B02 3E

4B03 32 {new store to 3E1FH)

4B04 IF

4B05 3E

4B06 C3 (return to program)

4B07 05

4B08 4A

Patching to correct errors can be done as often as required

until it reaches the point where the programmer does not

know which areas have been patched and which have not. The
user can quickly determine his own requirements for reas-

sembly of a patched program.
To provide a means to save patched programs, or to pro-

vide a means to save any machine-language program, T-BUG
has two additional commands, P for Punch tape, and L for

Load tape. The P command writes any specified area in mem-
ory to cassette tape. The resulting tape format can be read by
T-BUG or by the SYSTEM command in LEVEL II. To save

locations 4A00H through 4B08H, for example, the command

P 4A00 4B08

would be entered for LEVEL I. Level II requires two more
arguments, one for the entry point (start) and one for the

file name (up to six characters). The level II format might be

P 4A00 4B08 4AO0 MARK1 (ENTER)

After the command is entered, T-BUG writes out the specified

area and includes the entry point and file name for Level II.

The format used for Level I write is shown in Figure 5-4.

Once the T-BUG cassette tape has been written it may be

loaded at any time by the L command (or the SYSTEM com-

mand in Level II). The L command has no arguments, and
the tape will start loading after the L has been typed. Tape
loading is indicated by the usual asterisk in the lower left

hand corner. Successful loading is indicated by the "#"
prompt; an error in loading the data will result in an "E"
after the load command. The format used for assembly object

output is the same as T-BUG's, so that T-BUG may be used

to load object tapes produced during assembly.

The above describes the T-BUG commands and their typical

use. The reader is urged to experiment with T-BUG as we
will be using it in following chapters for debugging pur-

poses. A reference list of T-BUG commands follows.

82

START
128 BYTES OF

ZEROS

(128)

A5H (!)

START
ADDRESS (2)

ENDING

ADDRESS + 1(2)

END

DATA

A "CORE

IMAGE" OF

PROGRAMS

AND/OR DATA

(VARIABLE)

CHECKSUM (1)

(N) = NUMBER Of BYTES

Fig. 5-4.

Format

M aaaa

ENTER (after M)

X (after M, J, B, P)

R

P aaaa bbbb
(Level I)

P aaaa bbbb
cccc NAME
(Level II)

L

B aaaa

F

G

J aaaa

T-BUG tape format

Description

Display location aaaa

display next location

Exit operation

Display registers

Write cassette from aaaa through
bbbb

Write cassette from aaaa through
bbbb with starting address
cccc and file name NAME

Load a T-BUG tape

Set breakpoint

Restore instruction after break-
point

Continue from breakpoint

Jump to location aaaa

83

Standard Format in Following Chapters

The- program in the following chapters will illustrate the

use of Z-80 instructions in accomplishing certain types of

operations. All code will be assembled starting at location

4A00H, so that T-BUG may be used to debug or investigate

the actions of the programs discussed. At the reader's option,

these programs may be assembled and loaded using T-BUG,
and then debugged, or the machine-language code for the pro-

gram may be entered using T-BUG without assembly. The

RAM area available for patching, buffers, or other use is

located from 4A00H through 4FFF for minimum 4K RAM
systems, or from 4A00H through "top of memory" for larger

systems.

84

SECTION II

Programming Methods

CHAPTER 6

This chapter will discuss ways in which to move data from
the cpu to memory, between cpu registers, from memory to
cpu, and from one area of memory to another. At first glance
this might not seem like such an exciting topic, but the ad-
dressing concepts practiced here can be applied to many of
the other instructions covered in later chapters. In addition,
the block move instructions are interesting instructions that
are not found in other 8-bit microprocessors. They are some
of the most powerful features of the Z-80.

Byte and Word Moves

We have already seen examples of loading and storing data
into single or double registers in the Z-80. Eight-bit loads
can be accomplished by immediate loads or by loading oper-
ands from memory. Suppose that we want to load all of the
cpu registers except for the PC (program counter) with 8
bits of data. Remember that there are fourteen general pur-
pose cpu registers, seven in each set of prime and non-prime
registers, and three 16-bit or two-byte registers, the IX, IY,
and SP, We'll ignore the I and R registers as these are not
generally used except for interrupt handling and refresh
operations.

Let's consider the 8-bit general-purpose registers first. We
would like to write a program to load the registers as follows

:

87

A register Loaded with 9

B H
C 12

D 13

E 14

H 15

L 16

A' 1

B' 3

C 4

D' 5

E' 6

H' V

1/ 8

Loading these values into the cpu registers with immediate

values is easy, because all cpu registers may be loaded by an

immediate data value. The only trick here is swapping reg-

ister sets. The swap is done by the EX AF,AF' instruction,

which swaps the two A registers and the flag, and the EXX
instruction which swaps all other registers. The main ques-

tion (raised from the back of the room again, I see) is which
set is which? It is up to the programmer to keep track of

which of the two sets of registers he is using. When the

TRS-80 is powered up the non-prime set is active; perform-

ing one or both of the exchange instructions switches the cpu

to the other set. The primed set is simply the set of registers

that is not currently active, and the program must keep track

of which set is being used, not unlike remembering which of

two book ends you've hidden a ten-dollar bill under. The fol-

lowing program loads all general-purpose cpu registers with

the indicated values above. Put a breakpoint at END, jump
to START, and then display the registers by an R command
in T-BUG, and you should see a sequence of 00 through 10H
displayed for the general-purpose registers. The IX, IY, SP,

and PC will hold meaningless values.

MM ;RGuTlNh TO LOAD fill MISim

miw mzdstm u> as

#12 && 88138 L£> B.-il

m m mm u> aia

88

%S& 1m) SblDO LP U.'li

moo ifctE teats? u) fcl*

won iisr feb's IV fi>I-j

#3C 2E18 D8iS8 U> Life

esise ex fibir -rnimmmms
m ;SWITCH nCTIVt RE6S

lfii8i£Nl

fiy^JTr?

Li-' rt' 1

^/SLL oolji ?§&>>{ l_f> {?, J

4ftl4 8E§4 6823B !I> C.-4mm mm in &s
4i
L
5.y 'IBsb 8825S LP £,£

4ftL4 '$87 W2SB Lit H. 7

4MC 2EM §82/8 L!> LS

flSFE 88238 ES ;SliITeHgfiC!C

4i£¥ C3264if M<88 END JP END jLOOrMEi:

M TOTEMS
a© 4£28

SIBRT 4fi8§

Now suppose that we would like to load constants from
memory instead of immediate values. (Don't ask why, kid,
just do it!) There are two ways to handle this approach, as
we explained in an earlier chapter. One way would be to set
up HL, DE, BC. IX, or IY to point to the constants to be
loaded and to then load in the values using either register
indirect addressing or indexing. This would work fine if the
data were grouped in a contiguous area, but would require
setting up a new value in the pointer register for each load
if the constants were scattered over different locations in
memory. The second approach, which we'll implement in the
following program uses the A register as a pipeline to channel
data from the constants in memory to each of the cpu
registers.

mm }\Em h m h pmjm
i
*ffi@ Mud (Mi 4fi8§H

«3iRe m2Bbim lb a cam) ;ii

89

4ffiE 47 86138 ID R< H ;ffi/E TO B

4ffi!4 3m£4n 10 H- (TNELVLj ;ii'

4B«7 & :»i C:"
: LD IV H ;!®V£T0C

4rsSJ iftU4H ffil68 LD a (THMH) _,'

J_j.;-'

ISp ~ roi/B
1 A
LL- fcfl =H0VE TO &

4ffiE C:3gt4N
SM-fcp ;

nnp jp LOOP
. i ruin !mr
.»LuUr hckc

4$F 88 M1S0 ELEVEN DEFB il

4818 8C sffi80 Tl&VE DEFB 12

#11 8D SS213 THIRTN DEFB 13

isi ^i?ii5

HB8S 7DTflL ERRORS

LSI5 4MJ

JHIRffl 4ftii

JSLVE 4fll8

tLL'fCli 4iff

SUIT 4B88

Storing 8-bit data works in pretty much the same fashion

as loading cpu registers. The general registers can always be

stored by using a register pair as an indirect pointer, but

only the A register can be loaded directly from memory. If

we were to store the contents of the cpu registers back into

the constant locations in memory, the register pair or index

register used as the pointer would have to be set up with the

new location each time a store was performed, as shown in

the program below. The reader may care to execute this pro-

gram directly after the load program to verify that the

registers have been stored. Zero ELEVEN, TWELVE and

THIRTN after the load breakpoint, put in a new breakpoint

at 4A1EH, and jump to 4A12H to perform the store. (Don't

forget the "F" after each breakpoint to restore the instruc-

tion.)

mmm mm u> (thirtm ;rbioe

4Mb 79 81140 LP ftC ;I2

4817 32104H 88150 ID (BELVE>.ft iREbiUEh

90

iiun "!

tnxn i s 88160 u? ftB ill

jjan 7
28F4N 88178 LD (ELEffiS)ffl iRESTOSE

4ft!£C3i£4fi 88189 LOOP JP LUUr ;LC»!F J€RE C« E®

4an mm mm Effi 4M
418 gffiBB TWELVE ESU 4M§h
Jfgr

1216 revbi egu 4M
gw=5

8^8 END

fSSTfi TOM. EMS
LOOP 4filE

ELEVEN 4?^

MVE 4fli8

mm 4fill

fTftrrr
JffTRi 4H12

Sixteen bits of data are somewhat harder to move around.
Register pairs can be stored directly to memory, may be stored
in the stack by PUSHes (covered in a later chapter), or may
be transferred by using the HL register pair as a routing
point. Storing the register pairs in memory is not generally
something that is commonly required. Loading 16-bit data
into register pairs can be handled by immediate loads for con-
stants, by direct loading of register pairs, and by routing other
16-bit data through HL. A common trick in loading two single
registers with two separate operands is to perform an immedi-
ate load of a register pair. This only works, of course, when
the two single registers involved happen to be in the same reg-
ister pair. The resulting instruction sequence is much shorter
than 8-bit loads.

88188 /LORDING SINGLE REGISTERS Win 15-517 LffiDS

%m Hi85 ORG 4nS8H

ffi® 818261 miB Sim! LB B&25&* ;LffiD BMUHht HUH 2

mmm mm u> vh?m imi>umi,Eum4
wt< C3E4H ggzjB UM JP LOOP ;L00P HERE FOR 8F

KSSJ I?0i40 EM)

ffiffi 701SL £Rffi!S

loop m&
SJfiRT 4888

91

Transferring data between two register pairs is almost

always done by PUSHing the first register pair and POPping
the second to transfer data from the first into the second. To
load HL with the contents of BC, for example, the instructions

PUSH BC ?BC TO STACK

POP HL ;RETR1EVE BC, PUT IN HL

would be performed.

Filling or Padding

All of the foregoing is fairly abstract, even when T-BUG
is being used to verify the results of the code. Get ready for

some spectacular visual effects ! Fortunately for us and espec-

ially that reader who keeps nodding off, moving identical data

to fill buffer areas or to initialize tables may be observed on

the display. After all, the display is simply additional memory
dedicated to the 1024 characters or 6144 pixels of a display.

Let's illustrate two methods of addressing in a routine to

fill data. In this routine, a specified data byte from to 255

(OH-FFH) is written into a memory area from a starting

address to an ending address. The fill function is frequently

used to "zero" portions of memory, to fill tables with -1

(FFH), or to pad character lines with blanks (20H).

The fill character will be in the A register, while the HL
register will be set up with the starting address of the mem-
ory area to be filled. We could specify either an ending address

or the number of bytes to fill. Specifying an ending address

would require that we have a 16-bit address that could be

used to compare the current fill location with the ending ad-

dress. The second approach would use a count in one of the

registers that would be decremented with each filled byte.

When the count reached zero the fill would be over. If a single

register were used, the count could be through 255. If we
wanted to fill more than 255 bytes we would have to use a

register pair, which could specify a fill count of through

65535, which would certainly be adequate for a 64K system!

In the following example of the fill we'll try the second ap-

proach ; we'll put the fill count in a single register. The para-

meters will be in the registers before the fill starts as shown
below.

(A) — character to be filled

(Hi) = starting address for the fill

(B) — number of characters to be filled from 1 to 256

92

68188; THIS]is fimm to Fin jsmm fhli

miB in sifflTiffi address for r mm of eras

88128* ffl)4WE TO BE Fill©

8808. (HL.)=STftRTiffi wms
88148, (B>$am of bwe

Anna
timi 88160 Offi «i ;STflRT OF PR0GRH9

tmm 8S178 SffiRT LI) ft'*' ;FILL HI7H A5TERI3S

$82 2i§8:€ 88188 U &..3C88H ;5fflRT GF SCREEN

mm mm LD B,e iFILL 256 BVTES

m??7 mmimi LD i\LM ;FIii BWE

rnss me INC a ;INCREHBIT POINTER

mm 88226 DEC B jDEGREMT coot

mm S9233 JR HLim :.®wwim.
mem mtBim JR look •impm onm
Mm 83258 e® START» TOTAL ERRORS

The first thing that is done in the program is to load A
with the data (asterisk in this case) and to load the HL reg-
ister pair with the starting address of the memory area to be
loaded. To enable us to see the results we're using the start

of the screen video at 3C00H. The B register is loaded with
the number of bytes to be filled. If we had specified 1 through
255 bytes that number would have been filled with asterisks.

Specifying zero, however, fills 256 bytes, as we shall see be-
low. L00P1 through the JR NZ.L00P1 makes up the main
loop in the program. For each iteration or pass through the
loop one byte of data is filled. Initially the byte at 3C00H is

filled. Each time through the loop, however, the HL register

pair is incremented by one to point to the next memory byte,

and the B register is decremented by one to count down. If the
count in B has not reached zero, the Z flag is not set by the
decrement, and the conditional branch at 4A0AH is taken.
If the count has reached zero, the program falls through and
the loop at L00P2 is reached. Notice that the jumps here are

93

two-byte relative jumps. If we started with a count of zero,

the count after the decrement of B is 11111111, as you will

see if we subtract a one from eight zeros on paper. Starting

with a count of zero, therefore, causes a fill of 256 bytes.

To run the program, assemble and load using SYSTEM or

T-BUG. If no breakpoint is used, the program will fill the

first four lines of the screen with asterisks. The reader may
wish to try other values for the fill by changing the 2AH at

4A01H, or may change the fill area by changing the 3C00H at

4A03H and 4A04,

An Unsophisticated Block Move

Often it is necessary to move data from one block of mem-
ory to another block of memory. One example of this would

be moving a string of characters that have been input to the

screen display area. Another example might be inserting data

in a table. The data below the inserted entry would have to

be moved down to make room for the new data.

In the next program we'll be implementing some code to

move one block of memory to another. We'll use register in-

direct addressing to accomplish this feat. Register pair HL
will point to the source block and register pair DE will point

to the destination block. Register pair BC will contain a count

of the number of bytes to be moved. As BC may hold through

65535, any size block up to maximum memory size may be

MEMORY

HL POINTS HERE

DE POINTS HERE-

SOURCE

BLOCK

DESTINATION

BLOCK

BC CONTAINS THE LENGTH

OF THE BLOCK IN BYTES

Fig. 6-1. An unsophisticated block move.

94

moved. Figure 6-1 shows the manner in which the move will

be done.

We know that using the HL register pair as a pointer will

work with any cpu register. Using BC or DE as a pointer is

only useful for loading and storing the A register, however,
so all data to be transferred must go through the A register.

PROGRHrl WILL mi
Balis ;fi oilMGFhOUK? riufll

mmjmmwmiim
8808

JAAQ
rfrll -rH Ufui

4ffi9 2igg89 tatjb j ins

J

ID raj 5 ;SOURCE

iUliSgiC S8168
i r>,

DE.3C8»i ifcjflflHIIlfli

4fS6 SERB BH78 LD B&1888 ;108§BVIH

%W7 7E 89180 LOOP! 11* H.(R) jGET SiSiRCE BVTE

mo2 PifjQf- LD (fl&fl ;ST0E

fills Zi 88388 INC
i;

s ;P0M ID NST SOtiCE

4,Rgf: ii INC DE ;P0IMT TO HOT BE

4m 08
MVUt

DEC BC ;DE0©EHT COUNT

woe i'o rl>i-
j

-;,-T LD ftB ;6E7 US COUNT

WBT C'l 88240 OR i_." iffEROELS COUNT

4818 26F7 gffise
rr.

>i\ miMPi ;00 If COUNT NOT 8

mm ^^eioopv M um .ifirsri isror rin r-,r=4ir

WM4 rsss
avJ

S=v=? T,"jT'" EM1S

lfl!)P2 4ffi*

LtSH 4889

€88

The resulting program is shown. Before the loop, HL is

loaded with 0, the start of the source block, and DE is loaded
with 3C00H, the start of the screen area for the destination.

The BC register pair is loaded with the number of bytes to

be transferred, in this case 1000. If the program works the

way we want it to the first 1000 locations from OH through
03E7H will be transferred from the ROM BASIC interpreter

to the screen. What should we see on the screen? In a program

95

such as the BASIC interpreter there is a mix of relatively

random data. Some of the data will coincidentally represent

ASCII characters while some of the data will be actual BASIC
messages, such as "MEMORY SIZE", Other data will repre-

sent (coincidentally) graphics data of different types. When
we actually run the program, then, we'll largely see random
patterns, but some messages.

The main ioop of the program starts at LOOP1. The first

thing that is done is to load a byte into A using HL as a reg-

ister pointer. The source byte in A is then stored by using DE
as the destination pointer. HL and DE are then incremented

to point to the next source and destination byte. The count

is then decremented by one. If the count is not zero, the pro-

gram loops back to LOOP1, otherwise the program falls

through to LOOP2. Now let's look at the way in which we
test for a count of zero. While decrementing a single register

sets the zero flag if the count decrements to zero, decrement-

ing a register pair sets no flags. Why? That's just the way
the instructions work. (Never try to be too logical with a

given instruction set on any computer.) The BC register pair

is tested for zero by effectively OEing the B and C registers

together. Remember that the A register must be used for an
or operation, and that the OR of any two bits produces a one
if either of the bits is a one. If no bits are a one then the re-

sult is zero in this case, and the zero flag is set. The only time

no bits in either the B or C registers will be ones is when the

count in BC is zero and hence we have our test.

Have you run the program yet? If you do, you'll find an in-

teresting display of some of the secrets of the Radio Shack
interpreter, displayed in living black and white on your
TRS-80 screen. Try changing the source address, destination

address, and byte count to display different areas of memory.
Be careful not to overwrite the program itself or T-BUG,
however. Keep the destination from pointing toward the

4000H through 4A00H area!

While the above program is perfectly fine for an 8080

A

(sniff!), one simply wouldn't want to run such a gaucherie
on a Z-80.

An Elegant Block Move

The block move instructions on the Z-80 take the entire

code from 4A09H through 4A11H in the above program and
reduce it to one instruction ! This is truly an elegant instruc-

tion. The Z-80 instruction for this is the LDIR instruction.

96

If we recode the program above to work with the LDIR, we
come up with the program below.

88188 ;1HI5 IS tiff ELEGflNT fflSION OF

88110 ;fl BLOCK Ifflffi

©120 =

4,18 8808 m 4fi8gH

4eeg2i8gee aS140 START ID HL/8 ;SOURCE

mi nags ©158 LD DB3CS8H iDESTIfflTIffl

4hjb !?lrS8i ms@ U) BC..188B ;1888 BVTES

mism mm loopi LDIR if&mm IV.

MB 18FE 80183 LQGP2 JR L0GR2 jLQOPISEflTEN

gfiflVS

88138 EM)

88888 TOTAL ERRORS

loops 4ftes

LiOORt $8S

SIBST «
As you can see in the program, the LDIR must have the HL,

DE, and BG register pairs initialized to the source address,
destination address, and byte count, respectively. Then it goes
off looping to itself automatically until the byte count reaches
zero. It would be interesting for the reader to examine the
registers after the LDIR. We would find that HL and DE
point to the last byte transferred plus one and that register
pair BG contains 0.

The LDDR instruction works the same way as the LDIR
instruction except that the register pairs are set up to the
end of the source block, the end of the destination block, and
the number of bytes to be transferred. Data is transferred
from end to start in the LDDR, as shown in Figure 6-2.

There are two other block move instructions in the Z-80
instruction set, the LDI and the LDD. They operate exactly

the same way as the LDIR and the LDDR, except that as each
byte is transferred, the instruction pauses and the next in-

struction is executed. The program must check for the ter-

minating condition of zero count in the BG register pair. The
LDI instruction code that follows is identical to the operation
of the LDIR, except that the test for BC=0 is done externally

to the LDI.

97

START

LOOP

LD HL.O SOURCE
LD DE.3C00H DESTINATION

LD BC.1000 1000 BYTES

LDI TRANSFER ONE BYTE

JP PE.LOOP CONTINUE IF BC NOT

One would expect the Z flag to be set when the byte count

in BC is decremented down to zero. This is not the case, how-
ever, in either the LDI or LDD. The parity/overflow flag is

the one that is set after each transfer. When BC has reached

zero, the parity/overflow flag will be reset (PO mnemonic),

otherwise it will be set (PE mnemonic). The conditional jump,

therefore, is done on overflow set, or "parity even."

MEMORY

HL POINTS HERE

OE POINTS HERE

7

SOURCE

BLOCK

o

UJ
J—

o — >-

UJ UJ
t— 1

—

i—
>• >- CO
na CO ?c

UJ UJ
=» =- UJ
O O >
E s O£

r

DESTINATION

1 BLOCK

BC CONTAINS THE LENGTH

OF THE BLOCK IN BYTES

Fig. 6-2. Data transfer for an LDDR.

The LDI and LDD are used when the block transfer action

is required, but when there must be intermediate processing

between the transfer of individual bytes. Examples of this

would be a transfer of a block of data until a terminating

character such as line feed or null was reached, or transfer

of data except for lower case characters.

To illustrate this intermediate processing, and to give the

reader a graphic example of how the LDI, LDD, LDIR, and
LDDR transfer data, we have coded the following program.
This program slowly transfers a block to video memory in

forward fashion, and then transfers another block in back-

98

ward fashion. Subroutine SLOWLY is used to slow down the
transfer by a timing loop after each byte.

mim ,-fl wmiz mmi of block m&s

4fi86

ffi© 218388

Jim.- r:'nr~-,.i

4a88E2l44fi

4B8E CD2S4S

4811 CW4R

m sifpa?

4ftte &mm
m Em
M> E226ffl

4m mm
-m cimn

mm

eaus

&5128 STU'T

86150 LOOP!

88168

86178

88188

estisem
88288

88218

88228 L0GP2

88238

88246

88258

882S8 ffi£

m?B sum
essse sum
mm

ORG

LD

LB

U
Lw

jp

mi
jp

DEC

LD

LD

U»

JP

ceil

jp

JS

LD

DEC

Jft

RET

4fiffl

hi. 8

D&3C8GH

pa not

sum

HL-FFFH

BC4824

POME

sum
loops

«
AS8H

fl

j&5lqhi@

DESTINATION

FLU SCREEN

M ONE BV7E

go if oe

IWTO-USrSQ

NEH BLOCK

STfll 1824

XFER* mmm
GO IF

CONTME

EMDLES5 LOOP

TIRING Off

;ft-lT0fi

;00 IF NOT DONE

;8EJL1RN

8ffi8@70?fiL EBMS

atwie 4f2e

DOE 4ffi&

m 4m
UM 4S8

SMT 4fi8@

The first four instructions of this routine are identical to
the code above. If the P/V bit is set, subroutine SLOWLY is

99

called before the next byte is transferred. When the last byte

has been transferred, the P/V bit is reset and the jump is

taken to NXT. At NXT the DE register is decremented to

point to the last screen location; it held 4000H before the

decrement. The address of the last location in the second 1024

bytes of ROM (7FFH) is put into HL as the first source ad-

dress. At LOOP2 an LDD is used to transfer the data from

7FFH through 400H to the screen video memory, with the

SLOWLY delay between each byte. Subroutine SLOWLY
simply sets the immediate value 80H (128) into A and then

decrements the count, looping until the count reaches zero.

Register A was used to hold the count as all other registers

were dedicated to functions used by the LDI or LDD.
To tie together some of the concepts we have explored in

this chapter, we'll conclude with two general-purpose rou-

tines, FILL, a routine to fill any character in any sized-block

in memory, and MOVE, a routine to move any block in mem-
ory anywhere else.

FILL Subroutine

The FILL subroutine is modeled after the one discussed

earlier in this chapter. It is CALLed with certain registers

loaded with parameters to be used for the fill.

(D) = Byte to be filled, any value

(HL) = Start of memory area to be filled

(BO ~ Number of bytes to fill

Upon return from the subroutine, the contents of BC are zero,

the fill byte remains in D, and HL points to the last byte filled

plus one. The contents of A have been zeroed.

sHfiM ;.iwmm to Fiu. mm in isoRy

-jrfl "j H !. Bmtimmm to be fiued

88129 (HL)=5fflRT OF Fill ARER

ssLis ." CBC}=# OF 8YIES TO Fill

88148 fflLL FILL

Mi sn
. SIT: <D>=9#£

ffijIfjM cii>=e© if Fia*i

syQ CBD=0

HHlKH (fl)=9

nruan

100

%
1

ftsi- &5^bO ttfii vm
4jj|?n /£ C&1B rJu.

'
ft (AhU ;ST0RE B¥IE

£JBU
J;"-

awa
iflL- ;HJHP POIfflH

KS2 8B L--ZL- ;SMU57 COUNT

4fiS? 78
j-aVii;1

1 ft
ft. 8 ;GET 16 OF COUNT

uanca
OR p ifflBE is am

4ffi5 SS5 88368 •Jfi E.fia i CONTINUE IF BONE

4fw£9 RET •RETURN IF HSE

8888
r^v-tji"

EM)

SlSfg lUJnL EKSGRS

rill 4ffiS

MOVE Subroutine

The MOVE subroutine uses either an LDIR or an LDDR.
The subroutine automatically checks to see whether the move-
ment should be forward or backward. Ordinarily this is no
problem, but when the source and destination blocks overlap,

the reader can see that there is a conflict if the wrong direc-

tion Is used ; data will be destroyed before it has been moved
to the new area. On entry into the subroutine, the following
registers are set up.

(HL) = Start of source memory area
(DE) = Start of destination memory area

(BC) = Number of bytes to be moved

Upon return from the move, the contents of BC are zero, and
the two other register pairs point to the last locations plus

one.

huh? .. zijmpJhk: W nurc rcrafti

8BU8. Bm:m=smk5im

mm CBD=t OF BVIES ID ME
66148 - EXIT; (HL)~30U8CE BREfHl

USLJQ > UC/tlT'l fa\£i~I

WM - £E€>=8

WlTB -

&$ E5 Ssjs fiuVh PUbii HL .=Sffc SftRi? PN7R

101

®s? 68290 OR fl ;CLMCflRRV

4SB2 ED52 88216 SBC a,D£ ;5SffiCE-flE5T PHTR5

#4 £1 FF',
r
yr; FGF

L? •DrfW D*iTD

mmm 8SZi3 JP C>jfM8 ;00 IFfflVEKfOC

I£48 LOIS

mm 68258 jp HDV28 ;KlT8ffiTiSN

mm DKOD WVJLO fiDD HLBC i POINT TO BM.

88270 m HI ;P0IMT TOm
4I8E EB 3£S@ s PBHl ;SHhP

48F 89 88298 HDD HLBC ;POINT TO EMM

%fld ex! eesss ut-L- HI ;P01MT TO BID

j»i4 rn
fftJJ. EX' mis s D&HL

. n.!'"'" f"=jr-i/

#2 EM rejj^K LM /HO&BfiCfC

iftiJ fV»
RET ;REH«N

jygiq
{$349 Effi

§8889 TQTa 8S0I5

oDVlfi 4ft!4

frnlv fe
ftjvF 4fi89

Subroutine Format

FILL and MOVE follow the general format that will be
used for subroutines in this book. All of the subroutines are

assembled at 4A00H. To use them in other areas of memory
it is generally mandatory to reassemble them with the proper
ORG. Occasionally some of the subroutines will be relocatable;

the subroutine would have identical machine code no matter
what the origin. For this to be possible, the subroutine could

not have direct addressing instructions such as JPs, CALLs,
direct memory loads and stores, and so forth. In these cases

the machine code could be moved without reassembly.

We will start building up a number of general-purpose sub-

routines in these chapters for the reader to use in his own
programs. They'll be presented in the appropriate chapter
and collected together in the last section of the book. FILL
and MOVE are the first two of the lot.

102

Stack Operation

In the sample programs that we have been using up to this

point we haven't been too concerned about the stack. The
stack has been in use, however, and at this point it is best to

pay some attention to it before it turns on us some day and
devours some of our programs.
Every time we execute a CALL, RETurn, PUSH, or POP,

we have been storing data into or removing data from the

stack. For the sample programs here, we have been using
the stack found in T-BUG, which is a short section of memory
contained within the T-BUG program area. The stack can be

located anywhere in RAM memory that we choose, however,
as long as it does not conflict with any of our programs or
data.

To recap what we learned about the stack in a previous
chapter : The stack is an area of memory used to

Store return addresses for CALLs.
Store data when PUSHes are executed.

Store addresses when interrupts are active.

Addresses and data are pushed onto the stack, and the stack

builds downward toward lower-numbered memory when this

is done. A stack pointer register (SP) is adjusted to point to

the top of stack, the location that has been used for the last

CALL or PUSH storage. When a PUSH or CALL is per-

formed, two bytes are pushed onto the stack and the SP reg-

ister is decremented by two. When a POP or RETurn is per-

formed, the two bytes are popped from the stack and the SP
register is incremented by two to point to the next top of

stack.

To see how this works, let us establish our own stack area
and look at some of the stack actions. There is one instruction

that loads the stack pointer with the first top of stack address,
the LD SP,nnnn instruction. We will set aside 100 or so loca-

tions for the stack area starting at location 4AFFH, and
building down to 4A9CH. The instruction to initialize this

stack area is

LD SP.4B00H :INITiAUZ£ STACK POINTER

The alert reader has discovered that one more than the ac-

tual top of stack address is used for initialization. The reason
for this is that every PUSH or CALL first decrements the stack

pointer before storing data. At any given time, then, the stack

pointer points to the last byte stored, except for this case

where no data has been stored at all.

103

4B00H

4AFFH

4AFEH

4AF0H

4AFCH

4AH

OAH

SP ORIGINALLY POINTED HERE

4AOAH = LOCATION AFTER CALL SR!

• SP NOW POINTS HERE

Fig. 6-3. Stack area Example 1.

When a CALL is executed, the address of the next instruc-

tion is stored in the stack with the most significant byte of

the location stored in (SP)-l and the least significant byte

stored in (SP)-2. Let us illustrate this with a program. Key
in the following code, set a breakpoint at LOOP, and then

examine the stack area at 4AFFH down. You should see data

as shown in Figure 6-3.

mm f-y

LflflP 4/SB

SH 4fi8E

08100 mmsimm of stm

§8110

88120 (B mm
WlS0 W HLB lama
mm M' k! '-P jim 9
631 58 ID SB4E88H ; INITIALIZE STACK

MLS8 pfB 1 SRi ;Wd. SUBROUTINE

[Tfi^fi ID g^Hi /RESTORE OLD SP

69138 -OOP JP loop ;L00Pm FOR BP

wm H RET

In the simple case above, the new stack area was used to

store two bytes of the return address 4A and OA in locations

104

4AFFH and 4AFEH, respectively. The stack pointer address
used by T-BUG was saved in HL before the new stack area
was initialized. When the short subroutine (the shortest pos-
sible subroutine) was executed and the RETurn made, the
return address was retrieved from the stack and loaded into
the program counter to cause the return to location 4A0AH.
The LD SP,HL instruction restores the original stack pointer
address used by T-BUG.

Nesting of subroutines can be used to any number of levels,
just as GOSUBs in BASIC can cause nested subroutine action.
As each new subroutine level is CALLed, the stack pointer is

decremented further and further, and the return addresses
are stored in lower and lower addresses in the stack. The pro-
gram that follows shows how this works for four levels of
subroutines. Breakpoint at LOOP, execute the program, and
then examine the stack, starting at 4AFFH. It should corre-
spond to Figure 6-4, and indicates that four separate return
addresses were stored.

wiM _
[-.r-i^-

MnTION OriiiM

tfBlXii

4rfi§ ri-17 .-;.'; ijjtJJ 4fl00H

4ft88 _lc;L:' ~JUl-~3 LD HL8 :OMK
4ffli i:

_:

g9l4g Mfin
riL_; ir"

[nsfi cp

4ffi4 31884B li'
f Cp

i
gpjj(ijj

1 1 • I
~
I hl I IE 3 •

fx. K

.=£37
UMrfri r-jlci1 L-JILl i-Kl ;caimmm

dfelfi -Q
&ji{'j LD 3f; HL i REST0.^f OLD SP

fflB 0@B4fi 'SJlc . Li.-L
" .IP 1 fifip

fflE C&124H Wis'6 Z'KL LHLL --K-- ;S£OI©L£aL

^"li
rq Wi&6 RET

"KCIi CM&tfi 1 :C..'.' _ ''.-
*-/j! 1

SKS

-LZ cs &L-ii'fj
CCT

m !_.'j- Sj-LLS -!ti RET ; CfigTJI i Pnfj

mm '''{'
J.'

Effi

105

4 BOOH

4AFFH

4AFEH

4AFDH

4AFCH

4AFBH

4AFAH

4AF9H

4AH

OAH

4AH

11H

4AH

15H

-SP ORIGINALLY POINTED HERE

4AOAH = LOCATION AFTER CALL SRI

4A11H = LOCATION AFTER CALLSR2

4A15H = LOCATION AFTER CALL SR3

^SP POINTED HERE IN SR3

BUT WAS RESTORED TO 4BO0H

AFTER RETURNS

Fig. 6-4. Stack area Example 2.

When PUSHes or POPs are used, two bytes of data are also

stored or retrieved in the stack, but the data represents data

from cpu registers and not return addresses. When data is

PUSHed, the high-order register is stored in (SP)-l and the

low-order register is stored in (SP)-2, in the same order that

return addresses are stored (Figure 6-5) . A third program fol-

lowing illustrates the storage action when CALLs and PUSHes
are intermixed, as they will be in most programs.

4B00H

4AFFK
(H)

4AFEH (U

4AFDH 4AH

4AFCH OBH

4AFBH 4AH

4AFAH !3H

4AF9H 4AH

4AF8H 17H
,

\

SP ORIGINALLY POINTED HERE

HL FROM PUSH

4A0BH = LOCATION AFTER CALL SRI

4A13H = LOCATION AFTER CALL SR2

4A17H = LOCATION AFTER CALL SR3

SP POINTED HERE IN SR3

BUT WAS RESTORED TO 4BO0H

AFTER RETURNS AND POP

Fig. 6-5. Stack area Example 3.

106

mmtmmmimGF sim

mm,
%m m2B ORG 48m
4flS8 218880 68138 U> HL8 ;01rS m
*ffii 35 M4B ®P HLSP ;LSBff

^ 31S04B mm ID SP,4B08H j IJHTIflLJZE STWCK

4887 £5 mB PUSH HL .;S?Jffi£ SAVE

4fflBCBi8ffl §8i?8 (Hi 3d ifflU. SUBROUTINE

4flffiM. 88188 HP BE ;SiHE RESTORE

ffiCFS §8iS0 ID S^H ;£EST(M OLD S5

4H8D C3sD4n 8E88 LOOP Jp LOOP ;L0QP HERE FOR B?

#18 CM44B 88218 SRI fflli SB2 ;SECOND LEffiL

4ABG9 8828 RET

4M4 £M84fl 882S0 SR2 Cffll 5R3 ;M® IIVEL

481? C9 ($240 RET

MSC5 K50SB RET ;FiMTHiB£L

1188 TOI& EliOK

Once the stack area has been defined by loading, the pro-
grammer need never worry about the stack and can indis-
criminantly perform as many CALLs and PUSHes as he
wishes, with a matching RETurn or POP for each CALL or
PUSH. Generally, 30 or 40 bytes of RAM is large enough for
even the most creative programmers; the number of nested
subroutines is limited to 3 or 4 primarily by the problems in
keeping the program in hand, just as in BASIC.

107

This chapter will discuss the heart of any computer system

—the ability to perform simple and complex arithmetic. In

order to use the arithmetic capabilities of the Z-80, we will

have to look in more detail at how numbers are represented

in the architecture of the Z-80. After that chore, we'll build

some routines to do adds and subtracts, decimal arithmetic,

and other arithmetic-related processing.

Number Formats: Absolutely and Positively!

There are really three different ways to represent numbers

in basic assembly-language routines used in the TRS-80,

absolute numbers, signed numbers, and binary-coded decimal.

(Another format, floating-point format, is too complex to de-

scribe in less than several chapters.) However, knowing the

three formats just mentioned will enable the user to do vir-

tually anything he wants in a TRS-80 processing routine.

In the previous chapters, we've been discussing numbers
in absolute form, for the most part, although a few signed

numbers have crept in when we discussed indexing and rela-

tive instructions. Absolute numbers are always positive ; they

can be looked at as "absolute-valued numbers." Earlier in

the book we mentioned that in eight bits the binary values

00000000 through 11111111 could be held and that these repre-

sented through 255 decimal. This still holds true (was there

a collective sigh of relief?). Similarly, 16-bit numbers repre-

108

sent values from sixteen zeros to sixteen ones, or decimal
through 65535.

We also mentioned that binary numbers represented powers
of two, and drew the parallel of the bit position in binary
numbers representing powers of two, just as the decimal posi-
tion in decimal numbers represents powers of ten. See Figure
7-1.

POWERS OF 2 S;S °° •"• <^

!i !l II if fl

CM CM CM CM CM CM

i 1 1 1

L_ 1X1 = I

0X2 =
1X4 = 4

1X8 = 8

X 16 =
1 X 32 =_32

«1Q-

POWERS OF 10

II II

4 5

5X1 = 5

4X10=JO

Fig. 7-1. Decimal versus binary numbers.

To convert any binary number to decimal, it is simply a
matter of adding up all of the powers of two represented by
one bits in the bit positions. Converting from decimal to binary
can be done by inspection (what is the largest power of two
that will go into this decimal number, what is the next, and
so forth) or by reference to tables. See Figure 7-2.

We have been working with hexadecimal numbers, which
are really a shorthand way of representing binary numbers
that have been grouped in 4-bit groups. Converting from
hexadecimal to decimal can be done in the same fashion as
binary ; that is, finding the weight of the power of 16 repre-
sented, or by reference to tables, as can conversion of decimal
numbers to hexadecimal. See Figure 7-3.

Absolute numbers in binary (hexadecimal) can be used
to_ represent memory addresses, counts, or any quantity that
will never be negative. In register indirect addressing we've
used absolute numbers to represent memory locations in the
HL and other register pairs. We've also used absolute numbers

109

for counts or to represent the number of bytes to move in a

block move. There are no negative numbers of bytes that must

be moved, at least in this universe.

TO CONVERT FROM
BINARY TO DECIMAL

1. LIST POWERS OF TWO REPRESENTED

2. ADD TO FIND DECIMAL NUMBER.

i i i

I \ \

64 + 4 + i = 69

TO CONVERT FROM
DECIMAL TO BINARY

105

-64 {2
6

)

41 —1 n r i-32 (2
5
)-

—

!

i I I 1

9

_ (23)-

1 (2°h

L SUBTRACT LARGEST POSSIBLE POWER OF TWO.

2. PUT A BINARY 1 IN THE APPROPRIATE BIT POSITION.

3. CONTINUE UNTIL REMAINS.

4. FILL IN REMAINDER OF BIT POSITIONS WITH ZEROS.

Fig. 7-2. Decimal/binary conversions.

Signed Numbers

The same registers and memory locations that are used

to hold absolute addresses can hold signed numbers. Many
different types of signed formats could be used, but the one

that the Z-80 and TRS-80 uses is the same type that most other

computers use, and it's called two's complement notation.

In two's complement notation, the most significant bit of

eight bits or sixteen bits is used to represent the sign of the

number. If the sign bit is a zero, then the remainder of the

number is the same as an absolute member. For example, if

we had the two's complement number 00001000, then that

number would be an 8, the same as the absolute number
00001000. The difference between absolute numbers and posi-

tive two's complement numbers, is that the most significant

bit is always the sign, and that means that the maximum
positive number that can be held in 8-bit two's complement

no

CONVERTING FROM
BINARY TO DECIMAL
AND BACK

1. GROUP BINARY § INTO 4-BIT GROUPS. +

'oiof uoi'ooii'oiif

2. CHANGE EACH 4 BIT GROUP INTO

A HEXADECIMAL DIGIT G-9.A-F

REVERSE

PROCESS

TO CONVERT
FROM HEX
TO BINARY

CONVERTING FROM
HEXADECIMAL TO
DECIMAL

1. LIST POWERS OF 16 REPRESENTED.

ii II ii ii

5 D 3 7

2. MULTIPLY BY DIGIT TO FIND DECIMAL.

3

. 7Xi = ?
1 3X16= 48

13 X 256 m 3328

5 X 4096 = 20480

23863

Fig. 7-3. Decimal/hexadecimal conversions.

notation is 01111111, or 127, about half of the maximum in
absolute form (11111111 or 255). In sixteen bits the maximum
positive number is 0111111111111111, or 32767 decimal.
Now here's the rub, as the Bard says in Much Ado About the

TRS-80. When the sign bit is a one, the two's complement
number represented is a negative number. When we see the
two's complement number 10001000, we know from the sign
bit that the number is negative. The question is, what nega-
tive number is it? The answer is not -8, even though it looks
logical (all things in computers are not logical, in spite of the
digital design). To find the actual negative number repre-
sented, we have to go through a purely rote procedure. It's not
complicated, but it is tedious. In a negative two's complement
number, to find the number represented, change all the ones to

zeros, change all the zeros to ones, and add one. This process
is demonstrated in Figure 7-4.

ill

Why are negative numbers represented this way? To sim-

plify hardware design. Next question . . , I'm afraid that's the

way it is, TRS-80 programmers. Fortunately for us, the as-

sembler takes care of constructing negative numbers and we

generally don't have to be too concerned about manipulating

them.

EXAMPLE 1: FIND TWO'S COMPLEMENT OF I0001QQO

10001000 NUMBER
01110111 CHANGE ALL ONES TO ZEROS

ALL ZEROS TO ONES

+ 1 ADD ONE
01111000 THIS NUMBER NEGATED IS THE

ACTUAL NUMBER. IN THIS CASE

-120

EXAMPLE 2: FIND TWO'S COMPLEMENT OF 11110000

11110000 NUMBER
00001111 CHANGE ALL ONES TO ZEROS

ALL ZEROS TO ONES

-f i ADD ONE
00010000 - 16

EXAMPLE 3: FIND TWO'S COMPLEMENT OF 01111111

Q1I11U1 SIGN BIT IS + (0) AND NUMBER

IS CORRECT AS IT STANDS (+127)

Fig. 7-4. Two's complement notation.

If we start applying this process of reconverting negative

numbers, we find that the smallest number in two's comple-

ment notation is 1OOOOO0O, or —128, while the largest nega-

tive number is 11111111, or -1, for 8-bit values. Similarly,

the range of negative numbers for 16-bit values is -32768
(10000000000000000) through -1 (1111111111111111). So,

the range of all signed numbers that can be held in 8 bits is

+127 through -128 and in 16 bits +32767 through -32768.

The nice thing about two's complement notation is that the

Z-80 will automatically handle addition and subtraction of

any combination of signs. In the days of double-precision

BASIC variables that can be processed in just about any man-
ner this may raise some reader's eyebrows,- but things in as-

sembly language are at the most basic computational level.

About the only requirement is that the programmer must
know something about the range of numbers he will be hand-

ling. In 8 bits one can get +127 and no more, and in 16 bits

112

the maximum is +32767. If more precision is required, the
program will have to handle longer strings of eight bits in a
multiple-precision scheme.

Let's see how the assembler handles representation of
signed numbers. The program that follows shows a data table

of various types of signed numbers, eight bits (DEFB) and
16 bits (DEFW). Note how the assembler automatically com-
putes the proper two's complement form. Might we even

suggest the odious task of looking at the arguments, convert-

ing a few numbers yourself, and then checking them against

the assembled value? Like chicken soup, it won't hurt!

(SiE1
.' IfSJLt of com^TfiNTS

m2B Offi mm
mm iSH~l3 r-.rm

l-'CTD

^fsfT nf -H40 pefb 1

4?te W «fij en
D£FB 0FFH

ffilffl PEFB BFEH

m ?F 85179 B^B

Wj esus mB DEffl 6

4SH7FFFF ffiise BEFH -i

Hj=£ SL5C? &M DEFW i

%® FF7F SB218 DEFM •KSF67

4ttfiJ ifiSfd ©228 DEW -j2?6S

£S3@ 0828 END

mmwtL rppjyJC

Note that the 16-bit values are in standard Z-80 represen-
tation, reversed so that the most significant byte is last and
the least significant byte is first.

Adding and Subtracting 8-Bit Numbers

There are several actions that occur when two 8-bit signed
numbers are added in. the Z-80. First, the instruction adds
the two operands and puts the result in the A register (initi-

ally, as you will recall, one of the operands was in A). In the
course of adding the numbers, the carry flag, half carry flag,

overflow flag, zero flag, and sign flag are all affected according
to the results of the add.

113

The zero flag is set if the result is zero. The two instructions

LD A.23 ;LOAD 23 INTO A
ADD A, -23 ,-ADD -23

would result in an A register result of zero and the zero flag

set to a one. The carry flag is set if there is a carry out of bit

position 7 after the add, and the half carry is set if there is a

carry out of bit position 3. These carries are equivalent to

decimal carries during an addition of two decimal numbers.

The carry out of bit position 3 is the "half-carry" and is used

for decimal addition of binary-coded-decimal operands dis-

cussed later on in this chapter. The "carry" out of the high-

order bit position occurs whenever a carry is generated for

the add, as in the add of 23 and —23.

00010111 23
carry 11101001 -23 (try the two's complement)

1 00000000 (zero result)

The carry flag can be used for adds of multiple bytes, for adds

of bed operands, or for certain types of compares.

The sign flag is really the duplication of the sign bit in

the result after the add. If the result of the add is positive, the

sign flag is reset (0), while if the result is negative, the sign

flag is set (1). The sign flag can then be used for conditional

jumps such as jump if result positive (JP P,aaaa) or jump if

result negative (JP M.aaaa).
The overflow flag is used during adds and subtracts to de-

tect overfloiv conditions. Overflow occurs when the result of
the add is too large to fit into an 8-bit signed representation.

Suppose that we are adding +127 and +50. We know that the
maximum positive number that can fit in 8 bits is +127. What
would the result be if we actually performed the add?

01111111 (+127)
00110010 (+ 50)

10110001 (-79) result— wrong!

As the reader can see from the example, the result of —79 is

incorrect. If we had no way to detect the overflow, we might
go merrily on our way printing a paycheck for an employee of

$1,045,067.66, or an equally catastrophic action. Fortunately,

the Z-80 does set overflow when the result is greater than

+127 or less than -128.

When a subtract instead of an add is used, all of the above
actions apply. The Z-80 performs the subtract just as you

114

would on paper, and then sets the flags according to the re-

sults of the subtract. There are really no fundamental differ-

ences between an add and subtract, as the reader can see if

he considers adding +23 and -15 and then compares it to
subtracting +15 from +23.
To illustrate the settings of the flag bits after an add or

subtract, let's use T-BUG to execute some examples of arith-
metic operations. Load T-BUG and key in the following pro-
gram. Run the following examples by using T-BUG to change
the operands in 4B00H and 4B01H, breakpoint at location
4A14H and then use the M command to look at the flags and
results in locations 4B02H through 4B05H as shown in Table
7-1. In addition to the examples below the reader is urged to

try his own values. The flags will have to be "decoded" from
an 8-bit value to determine the state of the flags (it is some
work, but you'll be a better programmer for it). The bit posi-
tions of the flag register are shown in Figure 7-5, and in
Table 7-1.

fisiSB

.

. nr-j-,-%m TO ILmm miimic

88118

ift¥) 68120 ORG

'si— --t^mH mm U)
. r-r-r -™ iwr

ml 47 mm LB. B:B ;FIK OPERATION

w4 3fi8848
"=y ~r.

U) % j'^poquj
;fi£T miffiVM

At£P OS
&±hks HDD n n JhW

4ISSF5 zitxT'o ruzfi nF timsFBFim

iTfJJ £1 mM Pfp HL ;0ET RESULT FUSS

& ZmftB zii^O u> (4BS2H),a /STORE

fiCCf'- Qg 68298 sm B ^RESTORE

4ffiES8 MM SUB B ;SIISM;T

jgsp z~.
68226 m Hf ;TRflNSFERFLfiGS

"rffijj rj. .HHy'-H POP KI ;GET RBL1L FLfiOS

m® ID (4BWH)iH ;STBRE

mi C3i44fl 88245 LOff IP LOOP ;L0QP HERE FOR BP

-388 £€550 Eft)

usee una. errors

LHP 4IJ14

115

FLAG

REGISTER

7 6 5 4 3 2 1

S Z
- H

-
P/V N C

L CARRY FLAG

_ ADD/SUBTRACT FLAG
~

{BCD OPERATIONS)

PARITY/OVERFLOW FLAG

HALF-CARRY FLAG (BCD OPERATIONS)

ZERO FLAG

SIGN FLAG -NOT USED

Pig. 7-5. Flag register fait positions.

Table 7-1. Examples of Add and Subtract Flag Bit

Location Contents

Tost Cases

1 2 3 4

4B00H Dest Op + 33{21H) -5(FBH) ~30(E2H) 1 20(78 H)

4B01H Source Op + 64(40H) ~30{E2H} -5(FBH) 100(64H)

4802H Add Flags ooiooooo; 10001001 100010O1 1000 1100

4B03H Add Result + 97(61H) -35(DDH) -35(DDH) -24{DCH)

4B04H Sub Flags 1010001

1

00001010 10510011 00000010

4B05B Sub Result -31(E1H) + 25(19H) -25{E7H) + 2004H)

FLAGS

S Z • H P/V N C
7654C 2 1

Adding and Subtracting 16-Bit Numbers

The Z-80 allows two 16-bit operands to be added, as we
found in a previous chapter. One of the operands must be in

the HL, IX, or IY registers, analogous to the A register in

16-bit arithmetic; the second operand must be in one of the

other register pairs. When an add or subtract is performed
16 bits at a time, the flags are affected in various ways, de-

pending upon which of the 16-bit arithmetic instructions is

being used. When an add is done to the IX register, for ex-

ample, the zero and sign flags are not affected, but when an
"ADC" is done with the HL register, the sign and zero flags

are affected. When in doubt about flag action, consult the

116

individual flag action listed under the instruction in question
in the Editor/Assembler manual.
The advantage of the 16-bit adds, of course, is that much

larger numbers can be handled, at the expense of addressing
versatility. Since the HL, IX, and IY registers are generally-

used as memory printer registers, the 16-bit adds and sub-
tracts using these registers can be used to advantage to cal-

culate memory addresses. As an example of this memory ad-

dress computation capability, let's use the following program.
This program uses 16-bit adds and subtracts to calculate

memory addresses for movement of a dot across the video

screen.

'two aksSC lfiL$8

183 H4ffi0 im?£

4nftg MS880 @§178

$38 36EF

4H> 85

m ®
mm
mm
ffUJ ±7

4/a.b 30

mmjMimnminm
sane -

rev*
una

LB

11)

U)

LB

kj no I nnru I r-.

88288 LdP2 DEC

682S0

HJBH3 [UllB. CRRUO

L'CL-

JR

id

4flS8H

Hb3»32

1 ::•
i J

(HDiflBFH

n
D

tn 1 iwiw
fid.' LWT£

r

f&LO0P2

(HL)i8Sf

;STfiRT

;STffiT PSSinfiN

;IHSEffllT

.iB»jim nr i Tiirr
,' R'jnCCR uF I

):tn

.• i/cLnr muni

.
."! I ™

. r-.r? rai MIT -3

jw h Rwi ten.

; GO IF MI ME
;fll OFF

jUpVT GjU?

;OB-i

; CONTINUE

The program starts by loading HL with the first position

of the dot, the screen memory plus one-half line. DE is loaded

with 64, representing the number that must be added to move

in

the dot to the middle of the next line. A is loaded with 15, the

number of lines that the dot will move. BC is loaded with a

delay count of 0, representing a delay of 65536 counts when
BC is decremented in the loop. The action of the loop from
LOOP1 through 4A17H is this : The dot is initially set on by
outputting the graphic character OBFH. This character sets

every one of the six pixels in the character position. Now the

program delays about y>± second by means of a 4 instruction

delay loop. BC has zero at the end of the loop. After the delay

the pixels are turned off by outputting the graphics character

80H. Then the next address is computed by adding the 64 in

DE to HL, the address pointer. The contents of A are decre-

mented by one. If 15 lines have not been reached, the program
loops back to LOOP1.

There are several interesting things in the above program.

Because the assembly-language code is extremely fast, we
had to delay each time a dot (actually six dots) was moved
to a new position. The delay count in BC was initialized to 0,

and decremented by decrementing B back to again (256

loops) as an inner loop and by decrementing C from back

to as an outer loop. The reader should realize that at 4A13H,
the count in BC is 0, in preparation for the next delay loop.

Another point is that there is no way to decrement BC and
test for zero, as the flags are not affected by a DEC BC. Hence
two decrements are used, each one checking one of the two
registers for zero—a DEC B or DEC C does set the flags after

the decrement.
To illustrate the 16-bit subtract, we'll rewrite the program

above to make a single pixel move from the bottom of the

screen to the top of the screen. This program will be identical

to the one above except that the starting position will be
3C00H4-992, the 32nd character position in line 16. the incre-

ment in DE will be —64, and the graphics codes will specify

all on or all off for a single pixel (we'll be looking at the

graphics codes in more detail in a later chapter).

@810g ; ROUTINE TO mm. ft DOT CBhOMKmS}

118

88168 U> BC,g ifBJUGSM

4SSB JfiSEt W178L00F1 LD (M.X.81H ;OIE PISL ON

mm mmum m: b ;pejv count - i

4fiE2SH> mm m hZirm jSD IF HOT SONE

MS OP 8M DEC C ;Mr! OMT
Mi 2QFfi 6S218 JR H&LOffiS /EOIFfiBTHHE

4M2 3S88 gffiPg LD 0-D..88B ;flLL iFF

#-5B? 88238 GR fl ;RESET DiRRV

€16 EDS 88246 SC HLOE iffiXT RON

ms 3D mm m a ;ob-i
«tt?28F0 882S8 JR ISELOSH iCOHTIJIJE

flffiiffE 0E?B LOOPS JR LQ0R3 ;L0GP ME

^0 TOTAL £M:^S

um m
loops %m
urn. mB

The subtract was performed by the SBC instruction which
subtracted the increment value of 64 from the current video
memory position in HL. Note that before the subtract, an or
A was done. The only reason for performing the OR A luas to

reset the carry flag- The two questions that may immediately
come to the readers mind are why use an or A to reset the
carry, and why reset the carry? The or A is used because it

is a short (one byte) and fast instruction. We could have
reset the carry flag by an SCF followed by a CCF (set carry,
complement carry), but the or A does not affect the contents
of the A register (try ORing any value with itself) and it is

efficient.

Why do we want to reset the carry before the SBC? Well
the SBC is actually a Subtract with Carry type instruction
that not only subtracts a second operand from the contents of
HL, but also subtracts the current state of the carry. That
means that one more count might be subtracted from HL if

the carry is set before the subtract. Since the carry is set and
reset with many instructions, we have no way of knowing
whether the carry will be set or reset before the SBC, and
therefore must clear the carry to avoid subtracting a possible

one from the result.

119

A Precision Instrument

The reason that the carry enters into some adds and sub-

tracts on the TRS-80 is that the Z-80, like other micropro-

cessors, is able to handle multiple-precision adds and sub-

tracts. Remember that the maximum value that can be held in

8 bits is 255 and that the maximum value that can be held in

16 bits is 65535. What happens if we want more precision and

want to hold larger numbers for adds and subtracts? How
could we add 32-bit (four byte) numbers, for example, allow-

ing us to work with values up to 4 billion or so (232) ?

Larger numbers are held in multiple-precision representa-

tion, which is simply a method for representing the numbers
in as many bytes as required. If we know, for example, that

a billion or so is the largest number we'll be working with,

we can conveniently work with four-byte numbers in the Z-80.

Suppose that we wanted to add two four-byte operands of

+344,050 and +500,000, as shown in Figure 7-6. The numbers

SIGN BIT CARRIES

/ in mnmr
0000000000000101 0011111111110010 +344,050

00000000000001 1 1 101 0Q 00 1 00 1 00 000 (500,000

0000000000001 100 1110000100010010 +844,050

FOUR-BYTE OPERAND = 32 BITS

Pig. 7-6. Multiple-precision adds fay manual methods.

are signed 32-bit operands, with the most significant bit rep-

resenting the sign of plus (0) or minus (1) just as in the

case of 8- or 16-bit operands. To add them with pencil and
paper, we simply add the ones and zeros, and any carry from
the lower bit positions as shown in the figure.

To add the numbers in the Z-80, we have a bit of a problem
(32 bits of a problem, to be precise). We can add up to 16-bit

operands, but how can we add 32 bits at a time? The answer
is that the adds must be either four 8-bit adds or two 16-bit

adds. Each of the adds must add in any carry from the last

byte or two bytes, just as we do on pencil and paper opera-
tions. The following program adds two four-byte operands,
representing the above values. The operands are in memory
locations 4B00H-4B03H and 4B10H-4B13H and the result is

stored in location 4B00H-4B03H. Key in the program using

120

T-BUG (or assemble and load), execute at 4A00H after break-

pointing, and then check the result at 4B00H-4B03H, It should

correspond with the result shown in Figure 7-7.

Sffiffl;FOR BV1E ADD ROUTINE

mid..

iffiSnifflFIffl

jSOUKE

;G£TB¥TE8

$£8 0R8 4RB8H

«8 B2W® seoesiffiT U) IS; 4B88H

%14FD2ii84B 88146 U) IV.4B18H

"SH- Wi'ti&S SB158 13 &OX+3)
jrag; cpofffj

teLbS m ft(IVS)

ADSE l^TTCi"-
68178

/TUt"S\ Q

wl DP75S QffQA
13 ft(IX+2)

Halt rixsbi saise m ft<m5)

ffll? WiffQi wSBB LD (IX+2), fl

mmm. mm LO ftCK+i)

ffi!D FME92 ffi^S W>S a-(m2)

mm LP (imfi
£Qv/ f-^Trsfj

6B24S LP &CIX)

C5 H€£0S m7^ m ft (IV)

#25' E®?7B8 gffi&s U) (IX); B

aAS'f" f'T?^'"5

§8270 LOOP jp LOOP

4ffl@ 88288 OK 4B8BH

"TlHffc? G^ !M£?i< 0EFB e

JDS-j K £Hj7f|Q DEFB -j

jrsv? tt1

8S318 yEFB 3FH

Effli ("i 88328 PEFB
:-r.-:l

!

416 SB36 ORG 4B10H

4B1H 88 ®34@ "*-nrs

frfl'i ?!/ SflT^Sj m ?

i-SIi Hi 83£@ PEFB ffllH

ffiO 28 Biq7"p m 28H

esse iB88 END

8ffi0B TuffiL BBSS

LOOP 4F2C

SMT 4fi80

;5TffiE RESULT

«GETBV1EI

;(SD S&SCE

;STilE RESULT

;GETB¥IE2

;fiDD SQtRCE

;ST0RE ESULT

/GETBVTEi

;fiDD SflUKE

;STORE REHLT

;L0GP HERE FOR BP

;PESTI?f)TION flREH

?+344,850

;yM;E 8HER

121

SIGN BIT

4B0OH 4B01H

0000D101

4BQ2H

OOllllll

4B03H

11110010 + 344,050

4B10H 4B11H 4B12H 4B13H

00000000 00000111 10100001 00100000 +500,000

4B0OH 4B01H 4B02H f ~V*B03H

00000000 00001100 11100001 00010010 + 844,050

BYTE 3 BYTE 2 BYTE 1 BYTE

Fig, 7-7. Multiple-precision adds by machine

The program uses indexed addressing with both IX and IY.

The IX register points to the destination operand in 4B00H
through 4B03H. Note that the most significant byte is at

4B00H and the last significant byte is at 4B03H. The IY reg-

ister points to the source operand at 4B10H. Although the four

adds couid have been done in a loop, the in-line code in the

program clearly shows the steps that must be taken for the

adds. The first add adds (IX+3) and (IY+3), the least sig-

nificant byte, and stores the result in 4B03H. After the ADD,
the carry flag is set or reset dependent upon the carry from
bit position 7, which is not a sign bit, but just another bit posi-

tion. The next add (ADC) adds not only the two bytes from
(IX+2) and (IY-f-2), but the carry from the previous add,

which is undisturbed, as loads do not affect the carry or other

flags. The next add adds in the carry from the second byte, and
the last add adds in the carry from the third byte. All adds,

except the first, added in a possible carry from the lower or-

der byte. In the first add there was no preceding carry to be

added in.

The program shows the general approach to add any num-
ber of bytes. There is no limit on the maximum number of

bytes that could be used, but working with 32-byte operands
might get somewhat tedious after a while. Floating-point

format allows a more compact representation of large num-
bers, at the sacrifice of the number of significant digits, and
is widely used in cases where very large, very small, or mixed
numbers must be used.

Subtraction of multiple-precision numbers is handled in

similar fashion. The first subtract would be an SUB without
the carry, but the remaining three would be SBCs, which use

the borrow from the preceding lower-order byte. A portion of

this code is shown below.

122

LD A,<IX + 2) ;SECOND BYTE

SBC A,{IY + 2) .-SUBTRACT SOURCE
LD (IX + 2),A ;STORE RESULT

There is no reason that 16-bit adds and subtracts couldn't
be used, as long as the total number of bytes was a multiple
of two. In the general case, 8-bit adds and subtracts are
somewhat easier to work with, as they allow for an odd
number of bytes and permit a direct add or subtract of the
source operand (through HL, IX, or IY). The two programs
shown below are general-purpose subroutines for multiple-
precision adds and subtracts. They will handle any number
of bytes required. Upon entry, IX and IY point to the first

(most significant) bytes of the destination and source, re-
spectively. The B register contains the number of bytes in
the operands (both operands must have the same number of
bytes). The subroutines add or subtract the source operand
from the destination operand and put the result in the des-
tination operand memory locations. Upon return from the
subroutine IX and IY are unchanged and the contents of B
are zero.

88108 ;SlKOliT!NE TO DO ItinPLE-fECISION JBS

ffiilS • EMIW: CIX)=fOISB TO MS BVIE OF PESTIffiTION

83150 tt¥)=PDINT5 TO If BVIE OF SLICE

~i.-^J tlil- <Md 4HHHH
:"UD"/^ I l)J Q

^: D5 tii^-d 1iM) rtfei UL~ : '-,rf>ft DF

±Wl
~0

..-_.:. LU
r jj

; #B¥TES TO E

^M !&€ i^iTL LU f;,K ;DEfflWfflS

J>fw IP 69258 rep f£

123

Sal? L-'i wKOO

ffwri re" vSiJS

ifM? iWt-53 SjJdt' uUU
1*'

Li-
5

4916 £3 §8248

M7 DCJ2B iBSB LOOP!

#19 HI? KBS8

4MB C38B4H 003?@

LDOFi 4fll7

LOOP «@B

sffi
H ;RESETCfiRRV

IB ft. (IX) iQET DESTINATION

Af-.r-

n> Ut,-1 :
uyf'i Crdlpr-p

U)
•'TV-, a .•iflfe KuZ'iLi

DJNZ LffiFi ;@3 IF NOT DUE
j-,r-r

KC irt
.ni!T 7;-: SHT-T UICO

!•.*--. 73 3

,-rnl fU fEfli nllackL-'Li- 17

JP LOOP
.iV-irrrsag:

ffliS8 ;SUBfflffINE TO DO MULTIPLE-PRECISION SBIWETS

mm , ENT^V: (!X)=P0IfflS TO m BV1E OF DESTifffiTICW

89120 . uWOINTS TO ffi BVTE OF S@^
6B08 > CS)=# OF SVTE5 IN CftRMS

88148 EBLL MM
i$id£ (RETURN)

Hs88 - (MESIROVED

mm

.

/r)=h

S&3.1' UKU ^fn-ij&i

i i.i FJ, H

;SfivEDE

iftBJ .-jr.

't-'SJ.j UU±2 Sitby Hi?/ l.^i ii|; .irUIfii !U Lb t'flfc

124

#fHH rir iwyy XOR H
. r<rrrr iVirvra i

jssp r:j-
r
7psii

88388 LOOP N) n> '-.in* ;GeJ5ESTIMtTI0N

ffiFIM SB1§ pRf' jSUBTfifiCTSOUSGE

I^ _ r ri™S
tffiiks ID cms ;S70RE HEtlT

IM4 ishl
p^-™ m LOOfl ;G0 IF MDT DONE

#15 IS 68348 RET ;mm
4ftf7 DD2B Ms5@L00Pi m T'_' ,m!T T" 1BTJT IIT.-HHT.

HSFB3 8KS8 uEC IV ;PMJ]DMEXIHIi®
jryri r--^r,.(Q

®3?e LOOP ;CONTIif

fflffi 9B88 Dli-
1

LOOP! 4fli7

«| cjjp 4<asy

Decimal Arithmetic

Up to this point we've been doing arithmetic operations
with absolute and two's complement numbers. As we men-
tioned earlier in the chapter, there is a third type of arith-
metic that is possible in the Z-80 and many other micropro-
cessors, binary-coded-decimal (bed) arithmetic. The bed rep-
resentation is a more direct translation from decimal than
binary. To convert a decimal number into bed, change each
decimal digit into its 4-bit binary equivalent. Some exam-

3286

ZISs
0011 0010 1000 0110

15

999 1

•7W
1001 1001 1001 0001

15

i 234

0001 0010 0011 0100

BCD NUMBER IN 16 8ITS

{4 BCD DIGITS)

BCD NUMBER IN 16 BITS

(4 BCD DIGITS)

BCD NUMBER IN 16 BITS

{4 BCD DIGITS)

15

Fig. 7-8. The bed representation.

125

pies of this are shown in Figure 7-8. After the conversion

we're left with a binarylike number whose length equals four

times the number of decimal digits, or to put it another way,

two bed digits in each 8-bit segment as shown in the figure.

The bed representation is used for a variety of purposes.

Much instrumentation uses bed, especially instrumentation

that displays digits in digital readout form, such as digital

voltmeters and digital frequency counters. We could, of course,

convert from bed to binary, perform arithmetic operations

in binary, and reconvert to bed, but it is convenient to be

able to directly add or subtract bed values in the Z-80.

Adding or subtracting bed is not the same as adding or sub-

tracting binary numbers. Since the binary groups of 1010

through 1111 are not permitted in bed (there is no bed equi-

valent), operations in binary produce erroneous results, as

BCD ADD

1234

BINARY ADD

0001001000110100 1234 IN BCD

+ 6777 0110011101110111 6777 IN BCD

8011 0111100110101011

7 9 A B

RESULT

RESULT IN BCD

NOT

"EQUAL!

Pig. 7-9. A bed add with erroneous result

shown in Figure 7-9, where the bed add of 1234 and 6777

produces 8011H and the binary add of the two numbers pro-

duces 79ABH. It turns out that to convert a binary result of

the add of two bed operands into bed, it is only necessary to

1234 0001001000110100

+ 6777

8011

0110011101110111

0111100110101011

ooDobiiooiiobno

1000000D00010001

1 1

-EQUAL!J

1234 IN BCD

6777 IN BCD

INTERMEDIATE

RESULT

CORRECTIONS

FINAL RESULT

RESULT IN BCD

Fig. 7-10. Bed corrections.

126

look at each of the groups of four bits to see whether or not
a correction is required. If a 4-bit group in the result contains
1010, 1011, 1100, 1101, 1110, or 1111, or if a carry from the
group resulted, then 0110 is added to the group to adjust the
binary result to a bed result. As every byte holds two bed
digits, two such checks are necessary for each binary byte.
The process is shown in Figure 7-10, where corrections are
made to the operands shown in Figure 7-9.
Bed subtractions require the same adjustment, but in this

case six is subtracted if necessary from a bed digit in the
result. It's relatively easy to implement a program to look at
each bed digit and test to see if an add or subtract adjustment
is necessary, but the Z-80 does it all in one instruction, the
DAA, or Decimal Adjust Accumulator instruction. When bed
operands are being added or subtracted, the DAA is executed
directly after the add or subtract to automatically (aren't
computers wonderful) adjust the binary result to a bed result.
To see how this works, we'll write a program to count in bed
for 00 to 99 and compare the results with values stored from
00H through 63H in binary. The following program stores
the bed values from 00 through 99 into a buffer starting at
4B00H and stores a corresponding count from through 99
in binary into a second buffer at 4C00H. Enter the program
by assembling and loading or by using T-BXJG to enter in
machine language, breakpoint at END, and then compare the
results in the two buffers. By "dumping" the bed buffer us-
ing the M command in T-BUG (with carriage return), you
will see a sequence of bed numbers from 00, 01, 02, 03, 04, 05,
06, 07, 08, 09, 10, 11, up to 99.

mm . -.r-.c-.-r-r-.i-t

7 is DBttfa 1K8TE BCD

mis

4m ten .--'£?

J-H'j 4HMi

4m iltft®@ ffii3@
CTQP1

u>
r-.r fi . fi_n>--r-,. r_r,?_s_!nny

%m fByunn.
!fi Hi4§ LP a 48S8H mrnm

m? Fu2jBB^fC §3150 UJ IV,4C88m ;8im &WFFR

w& ljhh4 v^lSB LB R.188 mm
#BD mm wfi/P

:Ll/Ur ID (IH):U :HJh£F RCD

fmm "cj rrr.
ID iiij.'t '/zSM. BIMmV

=wn i i-i-'ZJ tejiyy
ii'ii- Li-.

•01 S3) Dm DOTirrrr.

YfHv !W< (B208 IIP.-
fij

/Mf BINfiRV POINTER
Jftil
fill/ fn tet-'"lH LB ftp ;GEJB0)

127

fflS \M 88228 ABB fti ^1
*&}?? S821R Effi

;DECI{1ffi. HPJ15T

mo? mm u> m ;smmm£
- i- . ITT riT|!^!"i!l

4fitC 78 SESB U> *E ' bET DlhnKr

MDC&i 88268 ' S)D fci -
:®&1

4A1F 5F S827B $ £[fl ;Sfi5€ BINRRV VBLIE

mm 1288 WE LOOP : 60 IF NOT iSS

4*22 lflFE 88298 LOOP! JR LOOP! ;UW IBE IF DONE

m 88388 END

88880 TOR HRMS

L00F1 4fi22

LOOP 4RSD

SfflRT 4fi8@

Compare Operations

As we described in an earlier chapter, compares are essen-

tially subtracts, where the result of the subtraction is only

used to set the cpu flags and is not put into the destination

register. Unlike subtracts, compares only operate with 8-bit

operands, and one of the operands must be in the A register.

Compares and subtracts may be used to test two operands for

the same states as BASIC comparisons—tests for an operand

greater than another, greater or equal, equal, not equal, less

than or equal, or less than. Some of these tests are directly

handled by the zero and sign flags, while others must use the

carry flag.
t

The test for equality or non-equality is simple and uses the

zero flag. In the following code a branch is made to NOTEQ
if the contents of the A register are not equal to the contents

of the B register and to EQUAL if the two registers are the

same.

TEST CP B ?TEST BY A~B
JP Z,EQUAL ;GO IF A=B
JP NOTEQ ;MUST BE A NE B HERE

When the two numbers to be compared are absolute (un-

signed) numbers, the carry flag will be set after the compare

if the contents of A are less than the second operand. If A
holds 128 and the C register holds 130, for example, the

branch to LESSTH will be taken in the code below.

128

TEST CP c ;TEST A-C
Jp CLESSTH ,-GO IF A LESS THAN C
Jp Z,EQUAl ;GO IF A=C

:A GREATER THAN C HEREGTHAN

When the two numbers to be compared are signed numbers,
then the carry flag logic gets rather confusing. For this reason
we present a general-purpose subroutine that compares two
signed numbers and jumps to one of three locations based on
a comparison of the operands. By making the branch loca-

tions identical, any combination of equality conditions may
be constructed. If a branch is to be made on greater or equal,
for example, the greater than branch will be to GTEQU and
the equal branch will also be to GTEQU, with the less than
branch to some other location.

129

;GOIFfiGTB

The block compare is used in string searches and will be

discussed in Chapter 9 when we look at strings and tables.

130

CHAPTER 8

The operations in this chapter differ from the arithmetic
operations in the last chapter in that the operations here are
all concerned with subdivisions of bytes, either fields of a
byte or down to the individual bit level. The logical instruc-
tions are used to retrieve or store information in segments
less than a byte in length, the bit instructions manipulate in-
dividual bits in memory or register bytes, and the shifts align
fields or manipulate individual bits.

AND, ORs, and Exclusive ORs

The and instruction is used primarily to mask out un-
wanted data in bytes. Suppose, for example, that in each byte
of data in a table in memory we had an ASCII character rep-
resenting the digits of through 9. Now it turns out that the
ASCII representation of those digits follows a rather logical
order as the reader can see from Table 8-1. The ASCII rep-
resentation of is 30H, 1 is 31H, and so on up to 39H for 9.
To convert one ASCII digit of 30H through 39H into a binary
value equivalent to the ASCII character, it is only necessary
to get rid of the bias of 30H. This could be done by subtraction,
but an equivalent alternative would be to mask out the "3"
portion of the ASCII by an and.

LD A.ASCI1 ;GET ASCII VALUE
AND OFH ,-GET LAST FOUR BITS

131

When the ASCII values are masked by the immediate value

OFH (OOOOllll), only the last four bits fall through, and

since the least significant four bits are through 9 in this

case, the result is the equivalent binary value.

Table 8-1. ASCII Representation of Decimal

and Hexadecimal

ASClf

Digit Code

r

1

30H

3IH

2 32H

3 33H

Decimal <
4

5

34H
35H

6 36H

7 37H

8 38H
>. 9 39H

f
A 41

H

B 42H

Hexadecimal «

C
D

43H
44H

E 45H

.
F 46H

Conversely, a binary value of through 9 could be converted

into an equivalent ASCII value for output by setting the "3"

bits. Although an add could be used, the ASCII values could

also be generated by an OR instruction.

ID

OR
A,(BINARY)

30H

,-GET BINARY VALUE

,-CONVERT TO ASCII

In both of the preceding cases we have assumed that only

valid ASCII characters of through 9 are involved, and that

the binary values will be through 9. As a simple illustration

of this conversion, let's write out the screen line number
through 9, for the first ten lines of the screen. The following

program does this by counting for through 9 and ORing in

the "3" value to make an ASCII digit out of the count.

m mm
4ffi82iMiC 88128

88iB8 -MIE OUT IMS 8-9 IN fiSCII

ORG

LP

€86H

FL3C»32 MWlE Of iSi LIIE

132

4fig2 0S89 B8148 U>
n n
B/5 ;IHITIflU2E 03UNT

4H5 803 -S158 u> C3SH jlhST ASCII

wen Aneiroi
ffKW litres tfeifb LP D&64 ;LIffi INCffflEff

4fi8n i""Q Kttotf LbLr LD rf»D iffiTCUSEHTCfllHT

iiwn ry-Ni BfliWl
IWITFI l« ;Oier to /sen

LSvijd U) OiX.fi
. rrnrv nil rmrrij

BQ*JJ D
B&& ft*BE iHBP LIE PfflR

4D8F84 A8228 INC B i BLHP COUNT

4R16 BS 89238 CP
p

i TEST FOR BD

Mi G2BHA JP IE, LOOP ;60 IF M3T SHE

#d.4 C3I44a 6825S LQGRL
rr.

LOOFi ;L00P ieE BT END

sees 8SS8 w
iffSQ TOM.

LOOPl 4R14

LOOP 4iER

The exclusive OR does not find as much use as the AND and
or instructions. Recall that the exclusive OR generates a one
bit in the result if there is a single one bit but not two one
bits in the bit positions of the two operands. The most common
use of the exclusive OR in the TRS-80 is to zero the accumulator
by the efficient instruction.

XOR A .-ZERO A REGISTER AND CARRY

Another use of the exclusive OR is to toggle a counter from
to 1 and back again as in

ID A,l

LOOP XOR i

JP Z.ZERO

JP ONE

SET TOGGLE TO ONE
TOGGLE
GO IF ZERO
ONE ACTION

One of the more common operations in the Z-80 and other

computers is to set or reset a bit in a memory byte or register

byte. To set a bit in memory in many computers, the following

three instructions must be executed

ID A,(HL)

OR A,4

ID (HL),A

LOAD THE MEMORY BYTE

SET BIT 2

STORE BYTE WITH BIT SET

Similarly, resetting any of the eight bits of a memory byte

calls for

133

LD A,(HL)

AND A.OFBH

LD (Hl),A

LOAD THE MEMORY BYTE

RESET BIT 2

STORE BYTE WITH BIT RESET

Lastly, testing a bit of a memory location requires a load

and test, usually an and

LD A,(HL)

AND A,4

JP Z.ZERO

JP ONE

LOAD THE MEMORY BYTE

:TEST BIT 2

GO IF BIT 2 =
BIT 2 = 1

Bit Instructions

In the Z-80 only one instruction is required to set, reset, or

test any one bit of a memory or cpu register bit. The instruc-

tion SET 2,(HL) takes the place of the three instructions for
setting a bit, RES 2,{HL) causes a reset of bit 2, and BIT
2, (HL) sets the zero flag to the condition of the bit- Since

these sets, resets, and tests are continually being done in as-

sembly language programming, the bit instructions are quite

powerful.

Shiftless Computers

It is possible to perform the actions of aligning data, divid-

ing and multiplying by powers of two, and bit testing without
shift instructions, but the Z-80 shifts are much more efficient

than other shiftless instruction sets, and make these common
operations much easier to perform.

Often shifts are used to align data, that is, to move fields

within bytes to a desired location. The Z-80 shift instructions
for data alignment are the Rotate instructions. Rotates are
either 8-bit rotates or 9-bit rotates. The 8-bit rotates move
the 8 bits within a register or memory location out one end
and in the other, as shown in Figure 8-1. The 9-bit rotates
rotate the carry along with the 8 register or memory data bits.

Both types of rotates have their uses.

Rotates

As an example of use of rotate, let's write a routine that will

output the contents of a block of memory locations in binary.
Each memory location has eight bits, of course, and we must
convert each bit to an ASCII one or zero for display. The
following code outputs locations through OFH to the screen
in binary ASCII.

134

88180 ;Rmm TO tiW IN BIWRV

4D8S 89128 ORIS 4HS-9H

#8 DD21583C 8808 SlfflT U) I&3C8BIH32 itami of lie 8

4884 FD2t884B 88148 ID IV,4BS8H ;STfiRT OF WW* L^

4G88 113888 £€158 LD G&tf iLibE INSffiSff

4fflB 863.8 88168 U) B,i& iLIK COUNT

4H> D3 88178 LOGPi Bffi /SWITCH REGISTERS

4fl8E 8688 uSlos Lfl RS ;8IT COUNT

4ffifi 3E3B HfjlS'8 JJ0P2 U) ft 38! ;ASCII 8

4M2 FDCBiSSt 83288 RLC (IV) jfiOTflTE LEFT

$16 3881 6^18 JR HDLOOB jfiO IF g

iftlTi *3f-
8822S

TUP
Jf=L- jfmm&wi

#19 IMBg Eg^/rt
-O0P3 LD ax)ifl ;SME0(Si

mcm 88235 fflC IX ;EXT OH33C1ER HEffl

wit isrs 8^# RJBZ LOOK ,='jy ir nui o i?J fi

41)28 D9 88258 EJS
, n iTTr-U rsnr-i/
.OftiJL-n GflUl

4MFD2 1IC IV
!

;EuHP LOCATION PfflK

4a23MMS 882?B HDD fits ifOBff To OT Uffimm s^oop
DJ/G LOOP! ;08 IF NOT 16 IONS

m?m fijVVVJ
-00P4 Jfi UJi-'r'**

.inm i«-nr rai nmw

QQQfl
^388 gg)

88888 TOIfiL ErlOiG

L00P4 4fl2?

LUGR2 4B1S

tWS"£ "311-3

LOOP! 4fi8D

5H8T 4888

This is our most complicated program thus far, and it bears
some detailed study. The IX register is used to point to the

current screen line, starting at the middle of the first line. The
IY register is used to point to the location to be dumped, in

this case starting at 4B00. DE holds the line increment to be
added to IX to point to the next display line. Since we're going
to be writing out 8 ASCII bytes on each line, the increment on

135

7

RIGHT

ROTATE
» REGISTER OR MEMORY - i~

7

LEFT

ROTATE
L*_ REGISTER OR MEMORY „_!

7 CARRY

RIGHT ROTATE

THROUGH CARRY
p_ REGISTER OR MEMORY —(»

CARRY 7

LEFT ROTATE
THROUGH CARRY

4 , .<_ , REGISTER OR MEMORY -»

—

Fig- 8-1. Rotate operation.

this is (64-8) or 56. B is initialized with the number of loca-

tions to be dumped or 16.

The main loop in the code starts at LOOP1. The first in-

struction swaps the inactive and active set of cpu registers B
through L. This is done to enable us to use more cpu registers

since just about every one is in use. Now we can use B of the

second set to hold a bit count for the inner loop of 4A10
through 4A1F that looks at the 8 bits and outputs them in

ASCII to the screen. The inner loop rotates the location

pointed to by IY. As each rotate is done, the leftmost bit is

rotated both to the carry and around to the right-hand side

of the memory location. The carry is tested to store either

a 30H, for an ASCII zero, or 31H, for an ASCII one. Eight

rotates are done, and at the end the memory location in the

4B00H area has been rotated completely around.
For each store of an ASCII one or zero, IX is incremented

to point to the next character position on the line. When the

count in B is decremented down to zero, an EXX switches
back the cpu registers, restoring the original count in B for

number of lines. IY is incremented to point to the next memory
location in the 4B0OH area, and IX is incremented by 56 to

point to the next line for display. If 16 locations have not been
dumped, the next location is stored as eight ASCII characters.

A program that has several nested loops such as this can be
confusing to a programmer seeing it for the first time. It can
also be confusing to the programmer who wrote it when he
picks it up several months later! One convenient way to get

a clear picture of what is going on in a program such as this

is to "play computer." On a sheet of paper, make columns rep-

136

resenting the registers that are in use in the program. Then
step through the program one instruction at a time, filling

in the proper values in the registers. It isn't necessary to loop
all the way through some of the loops (65536 loops makes for
a lot of writing) , but it does make many programs very clear.
See Figure 8-2.

MULTIPLY BY TEN

A
i

2

10

3

6

12

24

30

4A14

= 4A15

SCRATCH PAD
NOTATIONS

REFLECT PROGRAM
FOR FIRST MULTIPLY

PARTIAL

SECOND
MULTIPLY

4A14 X 10

5 X 30

6 10

7 15

Fig. 8-2. Playing computer.

Some Shifting Is Very Logical

Logical shifts differ from rotates in that data shifted off
the end of the register or memory location is lost. Zeros are
used to shift into the byte from the other end, as shown in
Figure 8-3. Logical shifts are used to align data as in the
rotate case, and to divide or multiply by two. If an 8-bit value
is shifted left one bit, the effect is to multiply the original
value by two while a shift right of one bit position divides the
original value by two and discards the remainder.

137

CARRY

RIGHT LOGICAL „

SHIFT
REGISTER OR MEMORY

LOST

CARRY 7

LEFT LOGICA

SHIFT

L
REGISTER OR MEMORY

LOST

SAMPLE RIGHT

LOGICAL SHIFT

SAMPLE LEFT

LOGICAL SHIFT

ORIGINAL

NUMBER
01010000 (80io)

00001011 (lliol

1 SHIFT 00101000 {40 10 ,
00010110 (22S0!

2 SHIFTS 00010100 (2010)
00101100 (44 10 J

3 SHIFTS 00001010 (lOiol 01011000 {88 10j

4 SHIFTS 00000101 (5io)
10110000 (-8O10)!

5 SHIFTS 00000010 [2m) 01100000 <96l0>l

6 SHIFTS 00000001 Uio) 11000000 <-64joH

7 SHIFTS 00000000 (0) 10000000 (-128
so}i

Fig, 3-3. Logical shift operation.

All rotates, logical shifts, and arithmetic shifts in the Z-80

operate only one bit at a time, so that a shift of four bit posi-

tions requires four separate shifts. To show how shifts may
be used to multiply, consider the following code. Multiplica-

tion by ten is a common problem in many programs. For ex-

ample, keyboard values may be input in ASCII and represent

a string of decimal digits, such as 567.89, that must be

converted to binary values for arithmetic manipulations

within the program. MULTEN takes an 8-bit value from

memory, multiplies it by ten, and stores it back into the mem-
ory location.

mm ;Mirny ev ten m\w

^ gj -y~-

ORB 4B88H

¥M •VlS-n WiM RULTEH \ji HLDHT8 iimi&MH

Ml Sfip Wim ID
-1 r
£•} -J ; FOR FIVE Wam.

#§5 7P mM LOOP ID fi(fi) ;8ETWLUE

'•iWO m mm SLfi
a ;VfiUM

isao AC nT:A "Til
?t.- 1 i i ; U> --.' n ;St¥c Mllh*>'

138

4889 CS27 mm SLfl fl j ?nue?-t

m m? B8iS8 gj fl ;VflLIE*8

Midi 81288 ADD U ifflUE*I8

m?? 8S218 LP (HUfi ;RE5T0E

WE INC fl iPOIBT TO NEXT VHLUB

m.%m 68238 km loop iCONTISJE

mim® 63248 LOOPl jp LOOrl ;LQ0P fflS IF DGNE

rnsdi eese dstj? DEFB i

ffi£& 88a>@ DEFB
>

mm pjVVWj
DEFB 18

4K8 8F 88288 DEFB i5

m& 88298 DEFB 39

ffl88 68280 EM)

W0 TGT& ERRORS

\m m
loop 4nes

MIR 4B15

HUH 4088

After the value is loaded into the A register it is shifted
left by the SLA A to multiply the value by two. This value is

then saved in the C register. Now the A register is shifted
left two more times to multiply the original value by four and
eight. Now the value in the C register, which represents the
original value times two, is added to the value times eight to
give a result of the value times ten. Execute the program with
a breakpoint at 4A12 and then look at the table locations to
see the results. Note that the multiply was an unsigned (ab-
solute) multiply, and that in one case (30), the result was
too large for the 8-bit memory location. In this case only
the lower-order eight bits of the result are in the memory
location

!

Arithmetic Shifts

The TRS-80 has one shift that is an arithmetic-type shift
(even though the mnemonic for the SLA is Shift Left Arith-
metic it is really a logical shift). The SRA (Shift Right Arith-
metic) always retains the sign of the operand to be shifted as
shown in Figure 8-4. The bit in bit 7 is shifted right to bit 6.

139

SIGN RETAINED AND EXTENDED

7' f6>r5V4>f3Y2>n>|

REGISTER OR
MEMORY

LOST

SRA {SHIFT RIGHT ARITHMETIC)

Fig. 8-4. Arithmetic shift operation.

but also goes back into bit 7 as the sign. The process is called

sign extension as the sign is extended to the right. The SRA
may be used to divide a signed 8-bit operand by two. The op-

eration for a value of -37 is shown in Figure 8-5.

Software Multiply and Divide

What! No multiply and divide instructions in the Z-80I

That's right, and no current 8-bit microprocessor has them

either. Before you pull out that weathered four-function cal-

culator, let's see how multiply and divide can be implemented

in software.
There are a number of approaches in writing a multiply

routine for any computer. The easiest is repetitive addition.

Mulplying 63 by 15 is really only adding 63 to itself 14 times

ORIGINAL

NUMBER

AFTER i

SHIFT

AFTER 2

SHIFTS

AFTER 3

SHIFTS

AFTER 4

SHIFTS

AFTER 5

SHIFTS

AFTER 6

SHIFTS

AND N > 6

SHIFTS

MEMORY OR REGISTER

1 I i 1 i 1

1 i i 1 i 1

1 i 1 i 1 i

I i i i i o i i

i i i i i i o l

l l i i i i i o

1 I 1 1 1 1 i i

-37,0

~19
I0

-Mm

-3jQ

-2io

-iio

Fig. 8-5. Arithmetic shift example.

140

(or adding 15 63 times), and that's very easy to implement in
the Z-80. The following routine uses this approach to multiply
the 16-bit absolute value in DE by an 8-bit multiplier in B,
which is also unsigned or absolute. The product is in HL at
completion (use the R command to see the product).

mm ;REPETITIVE fflMTIffl HiTffLY

mm.
4ffl@ mz0 m mh
fflffl Emim mM start u) us<mD iim mjiPiicm
f»4 3ft£4f) 80140 ID fcfflR82> timW.lllriM

*w4? mm ID &n ;7RflK5FffilDB

4H@8 2i8l§e mm LB HUB iOEBR RKTIfi PeOCT

WIS 80178 LOOP ADD fLK ;fl» MiTffLIffll©

fflKiffP 68388 D£€ LOOP ;GG IFJIOT BSE

mmm mm mi jp um ;loop mi m done

#1 E8§3 HIM Pe ie jPUT HULTiaiOD HERE

iBI#0 88210 H£ DffE 28 ;FUT ffilTlRIER HERE

fflBB 8^38 Era)

1^8 TOTfit EffluRS

UiUfj. 4H@E

LUU" wis

SG2 4fo3

Mi 4fiU

SliST #88

^
As short and sweet as this routine is, it does have a serious

disadvantage. It is horrendously slow, compared to other ways
in which the multiply could be implemented. Use this approach
only when the multiplier is small. It is efficient when multi-
pliers of ten or less will be used.
The usual way of implementing a software multiply is to

use the same approach as the pencil and paper method for
decimal numbers. In this approach a shifted multiplicand
multiplied by the digit in the multiplier is added to other
partial products to get the final product as shown in Figure
8-6. Binary multiplication using this technique is fairly simple
as the value to be added can only be the multiplicand or zero,
depending upon the value of the multiplier bit. The following

141

PROBLEM: MULTIPLY 23i BY 17 10 IN BINARY.

1 1 1 i . 23 (MULTIPLICAND!

1 Q 1 = 17 (MULTIPLIER)

1 1 i I/
Q

1 i 1 I

** SHIFT

i i i 1 1 = 391 (PRODUCT!

Fig. 8-6. Multiplication methods.

routine is one of the "standard" routines that might be help-

ful in the user's programs. It multiplies an unsigned 16-bit

value in DE by an unsigned 8-bit value in the 33 register and

returns the product in HL. The B register contents is zero

upon return.

mm ;SJB80unic to hultiplv is m s

88118 EfflRV: (DE>fltTIPLia»i UNSIGNED

88128 , ffi)=RJLTIPi.I£R> UNSIGNED

mi HULifi

mi: m=mm
(EE)=DE5Hffl©

iCfffiNE ON RfflSSEHBLV

<zmm mm WHS ID FLO ;0iffi HRTIfiL FRHHET

MsCB38 88289 LOOP SSL B ;SHIFT CUT H'Iffi BIT

m^ mm jr h&hwt jgq if hd (hkv ci bid

rnn* mm m ilk jbdo hultipliohd

4f!SSC8 fflB38C0NT RET I /fiOIFH'Iffi

m E8 88248 B PBfi /HITIPLIOJN& TO HL

m% 88258 ADD 11/ HL ;SHIFT HlTIPLICfflD

4B8BEB fcffiffi EX D&ll ;SHHPBfl£X

142

m: CMMfi M?B JP LlCf i CONTINUE

SMJ-iJ lull. ERIffiK

on
yw i S57

BUS 4ffi8

Note that in the above routine the ADD HL,DE does not
affect the zero flag, allowing it to be used for a check on the
shifted result in B after the add.

Divide routines implemented in software are not nearly so
neat. Experienced programmers have been known to wail
and gnash their teeth while trying to implement an efficient

divide routine on certain computers. Successive subtraction
may be used, but it is as slow as a multiply routine using this

approach, and should be used only with operations resulting
in small quotients. The following code divides the contents of

the HL register, an unsigned 16-bit number by the contents

of DE, an unsigned 16-bit divisor, Both numbers must be less

than 32,768. The quotient is in B at the end, and any remainder
is in HL. If the quotient is larger than 255 overflow will result.

-"
• e:

m ,"i •-,;-!

ORG
ilDS^ti

4ffl0 iSuimi iMUb CJCDT i f

J

HL1 IJISui.' ;0ET DIVISOR

iM~i
t-j mlM POSH HL ;HfiNSra? TUBE

4fiB4 Ul C^yi-i] flip DE

4fiyH 2fti84fi BiubU Li-' HL(Hiii) =DIVIDE

m8 %<ff3 gaj -Jfi

ID ae ;CieS SJOTiENT

^Ofi q(08188
i sVsSJ HP n ififlff fflKRV FOR StJSIR

jjpao rr-i-,

S-SL7-V SBC
Hi r-j- - {^

T V 7 piCr If;- r
j
T !..'

J
Cl":D

%m) FH144R rfjTy^r Jr ~ jy*s ;0u IF DONE

4tJP 3.4
vz-zlB

T i.tT" o ;BW MnMi
7?m mm ffi}:Z? -.<f" LOOP

.
rwwTTitfir

4fti4 JJ? SszJb
ruufl"
yum. rs-L- hue "hi 1 irit ,-S-ViiI

:

tidr
'

jjqjt;
C3i-54fi 0924S L00F1 jp L !JUM ;Llitr HkKfc ON ftfe

fU8 os~r m£j% RRGi DEBJ 20888 ;flR8WK62

ss&e rM£ utrU ws

143

:rX--i-' HKlB

8tffl@0 TOTfiL ERRORS

LfflPi 4fii5

tvriL
.-:r.j j
fafT

loop 4R3A

r=u£L
ini i-r

'rnlC'

rfc' -rilri

Hlls?t 4ffi3

In the routine the divisor is repeatedly subtracted from the

dividend until the dividend goes negative. When this occurs,

the residue is changed to a true remainder by adding back the

divisor. Each time the subtraction can be successfully made
the contents of B are incremented by one to show the quotient.

This method exactly emulates what can be done with pencil

and paper,

A more general-purpose divide for an unsigned 16-bit div-

idend and unsigned 8-bit divisor is shown in the following

"standard" subroutine. Here the division is a restoring type

similar to a paper and pencil approach. Instead of asking it-

self "Does the divisor go into the next group of digits," how-
ever, the computer in this case blindly goes ahead and at-

tempts the divide. If the divisor doesn't go, then the previous

residue is restored by adding back the shifted dividend, sim-

ilar to what was done in the successive subtraction case.

iSjiljsl j hvt'K'J'J ! Hit ;[} i-'lv'il-'b lb of o

t%Ily F
yrra i

.

S»ii~.7.

.-'Hi •._r-,TiiTr-.r»i'--,
'.ra —in <• mm!! lb. BUS

'.'-_j.'J (&)=DI¥ISPR 8 Br
yc

Sbl2-5 CfiLL P1?i£

Muy Ex n (m=fflHTI£NT lb BITS

08148 (H)=EffllMSR WIS

88159 (D^ESTRffiH)

mm U-V -UfiL-nnribJiL'

caps f'C"i-0
•.-_'_! 'J '-•" '-'

mm (fi)^SIMHJ

dmSd

4fS@ mM OP
4fiffiH •in~::.t'^L L'H iJlju'Z'LT'lL'i

*m ?D
ruvu fi m16 Lt ! H>L iLS 8VTE DIVDND

4M 6C MMi LD LH ;«S 8V7E DiW
144

4882 2688 03238 LD US ."L-UjiK rUk iiUD!

mm 8S240 LP r_: ?L ;SETUP FOR 5U87R8CT

mm \M-£j6
! r-.

B: it- ;ib ITEffiTIONS

4ffi8 vmgm ''M&FJ Lfi
"V 5

jIHiTlffl-IZE aC*TIBJT

mg EKhHO Uir Hi/l' HL-HL ;SHIFT D2VD LEFT

-W i? Ssitife RLH ;SHIFT 8 15 BITS

mmm H^rCSO
ID NwLuIPi ..©1 IF 8 BIT

mil'. yi. 8B88 IE L ;SHIFT TO HL

£&0 fjfV??
"=57-* D i fffrD-j m TV TV

; SHIFT SiiOTIEHT LEFT

^u.'f UUsLi gi28
TL[p

IX ;SBIT=i

4svh R? MB8 OR H ;CL£HCHl^FOR^

88348 SBC HbPE ;TRVS!iBimT

419 D21Rh
; fsJ-fft W flU.' Uffl" /SO IF IT !OT

4MC IS 88368 P±£: HbOE .RESTORE

mim WQ& m IS - ;SET Q SIT=a

m ub ease cow? DJfE LOOP ;G0 IF NOT 16

'jHr'i {.J {SS98 RET ;R£TUN

fl9@e mm END

^lUlEEialS

Llfti ^fiu-

LUli 4ls2

s m© .^osr

The register setup before and after the divide is shown in

Figure 8-7. The divisor in D is repetitively subtracted from
the residue of the dividend in HL. The residue is shifted over
one bit position for every iteration just the way it is done by
the paper and pencil method. If the subtract for any iteration

is successful, a one bit is left in the quotient ; if the subtract is

not successful a zero bit is put in the quotient. The quotient

is shifted left one bit for every iteration as less and less sig-

nificant subtracts are made. After 16 bits the IX register

holds the possible 16-bit quotient, the H register holds an 8-bit

remainder, D holds the original divisor, and E is zeroed. One

interesting point is that both the HL and IX registers are

effectively shifted left one bit position in a logical shift by

adding HL or IX to themselves. It may benefit the reader to

actually play computer on this routine and step through the

16 iterations of the divide while using actual numeric values.

145

BEFORE CflLUHc niu

DIVIDEND (UNSIGNED}

DIVISOR (UNSIGNED)

BEFORE DIVIDE OPERATION

H

00 00 00

DIVIDEND

E

00 00 00

DIVISOR

AFTER DIVIDE

A

XX XX XX XX XX XX XX XX

REMAINDER

D

00 00 00 00

DIVISOR
IX

THESE REGISTERS

SHIFTED LEFT 16

TIMES

SUBTRACT OF DE

FROM HL 16 TIMES

SHIFTED LEFT 16 TIMES

WITH QUOTIENT BIT

FOR EACH SUBTRACT
FORCED INTO BIT

8-BIT REMAINDER IN H

UNCHANGED

16-BIT QUOTIENT

QUOTIENT

Fig. 8-7. Divide register setup.

At the end you may vow never to do it again, but it will give
some insight into this type of operation.
The preceding multiply and divide routines are unsigned

multiplies and divides. It is possible to implement signed mul-
tiplies and divides, but they are not as neatly packaged as the
unsigned. The unsigned routines may be used to implement a
signed multiply or divide if the operands are changed to their
absolute values and the results changed again to their proper
signs. However, watch for overflow conditions when this ap-
proach is used, such as multiplying -128 by -128!

146

Input and Output Conversions

The techniques of shifting, multiplications, and divides that

we covered in this chapter are very useful in conversion be-

tween internal data representation and ASCII. Most programs
require some type of input of ASCII data from keyboard, us-

ually in decimal, and that string of decimal digits must be

converted into an eight, sixteen, or larger number of bits so

that the program can process the data. Sometimes, as in the

case of T-BUG, there must be a way of converting from a
hexadecimal ASCII input to eight or sixteen bits, and infre-

quently, a way of converting ASCII binary into internal data
values. Similarly, once the data has been processed, it must
be displayed in a more convenient form, which usually means
ASCII decimal, but which may also be hexadecimal (in the

T-BUG case) or binary.

We have already covered one conversion in an earlier pro-
gram in this chapter, the conversion of eight bits into equiva-

lent ASCII ones or zeros for display. The conversion of

£€188 :S.mMK TO CONVERT FROMm TO (ECU

onus .<

mm< EM:CAMhBIT VHLUE TO BE COWERED

mm. CPU HEEV

WjM .. OOJffl)

80158 * EXIT." (fC)::]fflflSCH vmns, HIGH AND LOH

fifts rn
KUtft • CR>=D£ST!»

sai/tf - CC)=D£SIB0ffiD

'At fig .

E=3J.0y

#H§ H71 [-rl ORG «f •cmm m esseny

48B8 4F gSfOC^ LD Crfl ;OWE ID HEX DIGITS

M. 03F e^ig SSL fl ifUm HIGH DIGIT

4m cBif 88228 SRL fl

4ffi5 CB3F £§238 sa H

JflftT NVT
1240 SRI Q

il

mmm M250 CULL TEST ;CONVERT TO fiSCH

438;"; r?
S326S LD R.8 ;SfiVEFGRRIN

mis 88270 LD ftC ;IEST0E 0RIG1NBL

#l£ E08F o&io'y
:-!!!-,

nm-1 SFH ;6ET LOU MBIT

147

mmm ew cai itst rammiomu
HiSF mm ID LB »SBVE FC§: RTN

4fn4 c$ mm SET

mem mrnitst m ftian roimsimmm
®i? FBfi MB CP 3PM ;TES7 FOR 8-9

4H9 Fffi£4fi 88348 JP ft TEST! ;GO IF 8-3

m \m mm m ft? iOMeTHifi-f
AS*C PQ SflVfl 'i'r~.

-i r.rr .nrninii
ifdh U btUbd In 1 1 fir

!

jRClUftn

ijbsw sail ri urn.1

TEST! 4fii£

1ST 4M5

hexadecimal values to ASCII digits of through 9 and A
through F is a similar problem. Let's write a program to

convert any number in the A register into two hexadecimal

ASCII digits. We will also write a simple driver to use the

program and display some data.

Program HEXCV is the general-purpose routine to perform
the conversion. The first four bits, representing the first hexa-

decimal digit are shifted 4 bit positions right in the A register.

They are now aligned in the A register, and the register holds

a value of from 0000 through 1111 (the upper four bits are

zero), representing hexadecimal through F. The ASCII equi-

valents for through F are shown in Table 8-1. Unfortu-
nately, there is a "gap" between the digits through 9 and
the characters A through F. If there were no gap, 30H could

be added to the four bits to compute the ASCII value for the

character. Since there is a gap, however, there must be a
test for the hexadecimal letter digits, and this is done in the
compare. If the conversion resulted in a result greater than

39H, then the ASCII character must be a letter, and 7 is

added to obtain the letter value. For the second (least signifi-

cant) hexadecimal digit, the A register is restored, the upper
four bits are masked out (the lower four are already aligned)
and the same conversion is made. Upon completion, HL
holds the two ASCII characters representing the hexadecimal
digits.

A simple driver to test this routine could be constructed
from something similar to the following code.

148

LD B,8 8 LINES

LD 1X,3C00H FIRST LINE

LD DE,xxxx LOCATIONS TO DISPLAY

LOOP LD A,(DE) GET LOCATION
CALL HEXCV CONVERT
LD {IX),H STORE 1ST CHARACTER
LD {IX+1),L STORE 2ND CHARACTER
INC IX BUMP POINTER
INC IX

INC DE BUMP LOCATION POINT
DJNZ LOOP CONTINUE IF NOT 8

A driver in this case means a routine to test and exercise

the HEXCV routine. This driver displays 8 locations on line 1

of the video display in a string of 16 hexadecimal digits. The
reader can undoubtedly see how different formats could be
constructed to display hexadecimal data in a more convenient
format by using HEXCV and other types of drivers.

Converting input data from ASCII to binary or hexadecimal
is about as easy as the output conversion. For binary, the

ASCII character representing a binary one or zero is con-

verted to a true binary one or zero by subtracting 30H. This
bit is then aligned and merged with other bits representing
the 8- or 16-bit input value. Hexadecimal ASCII characters
are adjusted by subtraction of 3OH. If the result is greater

than 9, a second subtract of 7 is performed to convert the

letter digit to A through F in hexadecimal. The 4-bit result

is merged with a second result or three other results to pro-

duce an 8-bit or 16-bit value.

Conversion of decimal data is the most difficult of the three

types of cenversions. It is not simply a case of shifting bits

as is the case in binary and hexadecimal.
For a conversion of decimal input data, each ASCII char-

acter represents a decimal digit from through 9 (30H
through 39H). The ASCII character is changed to four bits

of bed by subtracting 30H. Now this result must be multiplied

by the power of ten it represents. For example, if the ASCII
string was 123, the one would be converted to a bed 1 and
multiplied by 100, the 2 would be converted and multiplied

by 10, and the 3 would only be converted. In practice decimal

input conversion routines work with five digits as 65,535 can
be held in 16 bits, and use a combination of conversion of each
of the digits and multiplication of the result by ten for five

iterations to convert the data.

For output conversions, an 8- or 16-bit value is con-
verted by division by ten, the resulting remainders adjusted
to an ASCII character by addition of 30H, and the result

149

stored in an intermediate buffer before output. Another ap-

proach is to use successive subtractions of the powers of ten,

starting with 10000 (for a 16-bit value) to convert the number
into decimal values which can then be converted by addition

of 30H to ASCII outputs.

150

CHAPTER 9

This chapter discusses two important aspects of assembly-
language programs, strings and tables. Strings are generally
strings of text characters, just as in BASIC programs. Many
assembly-language programs are concerned with separating
segments of the string into various fields representing sub-
divisions of the string data such as names, addresses, mne-
monics, and so forth. The Z-80 has a powerful block search
capability to help in handling strings. Tables are generally
one-dimensional arrays that represent such diverse things as
addresses for jumps, sine values, and withholding tax per-
centages. The Z-80 has many features that permit the as-
sembly-language programmer to work with tables, such as
indexing.

Assembler-Generated Strings

We have seen in an earlier chapter how the assembler auto-
matically generates a text string when the DEFM pseudo-op
is used. Generally, this pseudo-op is used to produce messages
which are output to the display or printer. The code below,
for example, outputs a message to the middle of the screen,
after the message has been converted from a symbolic source
line into ASCII by the assembler.

88188 jfiffifflJC TO OUTPOT IBSBH

151

3)89 218Bfi ®313@ STnRT LP HLrEbS iUSV Hfiscaa l>r n£»

mmut mm u> iE3C8iH*544 middle liheks

4fi0sem88 aeise id b&kssl ,-LEffira of hess

#9H88 88166 LDIE ; OliTFOT TO SCREEN

mmm em loop jf loop ;uhp here on hbe

4ffiE4l MiSi HESS DERI 'HN9THER FINE IBS'

4agF€ 4fil@€ 4HI154 4m2 4S 4fiB 45 4fii4 52

41115 28 4ai6 45 4fii? 49 MS € 4819 45 4Mfi 2

8 4H18 # 4R1C 45 4fflD 53 4Ri£ 53 §811 ®

m ifssi m Mfss

« 86iS8 END

8SS8S TOTfiL ERRORS

LOOP 4fi8S

SSSL 8811

ESS 4ffiE

SIRRT 4figS

The program uses the block move LDIR after setting- up

the register pairs for the parameters of the move. Note that

the length of the message has been generated by the assembler

by equating an assembly variable MESSL to the next assem-

bler location minus the start of the message. When the BC
register pair is loaded with MESSL, the assembler loads the

immediate field of the load instruction with the length of 11H.

Generalized String Output

In the case above, the message could be moved to the out-

put device in a block, as the output device was really a memory
area. If your system has a printer that operates through a

parallel or serial port on the TRS-80, the way that an output

string is sent to the printer is somewhat different. Let's sup-

pose that subroutine OUTPUT actually communicates with

the printer (we'll talk about that communication in the next

chapter). The subroutine below CALLs OUTPUT with the

next ASCII character to be transmitted to the printer. The

problem here is to determine when to stop. Initially, the

MESSGE subroutine is called with HL holding the start of

the message area. However, we need not only the start of the

message area, but the end of the message area, the number of

152

bytes in the message, or some other means to signal the
MESSGE subroutine that the message has come to an end.
MESSGE here uses a terminator approach to detect the end
of the message. The next character is sent to the OUTPUT
subroutine as long as a null (all zeros) character is not de-
tected. If a null is detected, MESSGE knows that the message
area has come to an end and returns to the calling subroutine.
A length could have been specified to MESSGE, but the ter-
minator approach is used quite frequently.

;flE55Bffi OUFPUF IHMIJsE

%w
4iM.i m2B ORG 4figSH

jftftfl
•?-

68138 STUT LD ft (It)

#H 87
tela j a
SEUt9 OR H

mm 1156 iir_! 2

4/»i(W5§ B8i£8 Cflii OUTPUT

#S23 18178 BE in

m? 187 88188 Jfi st/st

-,3f;C<

eai98:owm Eli 5BSSH

L£>JjJp
EM?

;imm mmm

•mmmm
mm tomm
mm w mi cm
icmmE
mm. out sarnie

88888 TflTfiL ESM5

fifflFUT 5689

-ima

In many cases, the message to be output to the screen or
I/O device must first be assembled during program execution.
In these cases, a message buffer area is allocated, and the com-
ponent parts of the message are moved into the area, and the
message is then printed. The approach is valuable for printing
variable data that cannot be defined beforehand, and for sav-
ing memory when a large number of messages must be printed.
In the code below, a message buffer for a mailing list has been
defined. The fields of the buffer are defined by symbolic names
and the execution time assembly can be done by transferring
ASCII data to the proper fields.

08188 ;fflILIHi LIST PRIHF LINE

wile.

ffi§@ 88115 m 4R88H

153

4B80 sail? ma BEHJ I ;STfiRT OF LffiEL EiFFER

m mmmf EQU
* *2BCHBRIK!ElfRE

H4 DEFS 28 ;RESERVE 28

$14 8814S Sl'iuxr EQU 1 ,22 QffiR SUET HERE

m r?2_= cfi
BEFS 05 /RESERVES

m G&iW L-ifT EHJ
> .•*r m™ r-TTU isnx

.'i-j UifK viir teKc

@8F 8S170
r-.rrr
WXJJ ±3

• prVTOi C .< c

sr-.-rr.

£60 '4- ,2 CffiR STfiTE JOE

pSjO iM9§ DEfS •2 .'Pt2Cs~.?C £

IBB 83288 ZIP ECU
i*

/j Irak <dr bait

mf, WM DEFS
=, TTHF c

m ei L-J-JJ DEFB ;«ull mimm
reiMH B82i§ EH)

S2C-i"'
lUTfil EffiORS

4fi3
r.

n

STfiTE 4ffi$

ehv 4'rOfi

SMB.' 4814

String Input

When strings are input from either the TRS-80 keyboard or

from another type of I/O device, an input buffer is allocated

to hold the string of characters in much the same way as the

output message buffer is denned at assembly time. The prob-

lem with input of strings is not how to detect the end of the

string, but to limit the number of input characters so that

the space allocated for the input buffer is not exceeded. In the

code below, the subroutine INPUT is called to input one char-

acter from an external keyboard. INPUT handles all of the

communication between the TRS-80 in regard to stattts and
transmission of the character. The input text string in ASCII
is stored into INMESS, starting at 4B00H. The INPTMS rou-

tine is exited when either a carriage return (ODH) or 64

characters has been input. Terminating the routine at 64

characters guarantees that the message buffer will not over-

flow, possibly overwriting program code adjacent to it.

154

eeieemm isput routine

eaue

,

4883 88128 m 4M
tmmm mMww w hlmss ;siifgr of input buffer

$83 8643 09140 LO B,64 iNKIHUH i OF CHfKflCTERS

4^a«4e eatstuoep mi mm ;get one chhicir

4m feb mm & m iiEtmmmim
4m cb m?d ret z ; return if cr

m?? mm u> mu ;srasE in buffer

ms ffiisg iic hl i&wmimmm mm m loop ;corae if not $
4B0FC9 88210 RET ;£4 CMC7S5

§848 83212 IME5 £€FS &4

4ees msim Em ®m jimmum
flBBB 8829 EM)

88889 TOTft. ERRORS

LOOP

xrsno^ 4nlo

mm m
Once the string has been stored in the input buffer, of

course, it must be separated into fields representing different
types of data, as in the case of the mailing list line denned
earlier. Conversion from ASCII data into decimal, hexadecimal,
and other number representations must be performed. We've
covered some of the conversion techniques for numbers earlier,

but let us look at processing of the text strings that will be in
the input message and may be carried through the entire

processing of the program without being reformatted. The
block move instructions allow shuffling of the strings from
one place in memory to another, but the block search instruc-

tions perform an equally important task, comparison of one
text string to another.

Block Compares

The block compare instructions, CPD, CPI, CPIR, and
CPDR, search a block of memory (string) for a given char-

155

acter. If the character is found, the location of the character

is returned. Since the search can be done in one instruction

for the CPIR and CPDR, the search process is much faster

on the Z-80 than on equivalent microprocessors. Let us see

how the block compares operate. Suppose that we have just

input a line of mailing list information using the INPTMS
routine. The information input was in the format

JOHN J. PROGRAMMER/32768 OVERFLOW ST./COMPUTERTON/CA/92677

Here the fields of the mailing list information were separ-

ated by special characters called delimiters, which could have

been any character normally not used in the text. To use the

CPIR to search the input line for the next delimiter, the HL
register pair is set up with the start of the message area, the

BC register pair is set up with the number of bytes to be

searched, and the A register is loaded with the character for

which the search is to be done. The code below shows the

initialization and the CPIR.

ID HUNMESS
LD BC,64

ID A//'

CPIR

INPUT MESSAGE START

64 CHARACTERS TO BE SCANNED
SEARCH FOR StASH

PERFORM SEARCH

At the end of the search, the Z flag will be set if the char-

acter has been found, or reset if the character was not found

in the entire block of memory. If the character was found,

the HL register points to the location of the character plus one,

and the HL register must, therefore, be decremented to point

to the actual character. An actual example of this search would

be the code below. Assemble and load using T-RUG, or key

in using T-BUG, execute the program, and then display the

registers using the R command. The Z flag should be set, and
the HL register pair should contain 4A11H, the location of

the slash plus one.

SB188 iROUTBE TO 5BKCH Fffi 5UEH

Mid -

imsm mm sim u? kluks jsthrt of hesss hreb

mmm 88148 U? BC..5 iSfffflffiffilERSJQSSlI

mm mm u> a.-v iSBsmomm
msm mm cpir ;shkch

4B6fl G3BMR 83178 LOOP JP LOOP itOGP HEBE OH HUE

m>2i 88189 IiBS DEFR
smw ;IE55HGE

156

mis m$ m® tm® UtAfJ

eieee im errors

iS3P

imss

m
The GPID works similarly to the GPIR, except that the

CPID searches the string from end to beginning. In this case

the HL register pair points to the character found minus one
byte for the location. The HL register pair must be set up
to the end of the string area in the CPID case.

LD HUNMESS+63
LD BC.64

LD A//'

CPDR

JP Z,FOUND

INPUT MESSAGE END
64 CHARACTERS TO BE SCANNED
SEARCH FOR SLASH
SEARCH FOR SDRAWKCAB
GO IF FOUND
NOT FOUND HERE

The CPI and CPD instructions require the same setup as

the GPIR and CPID, respectively. They operate in similar
fashion to the block move instructions in that only one itera-

tion is done at a time. The instruction then pauses so that
additional operations can be performed. Suppose, for example,
we wished to search for two characters in the search. The
following code would do that by a CPI-type search. After each
iteration the Z flag would be set if the search character was
found, and the P/V flag would be set if the byte count in BC
was counted down to zero and the search was over. In this

case, if the Z flag is set the first character was found and a
check is made for the second character, as the HL register
pair now points to a location one past the found character.
If the second character does not match, then the search is

continued until the end. Upon completion the HL register pair

should point to 4A1EH in this case.

88188 i RClMlr£ TO 5P£gfjj m 7*'

88il@ •

4S3 m ttSSH

m 21Blfi
,"!'--,-! (~T.--.T
FgTI Ifi j J fi". I LP HL IHE5 .OIPjU IT rOSWC

Ws MMm 66148 LD hi..; ~Q ;§®wMidmm
#¥" 3E2F S158 LOOFfi LD ftV ;SUH* FOR FB5T £HH

ipso pr=H 88168 LOOP CPI ;SEBRCH ONE SHE

157

mm m?B m iim mwtmtm
mmmn mm jp p&ldqp ;go if not done

waem mmum. jp look ;lccip f

48I2 3E2B tmffl/BE LP ft'*' jSEOll'CHi

4M4 BE 88210 0> (hi)

eesss jp tiiim .mmm
m mm mm loops jp more ;lggf me if fon>

4HB2 8B248i?iESS DEFB '»/*()' ;£5Sfl(Z

4BIC34 4fflB2F 4ffiE 2fl 4fllF 28 4H23 23 8888

@825§ w
mm total errors

L0OP2 4R18

urn m
mm m
loop m
mm m
imss 4m
sum 4m

Searches for greater than one character may be done in this

manner by searching for the first character using the search
character in A for the CPI or CPD, and then searching the
remainder of the string one byte at a time if there is a match
on the first byte.

Table Searches

Tables are used extensively in all types of assembly-lan-
guage programs. One of the simplest table types is a table of
unordered or random data. The table is searched for a specific

piece of data and the position in the table, or its index, is then
used to access other information or simply as data itself.

Suppose, for example, that we have a table consisting of
one-letter commands for T-BUG as shown in Figure 9-1. (In
fact, this table is a kind of text string, as it is made up of
ASCII characters.) We would like to see if we can find a given
one letter command that has been input from the TRS-80 key-
board, match it up with a table entry, find the index, and then
use that index to get the address of the routine to process
that command in T-BUG.

158

The first thing that we must do is a table search, which in

this case is exactly the same as the string search we performed
under the string operations.

START LD HLJABLE ,-TABLE START
LD BC.9 ;# OF BYTES
LD A,(INPUT) ;GET INPUT CHARACTER
CP1R .•SEARCH

In the above code A was loaded with the input character from
the keyboard, a one-letter ASCII command. At the end of the
LDIR search Z will be set if the character was found and HL
will then point to the character in the table plus one location.

If the table is set up as in Figure 9-1, then HL will contain

TABLE

4A10H

4A11

4A12

4A13

4A14

4A15

4A16

4A17

4A18

Fig. 9-1. Sample table of T-BUG commands.

location 4A11H through 4A19H if the character was found
and location 4A19H (with zero reset) if the character was not
found. We can find the index of the command in the tabie by
subtracting the value of tabie from the value in HL if the
character was found.

'B' BREAKPOINT

f RESTORE

'G
1 CONTINUE

•J' JUMP

1' LOAD CASSETTE

•M' MEMORY DISPLAY

,

p
,

WRITE CASSETTE

11' DISPLAY REGISTERS

'X' EXIT

JP NZ.NFND
LD BCTABLE
OR A
SBC HL.BC

GO IF CHARACTER NOT FOUND
START OF TABLE

CLEAR CARRY FOR SUBTRACT

FIND INDEX

At the end of the code above, L will contain the index of 1

through 9. If "INPUT" was a G, for example, L will contain
a 3, indicating that G was the third entry in the table, count-

ing from the zeroth entry. Now that we have the index, what
do we do with it? Well, we can now use that index to index
into another table of jumps corresponding to the routines that

process each of the T-BUG commands. The relationships of

the two tables are shown in Figure 9-2.

In the case of the first command table, the entries of the

table were one byte long, each byte being an ASCII character
representing the command. In the address table, however, each

159

INDEX
-ADDRT +0 JR

BRKPNT

RESTRE

JR

CONTNU

JR

JUMP

JR

LOAD

JR

MEMRY

JR

WRITEC

JR

REGSTR

8YEBYE

Fig, 9-2. Indexing into tables.

entry is two bytes long, since a relative jump must be repre-

sented. We now need to change that index from the first table

into a displacement value that will pick up the right address

table entry, the displacement being the number of physical

bytes from the beginning of the address table. (The displace-

ment for the first table was one times the index, but the dis-

placement in the second table is two times the index.) The
following code accomplishes this after first decrementing the

index to adjust for the way the CPIR leaves the HL register.

FIND TRUE iNDEX

INDEX TIMES TWO
SWAP DE AND HL

JUMP TABLE LOCATION

HL NOW HAS LOCATION OF JUMP
JUMP OUT TO JUMP

In the short tables here this code is not the most efficient

(it took about 14 instructions to get to the routine), but the
reader can see that this is a good approach for very long
tables that are used in this fashion.

To recap the table structure, once again, a general table

(see Figure 9-3) has a number of entries, each a certain entry

length, and each having a displacement from the start of the
table of entry length times # of entry.

DEC HL

SLA L

EX DE.HL

LD HL.ADDRT

ADD HL rDE

JP (HL)

160

TABLE ENTRY

ENTRY 1

ENTRY 2

DISPLACEMENT = ENTRY LENGTH-M

ENTRY M

ENTRY N

t
TYPICAL

ENTRY

ENTRY

LENGTH

TABLE PARAMETERS:

1. NUMBER OF ENTRIES IN TABLE
2. ENTRY LENGTH
3. DISPLACEMENT OF EACH ENTRY FROM BEGINNING «

ENTRY LENGTH * § OF ENTRY

4. LENGTH OF TABLE = # OF ENTRIES IN TABLE * ENTRY LENGTH

Fig. 9-3. General table structure.

Another method of using tables is to include the data asso-
ciated with the search key in the entry itself, rather than in
a separate table. Figure 9-4 shows this type of table. Each
entry consists of a disc file name of 1 to 8 characters, a track
number, and a sector number. The track and sector number
always occupy the ninth and tenth bytes of each entry.

This table could be used to locate a specific file on disc by
first searching the entire table for the correct file name, and
then picking up the location of the file by the associated track
and sector number when the file is found.

Unordered Tables

Tables in which the key entries are in random fashion are
said to be unordered. When tables of this type are searched

161

DIRECT 'M'

'A'

1*

1'

S'

T'

TRACK » 25

SECTOR = 5

f
'E'

*M'

'A'

1*

S'

T*

TRACK = 26

SECTOR =

ENTRY #

ENTRY » 1

Fig. 9-4. Sample table of disc files.

for a specific entry, the minimum search occurs when the first

entry is the desired entry and the maximum search occurs

when the last entry is the one sought. The average number of

entries that must be searched in this type of table is one-half

the number of entries in the table. This type of table is fine

for a small number of entries, but when the table must be

continually searched and it holds a large number of entries,

then a table with ordered entries could be used to a greater

advantage.
The following program is another "standard" subroutine

that the reader might find useful. It searches an unordered

table from beginning to end for an 8-bit search key. Before

the subroutine is called, A must be loaded with the search key,

HL must be loaded with the start of the table, DE must be

loaded with the length of each entry, and C must be loaded

with the number of entries. If the entry is found, HL points

to the entry upon return and the Z flag is set. If the entry is

not found, the Z flag is not set upon return. The key in each

entry is assumed to be the first byte.

162

88189 iSmSGUTIHE FOR TfiBLE SEfiiP

Miie= euiV:(fi)=sEv

g§]7 ,--"H , (H>TfflL£ SThRT

mm WD4Bm if EflCH BflRV IH BVTES

%w (C)=# OF JURIES IN TffiLE

88158 OIL SBiCH

MSB • m F: 2 RJ5 SET If RM mi SET IF not tm
MMlj'M i fliHffiflTIffl Cf fflfmw?m
"S-jCfH CBP=CliREHT # LIFT

tSfiSJ r ii&y^MMwiS}

^m -

4ffiS j~fir~\ H ORG 4fflBH }mmmmm®y
JSK| g£g^ 8828 SBSCH LD &0 immmsi
4HS Sm 88238 LOOP CPI

.mavmr ft UITU fUS V
jtrUrratc rt win mi/

m mm 88248 JP Z- FOUND ;G0IFF0iD

4ffi?E2T4fi pflv^Q JP F&» ;BTE©fiNI>NOTBD

snsn z? s&fcy IIP HLDE ;(^!®ReiJ7M

f««7s DEC HI ;OIRSMr HHfiflH

48£ i?£4 JR LOOP •mmm
4SE 28 IMFCtfD DEC HL ;®m TO FdJD UE

4Sf CS hubs una-' RET ;mm
jSSs HU±S m
8ffi88T0ffiLJ

-rawiy"

«D 4S8F

HIM) 4fi8E

LOOP 4fi82

mm ®m

Ordered Tables

Tables may be ordered in many different ways. The order
may be ascending as in the sequence 1,3,5,6,7,10, . , , or de-
scending as in the sequence 101,99,97,5,1,0. The keys used
for ordering may be one byte or larger straight numeric
values, or ASCII text strings. Tables that are ordered invari-
ably require that new data must be merged into the existing

order, existing entries deleted or modified, or that the entries

163

should be resorted. There have been literally thousands of

books and articles written about the problems and approaches

of sorting (ordering data), searching (finding data), and

merging (merging in new data), and we may not cover all

of it in this chapter. We will present one of the approaches to

ordering data in a list of items, the bubble sort. Becoming

familiar with the 16,387 other methods will be left up to the

reader as an exercise.

The bubble sort orders data by comparing each entry in a

list with the next entry of the list. If the next entry is a lower

value, then the two entries are swapped. The next entry is

then compared, and so on, until the end of the list is reached.

If there has been at least one set of items swapped during the

search of the list, then another pass is made, starting from the

beginning. Passes continue until there have been no swaps

made during the last pass, signifying that the list has been

ordered. The code for the sort takes advantage of the indexing

capability to swap the items, and is shown below.

88168 7BUBBLE SORT

mid.

4ffife MSB org 4m\

mmmiBtmiLOOP LD
to rn« r

;TffiL£ SMI

4DM858F mm LB B;15 M OF UIB

4866 see 68168 13
r- £

iCfffiS FLffi

mwm 88178 LOOP! LD ft(K) ;ETENM!

m mm £P ClX+i/ ;7fcST .€<T

48BE 0HF4B 69185 JP ZrfflSHBP ;G0IFHLR

4011 WHF4B hrTjjftj JP kfffiSMBP M IF fEJiT USG&

4M.4 EM&i 682B8 LD CCIM) ;EF mi TO C

4817 007781 mm Ut (E&D/fl .STMOMNT

4Jsft W?M LD KlMib ;5TSE Ms

4910 ESI 88278 LB CI ;SET C«£ FLflG

issr r-.tyv:-

tefeolJ
mg] ;nn m IX ;P0IHF TO ffiff

mim WM MK LflflRl jSEESser hi on
in-j-j pqu

68388 BIT ft. C jTESTmm
m C28MS F=j_jlH -JP SLUM* m if mm
4128 C284R 88328 LOOP

2

JP LOOP? tmm
4®8

«-ME
THSL£ E& |. M is ims ffiRE

164

Assemble and load the program using T~BUGt or key in the
program using T-BUG. TABLE can be filled with any number
of data items that the reader desires, in any order. When a
breakpoint at LOOP2 is reached, the table will have been
reordered so that it is in ascending order, and the bubbles
will have done an effective job in cleaning some of that RAM
memory area. The reader may wish to breakpoint at the JP
NZ.LOOP before LOOP2 to investigate the intermediate sort-
ing after each pass. Use an "F" command and a "G" after
looking at the table data, if breakpointing.
For another display of the bubble sort, use the program

below. First use the M command in T-BUG to fill screen mem-
ory locations 3C20, 3C60, 3CA0, 3CE0, 3D20, 3D60 . . . 3FE0
with alphabetic or other characters in random order. A sug-
gested sequence is shown in Table 9-1. You will see the char-
acters appear in the middle of the screen as you fill them in.

Now run the program, and you will see a literal graphic dis-
play of the bubble sort implementation.

165

41ft? DWE40 88288

m DD774B 8B218

4B1D 007188 8828

428 218889 BI2i8

4122 23

4-F24 tSTt:

® C€ftl

ID 18QC

4F^r CS41

mm loofp

grrsa

832S8

erase how
88298

mm

4B4 C.3448 35328 LG0P2

ilSS^ S8S8

Ssfijs rora. MS
LDOP2 m4
USPD 4m
ynnjAri

'j-rT-'ri

LffiFi
-S5D

Lllr 4B80

Li)

LD

LB

LD

m
BIT

Jp

LD

ffl)D

WE
BIT

JP

TTi

-jr

rtfp,

(UhC

HL/8

i|

"3 !!

f.'fl

ZfUOOPD

W X

IJiflE

LOOP!

a.c

H&LfiGP

L00P2

;GET MEXT TO C

;ST0R£ LiSRFNT

;SIH£ NEXT

;PR8V

;T£st m camMiffl

;GOFQRffiLflV

;SET (HUGE FLffi

ipOIHT TO MST IN

;BH8EKHT LN CM

;TES7 0ftNE

Table 9-1, Bubble Sort Sample Data

Display

Memory
Location Contents

3C20H 46H

3C60 45

3CAO 44

3CEO 43

3D20 42

3D60 41

3DAO 39

3DEO 38

3E20 37

3E60 36

3EAO 35

3EEO 34

3F20 33

3F60 32

3FAO 31

3FEO 30

166

CHAPTER 10

I/O Operations

In this chapter we will rush in where many programmers
fear to tread and describe some simple I/O operations in the
TRS-80. I/O programming is intimately tied to the hardware
configuration of a system, and for that reason some people
are somewhat afraid of it, but we hope that the reader will

find at the end of the chapter that it is really not that difficult.

To lay the groundwork to discuss I/O programming we will

review the memory and I/O mapping of the TRS-80. Then we
will discuss the keyboard, display, cassette, and real-world
applications, such as controlling the lawn sprinklers or your
electric toothbrush.

Memory Versus I/O

In the first part of the book we talked somewhat about the
architecture of the TRS-80. We mentioned that the TRS-80
has 64K or 65,536 bytes of memory available to it and ex-
plained how the memory was broken down into ROM, dedi-
cated I/O addresses, and RAM as shown in Figure 10-1. The
area that we will be considering in this chapter will be the
central area of the figure, the dedicated I/O addresses, to-

gether with 256 I/O ports.

Let us expand that dedicated I/O address area and see what
I/O devices are involved. Figure 10-2 shows that most of the
area is devoted to display memory. Anytime that locations
3C00H through 3FFFH are addressed we are communicating
with display memory, and that memory looks very similar to

167

r— LEVEL I BASIC == 4K

0009H
LEVEL H

BASIC ROM

*300QH DEDICATED I/O ADDRS
40GOH

16K RAM *— MINIMUM RAM == 4K

80G0H

16K RAM

COOOH

FFFFH

16K RAM

Fig. 10-1. Memory mapping with I/O addresses.

other RAM. We have been using display memory for many of

the programs in previous chapters, and the reader should be

very familiar with display memory at this point.

The section of dedicated memory from 3800H through

3BFFH is devoted to keyboard addressing. In this area mem-
ory does not exist, as it does for the display. When a location

in this area is addressed, the keys of the TRS-80 keyboard

are actually addressed. Addressing location 3801H addresses

3000H

380OH

3BFFH

3C0OH

3FFFH

4000H

DISK DRIVE SELECT LATCH = 37E0H

CASSETTE SELECT LATCH - 37E4H

LINE PRINTER = 37E8H

DISK CONTROLLER = 37ECH,

OTHERS

START OF RAM
J_

Fig. 10-2. Dedicated memory addresses.

168

the first row of keys, from "@" to "G", addressing location
3802H addresses the second row of keys from "H" to "0," and
so forth, as shown in Figure 10-3. It turns out that there are
eight addresses that address the keyboard, and they are 3801H,
3802H, 3804H, 3808H, 3810H, 3820H, 3840H, and 3880H.
Every time a load is performed with one of these addresses
8 bits from the columns are loaded into the cpu register, as
shown in Figure 10-3. These bits represent keys being pressed
(1 bit) or not pressed (0 bit). We will discuss keyboard I/O
a little later.

MEMORY
ADDRESS

3801H -

3802H -

38Q4H -

3808H -

3810H -

3820H -

3840H -

3880H -

COLUMNS

© ©® ©® ©((B© 1^
00000 © P

©

©©©;©;©©(§)©
©0©
©0©©®®®)©
© ©©©©©S©
© © © ©

\ 7 ROWS \l\^Vj

ItftUlf

M(,4

3

INPUT BIT

EXAMPLE: IF "S" IS PRESSED INPUT BYTE WILL BE 08H FOR

ADDRESSING LOCATION 3804H. ALL OTHER INPUTS

WILL YIELD OOH FOR INPUT BYTE.

Fig. 10-3. Keyboard addressing.

169

The remaining area of the dedicated memory addresses are

used for such things as the line printer, floppy disc controller,

and cassette select. Most of this area is reserved for future

use (3000H through 37DDH). Addressing locations in the

addresses above 37DDH enable communications with appro-

priate I/O devices. Loading a register from "memory" loca-

tion 37E8H, for example, actually loads the register with eight

bits of status for the system line printer, if one is attached.

The status is a byte that is transmitted by the line printer

that indicates whether the line printer is ready for the next

character, whether it is on-line, and whether it has enough

paper. Storing a register to location 37E8H actually transmits

a byte of data, assumed to be an ASCII character, to the line

printer for printing, in exactly the way a character is sent to

a normal memory location to be stored.

For all intents and purposes, then, there is no practical

difference in addressing a memory location in RAM or display

memory and addressing an I/O device, as long as the I/O de-

vice is connected in such a manner as to look for that address

and respond in the same manner that a memory location

would respond.

Along with the memory addressing area devoted to system

I/O devices, the TRS-80 has 256 other addresses that are de-

voted to I/O. These are the addresses used when an I/O in-

struction is executed. They differ from a memory address in

that a signal goes out to all parts of the system that essentially

says "here is an I/O address of 00000000 through 11111111."

That signal is not present when a memory address is used

(instead another signal goes out that says "here is a memory

address of 16 bits").

IN A, (PORT ADDRESS)

110 110 1 1

PORT ADDRESS

OUT (PORT ADDRESS),A

i i 1 1 i

PORT ADDRESS

BYTEO(DBH)

BYTE 1 (0-255)

BTTE (D3H)

BYTE 1 (0-255)

Fig. 10-4. I/O instruction format

170

The general form of the I/O instruction is shown in Figure
10-4. There are several other formats, but we will be using
these two in the rest of this chapter. The second byte of the
instruction is the port address of through 255. When an
OUT instruction is executed, 8 bits of data from the A register
are sent out to the system along with a signal that says "here
is an I/O address" and the actual 8 bits of the port address
itself. In a large system there could be many devices attached
to the system Mis (collection of data, address, and control sig-
nals), and they would all be continually looking for the I/O
signal, their unique address (one of the 256), and the data
to be received (or sent). See Figure 10-5.

In most configurations of the TRS-80, the only device that
is attached in this port fashion is the cassette recorder. Logic
on the cpu board is continually looking for port address FFH
and the I/O signal indicating that an I/O instruction is being
executed. If the instruction is an input (IN), the cassette

TRS-80 HARDWARE TRS-80 OR OTHER HARDWARE

DETECTS PORT ADDRESS 23,

CONTROLS DATA FLOW

DETECTS PORT ADDRESS 177,

CONTROLS DATA FLOW

Pig. 10-5. I/O ports and port addressing.

171

logic will send a byte of data to the A register. Seven of those

bits will be zeros, with only the most significant bit being

active. If the instruction is an output (OUT), the contents of

the A register will be sent to the cassette logic. Only the four

least significant bits will cause actions in the logic.

The TRS-80 is expandable so that additional ports can be

used by external devices, as long as the port addresses do not

conflict with FFH or other port addresses used by TRS-80

devices. Since there are 256 total port addresses, however,

there is a great deal of room for expansion, and conceivably

the TRS-80 could be used to control dozens of functions such

as home heating and lighting, burglar alarms, and others

limited only by the user's imagination (and bank account).

Keyboard Decoding

Refer back to Figure 10-3. The keyboard is set up in eight

rows and eight columns as shown in the figure. If a key is

pressed, then the corresponding bit for that column becomes a

one, and if the associated row address is read by a load in-

struction, then the column byte that is loaded will contain a

one bit for the column of the key. As the program knows

which row of the eight is being addressed when the one bit

appears, it knows the key junction from the row and column.

This type of I/O operation is called matrix decoding as the

keyboard forms an eight-by-eight matrix.

The following program continually scans the keyboard and

waits for a one bit to appear for the first and second rows

(characters @, A through 0). When a one does appear, the

row and column is computed to give an index of through 15.

This index is then used to look up the corresponding char-

acter in a sixteen-byte look-up table. The character is then

printed on the screen.

mmmmm sm routine for first tho ros

4ffil Hii28 ORG 4fiffin

#8e8 not -„-,

Fgl! "J KEffiffl LD C;9 •m first m
$82ifi808 88148 LP A (383&H) iSi RON (fflSESS

am cn m H titsimmmmn
MTV fU tin
TOO vilrfH mm jp ?E.KEVi0 ;G0 IF KEV PRESS©

389 3838 mild U) R. (3882H) >mm mms
€§C87 _i_y.J_._i iiR fl jiEhimmmHm

172

mump, mm jp zwmi mwmm
4M§ 8E68 81200 LD £8 ;F0R2NDR0W

€f2 8QT 89210M If) R.ffFH ; INDEX

4fil4 84 88228 KEV2B INC B ;BH3BSff IK
ffliSffl? 8£3S SRL e ;3HFT til zbb

4fti? C2i44e 88248 Jp E,KB28 ;G0 IF NOT 250

4B18 78 88258 LD ftB ; GET #8-7

4KB fit 8ft&@ ADD ftC ;flD0 jfflj #

4&C4F Sffi78 \3 .r,fl ;IMHH5T0C
MDeSffi ^W LP E8 /Z£« FOi? £H
#f 2044a ease u> a,me ; thole of cmctee
#^89 88388 fl&D HLE ;COHPUIE WSFLffiBBff

#23 7E 89318 LD ft, 01) ;GETy|fflefCIER

iE4 322S3E 88328 LD Of»5i2t2X.ft iDISFUy

4fB7 8Effi 88328 LD C..18

mm rnmum u> g$:,mm mm i? mim
4B2S iffE 88358 LOOP! Djfg L0GF1

4f®D 883S8 DEC C

4M C329ffl 88378 Jp miMF
ffiH C184fl 158@ JP KEV5EH ;C0 FOi< IECT KEV

4ffi4 48 88350 TABLE DEFrt 'fflH^SOOJifi'

#5 41 4836 42 #37 43- 483 44 m?? 45 4flJfi 46

4fflB 47 4/BC 48 4H3P 49 4H3E 43 4fi3f 4g 4ft4g 4

C 4M# 4842 4E 4B43 4F 8888 1488 EN

y

ram mm
LKfi 482B

LOOP 4H29

ir£tt 4fii4

HEV20 icl!4

KEVih #12

KTJtn 4ted

The A register is loaded with the contents of row 1 by ad-
dressing 3801H. If this is zero, the next row, 3802H, is ad-
dressed. If either row has at least one bit, the rest of the

173

program is executed, otherwise the program loops back to

KEYSCN to scan the rows again. If a one bit has been de-

tected, the C register holds either for row one or 8 for row

2. The A register holds the column bit corresponding to the

key column. As this is a power of two (80H, 40H, 20H, 10H,

8H, 4H, 2H, or 1H) it must be converted to a number repre-

senting the column of through 7. This is done by shifting A
until it becomes zero, and keeping a count of the number of

shifts. 80H will require 7 shifts, for example, before A be-

comes 0. At the end of the shifting B holds the column number.

This is added to the row number of or 8 to produce an index

of through 15. This index is then added to the address of

TABLE to point to the corresponding character in the table.

This character is picked up and displayed on the center of

the screen. LOOP is a timing loop to debounce the key so that

the program does not loop back to the same key depression

and output a spurious character (the same character twice or

a number of times)

.

Although this program works only with the first two rows

of keys, the reader can see how it can be expanded to work

with all keys on the keyboard, and he will find a similar pro-

gram in Level I or II BASIC.

Display Programming

We have used programs that output both ASCII and

graphics characters to the screen, but have not discussed the

graphics capabilities of the TRS-80 in any detail. The display

memory is similar to normal RAM memory, except that each

address of the 1024 bytes of display memory is made up of

seven instead of eight bits, as shown in Figure 10-6. As the

reader knows from his BASIC experiences, the display can

display upper case alphanumeric and special characters or

graphics characters, intermixed in any combination. The most

significant bit of the 7-bit display memory is used to mark a

graphics character. If this bit is a zero, then the remaining

six bits define an alphanumeric or special character. If the

most significant bit is a one, then the other six bits define a

graphics character. The ASCII codes for alphanumeric and

special characters are defined in the Editor/Assembler manual

or the TRS-80 BASIC manual.

The graphics codes define a six-element graphics character

that occupies one character position on the screen. As there

are 1024 character positions (64 characters per line and 16

lines), there are 6144 graphics elements on the screen, ar-

174

ranged in a 128 by 48 matrix. The question arises of how one
sets or resets a single element. There is no corresponding as-
sembly-language SET or RESET command as there is in
BASIC.

MISSING

IF THIS BIT IS A 1

THEN BITS 5-0 DEFINE

A GRAPHICS CHARACTER

GRAPHICS CHARACTER

(OCCUPIES ONE OF THE 1024

SCREEN CHARACTER POSITIONS)

Fig. 10-6. Display memory format.

The following code attempts to solve the problem of con-
verting an x,y coordinate into the proper bit position in the
graphics memory cell. There are three entry points in the
routine. The first entry point sets the pixel (element) corre-
sponding to the given x,y (horizontal, vertical) position. The
second entry point resets the pixel corresponding to the given
x,y position, and the third entry point tests the current on/off
status of the pixel, returning the zero/non-zero status in the
zero flag. The three entry points of SET, RESET, and TEST
all converge to a common location at TEST10. The store at
TEST10 stores the second byte or a SET, RES, or BIT in-
struction at location INST+1. The first byte of all three in-
structions are the same, a CBH. The second byte is complete
except for a three-bit field defining the bit to be set, reset, or
tested. This will be calculated in the main body of the routine,
along with the location in screen memory to be used, which
will be put into HL, All three instructions use HL as a register
pointer. See Figure 10-7.

175

The main body of the code converts an x,y location into a

screen memory location and bit position. The bit position is

merged into INST+1 to set the proper field. The memory loca-

tion is retained in HL for the instruction. The actual algorithm,

works like this : The y position of 0-47 is converted to a line

number by dividing by 3 to give through 15. The remainder

is saved. The x position is divided by 2 to give the character

position along the line. We now have a line number of

through 15 and a character position of through 63. If the

line number is multiplied by 64 and the character position

added to it, we will have the byte displacement from the start

of screen memory, as shown in Figure 10-8. The actual loca-

tion can then be found by adding 3G00H, the start of display

memory.
The only remaining task is to find the bit position of the

pixel to be set, reset, or tested. This is given by the remainder

of the Y/3 operation times 2 plus the remainder of the X/2

operation. This value is stored in the bit position field of

the instruction at INST+1. As a last step, bit 7 is set to en-

sure that all character positions processed will be graphics

The code for this problem is somewhat complex and it may

help the reader to "play computer" by actually using some

values of x and y and working through the routine to find

OPCODE = CBH

SECOND BYTE « C6H

OPCODE = CBH

SECOND BYTE - 86H

OPCODE « CBH

SECOND BYTE = 46H

SET B,(HU

1 i I 1

1 i G i

RES B,(HU

i i i 1 1

i 0. i

BIT B,(HL)

1 I I 1 i

i 1 i

THIS FIELD FILLED IN LATER FOR ALL

THREE INSTRUCTIONS TO DEFINE THE

BIT TO BE ACTED UPON

Pig. 10-7. Modifying instructions.

176

X

POSITION
7

X,Y =-- 0,0

/
X,Y = 127,0

Y
IS

POSITION

47

X.Y*

f
0.47 X.Y = 127,47

o

CHARACTER
POSITION

LINE

15

FOR ANY X.Y:

1. LINE* = y QUOTIENT

1°

1

1

2

R0W#

J) 1_

COLUMN

2. ROW OF GRAPHICS CHARACTER = j REMAINDER

3. CHARACTER POSITION = j QUOTIENT

4. COLUMN # OF GRAPHICS CHARACTER = ~ REMAINDER

5. BYTE DISPLACEMENT FROM START OF SCREEN MEMORY = (LINE #1 *64 + CHARACTER POSITION

6. ACTUAL LOCATION IN MEMORY = (LINE#) *64 + CHARACTER POSITION +3C00H

7. BIT POSITION WITHIN GRAPHICS CHARACTER = (ROW H\ *2 + COLUMN NUMBER

Fig. 10-8- Screen coordinate algorithm.

out how it works. An interesting point is that the instruction
at INST has been treated as another piece of data to be pro-
cessed and modified. It is not a good practice to do this in

some types of programming (for example, where interrupts
are involved), but it is perfectly permissible in many stand-
alone programs of this type.

mm ;9mmm to convert screen cMins
EHTW: <[£>=£ K tMSTES GF POINT

mm
mi m ;SETS POINT

mi RESET ; RESETS POM

mi m i TESTS POIIff RETURN? 2 FUG

exit: (A mm iMEsmm

177

8S178 ? ZFLffi SET IF TEST

mm

.

4H88 MSB m 4fi88H

m 2m 88288 SET LD ftSffti :ST&(HL)IH5IBUCriflN

mm md JR TEST10 ;G0 TO STORE

%mm ease reset U) &86H ;RES&0D IHSJMJCTIffl

mm 88238 JR TEST18 jGD to store

msm 83249 TEST LD &m :BiT&flt)iifina.cnffl

ffifl 323D4R 88258 TESTIS LD (I16M),fl ;snsE m bwe

4B8D78 68268 iiDDRES LP AD ;GET V

4B8E8ffF 88278 U) B,ij?FH .-1

4-M8 04 88288 LOOP IE R ;SUCCESIVE SUBS FOR DIV

4811 DS83 mm SUB
-

. BVTfflEE

HO F21B4B 88389 JP PALI? iGO IF HOT AMIS

fHL6 Cbai mm HDP A2 i'/eiNB, ffifflfl

4M8 EB2? 88328 SLfl fl iVR*2

4&fi4F 88338 LD &fl ;Sm€ *iM

4MB 68 89348 ii' L D ;VB TO L

4Rf£2SB8 51358 LD lie iVQ IN HL

481E8S8S 83260 LD B,6 ;fflTFDRHlTIPLVBVfi4

88378 L0JF1 HDD H-HL jvesa

4821 18FD mm &M LOOM ;60 IF HOT VB*S4

mm 89398 LD D.8 ;BEfflHHH5J(

m C83B mm SRL
r
L. ;X@

482? 3881 JR ;80 IF XR IE t

m ec FZT^f^FJ INC I' ;C {ION f^S VR*2*J{R

4ffiBl? mm con? m tit fir
;HL HQH HRS V8*2*K8

4P^ 11893C m4B U> DBiCggH ;SMT OF DISPLflV

IS 15 mm Wit HLDE iummmmE
IE? caa mm 3J c ;ALIGN TO FIELfi

#31 SSI slh i.

Jim iwu
B1W lC£i m$B SLfi c

IBS 383D4fl mm LD ft. (IHST+1) ;GET INSTRUCTION

4a^ 8i fflSSB fiDP ac ;SET FIELD

178

4P39 322£4fl L0 (INSMX.fi ; STORE

ABC GS 68528 INST 0EFB SC8H iPB^RHBILSELRES

iW 89 SS38 DEFB S ;HB1 BE FIUB IN

cc tm 38548 Z> (HL> ;Ft£S»CS
4fH8 C9 88556

DPT

BESS h©£ era-5

®ffie total e^ORS

IW mi
Um 4128

UCr 4H18

®DRE 4fi8P

IfiST -SEC

JEST 4fi88

IHTI8 4ffiH

!TT 4ffiH

Mysteries of the Cassette Revealed

^
The cassette of a one cassette system is controlled by three

bits of a 4-bit latch in the cpu. The latch is simply another
type of memory, which happens to be four bits wide instead
of the usual eight. When the cassette is addressed by perform-
ing an OUT instruction to port address OFFH, the cassette
latch is loaded with four bits of data as shown in Figure 10-9.

BIT 7

6

5

LOST

(NOT REQUIRED}

DATA 4

ADDRESSED

3TO PORT TO 32/64

CHARACTEROFFH

2

l-

MUUt LUWU

1

CASSETTE

RECORDING

*- TO MOTOR
TURN ON RELAY

*» OUTPUT TO

WRITE HEAD

CASSETTE

LATCH

(4 BITS)

Fig. 10-9. Cassette latch transfers.

179

The other four bits of data, bits 7 through 4 are discarded

into the bit bucket on the floor near the TRS-80.

Bit number 3 of the latch controls the 32- and 64-character

mode of the TRS-80. Outputting a one to this bit will set the

display into 32 character mode; outputting a zero will reset

the display into the normal 64-character mode.

LD

OUT
A.8

OFFH.A

;BIT 3 IS SET

;SET 32-CHAR MODE

Bit number 2 of the cassette latch is the cassette motor

on/off bit. Setting this bit by an OUT OFFH will turn the

cassette motor on, and resetting the bit will turn the cassette

motor off. This action is produced by a small relay in the

TRS-80 cpu, and it would be wise to quench all thoughts about

controlling that four-ton air conditioner with this one small

control device

!

LD A,4

OUT GFFH.A

;BET 2 IS SET

.-SET MOTOR ON

Bits number 1 and in the cassette latch are used to write

data to the cassette tape. As you probably know from reading

your TRS-80 Technical Reference Handbook, data on cassette

is arranged serially, and everything is represented by a stream

of bits. In the implementation on the TRS-80, cassette data is

written by setting bit of the cassette latch, then by setting

BIT

BITl CLOCK

PULSE

BIT ~ i

' BIT 1 m
\

I

IS

Bl

N

DATA

PULSE

\ BIT =

BIT 1 =
|

/

rmso
PRESE

nsw
OT PR

AZE

PERAT

NT IF

RlTTEf

ESENT

ROBI

ION

^ ONE

BUT
FOR

r

BIT =
BIT 1 =

Fig. 10-10. Cassette data waveform.

bit 1 of the cassette latch, and then by resetting both bits.

When this is done for both a clock pulse and data pulse the

waveform appears as shown in Figure 10-10.

180

To illustrate how this works, let us write a program to

record some music on cassette. It might be nice to try a little

Bach or Beethoven, but perhaps we'll try something a little

simpler. First of all, it is necessary to know how to produce
any tone on the cassette. A simple tone has the appearance
of the sine wave of Figure 10-11. We can produce a square
wave on the cassette by turning the cassette output bits on
and off rapidly as shown in the figure.

We know how to turn the cassette signal to the recording
head on (01) and off (10), but what about the time delay to

produce the tone? If we look in the Editor/Assembler Manual
we find instruction times under "4MHZ E.T." This is the

execution time in microseconds for a Z-80 microprocessor
running at a clock frequency of 4 megahertz (4 million cycles

1 CYCLE

PERIOD (DURATION) OF

CYCLE a 1/FREQUENGY

IN CYCLES PER SECOND

SIMPLE

TONE

"SQUARE-
WAVE OF

SAME
FREQUENCY

BITO

OUTPUT BIT ON

"NORMAL" LEVEL

BIT1
I OUTPUT BIT ON

Fig, 10-11. Square wave tones.

per second). The TRS-80 clock frequency is about 1.774 mega-
hertz, so to get the actual execution times of TRS-80 instruc-

tions we must multiply the 4 MHZ E.T. by 2.26. Let us see

how long a simple loop would take. If we have a value of 1

through 255 in the B register, then the simple loop

LOOP DJNZ LOOP LOOP HERE FOR T TO 255 TIMES

would take 3.25 microseconds (4 MHZ E.T.) * 2.255 * count
in B, or 7.32 microseconds * count in B. This gives us a range
of frequencies from about 535 Hz through 136,612 Hz. (The
frequency of the tone can be found by dividing one by the

time in microseconds, for example, 500 microseconds would
produce a tone of 1/500E-06 or 2000 Hz.)

As the complete cycle would be determined by a timing
delay to turn the write head on one direction and off the other,

the actual tones that could be produced are 267 Hz through

181

68,306 Hz. If we stay on the lower end of that range we should

be able to get a nice range of notes.

The routine to play a note with a given value in B follows

:

PLAYN LD C,(DURTN) ,-GET DURATION

CONT LD B,(FREQ) ;GET FREQUENCY
LD A,!

OUT <0FPH),A .-TURN ON 1/2 CYCLE

LOOP1 DJNZ LOOP! :DELAY FOR FREQUENCY
LD B,(FREQ) ;GET FREQUENCY
LD A,2

OUT (0FFH),A ;TURN ON OTHER 1/2 CYCLE

LOOP2 DJNZ LOOP2 rDELAY FOR FREQUENCY
DEC C ^DECREMENT DURATION
JP NZ.CONT :CONTINUE IF NOT DONE

The additional count in C is used to adjust the length of

time that the note plays. The value of D is related to the

value of the frequency count to make all notes a quarter note

duration, or approximately so (what did you expect, the New
York Philharmonic?). The entire code required to play the

TRS-80 concerto is given below. A table of delay values defines

the duration and notes, and is terminated by a 2;ero.

BDXvU ' UT'Jj I THE W-® CfflEERID

BQUO '

4mfe WM ORG $m
fi ffiBO START LD mimi ;STHRT OF fflSIC TfiBli

4rfJ-* Ui'ikM 88148 OM LD CAW imnm
m?s mm ti> ftC ;HOVE TO flM TEST

•nk-0 Bi $466 m ft iTBTFdn

mmm Witt LOOP ..ip SLOOP ;L00P JfEllDQffi

tmmm. mm cm? u> R. (I$i) ;GET GELflV C01M

4B8F Mi 88130 LD fti

4fdi iOFF
STs-jTiij

our mm,& ;TLK^ C^ 1^*2 EVCLEmm mm LOOP! 0J£ Uj'Jr'i }!BM FOR FO
Mswm. WM LD B.<mn> ;6ETi)£Lift

!

e6ft!Mmm mfTKi
U> h> i

li-ii.-. P.-HT
iWiP, OUT <@FFH),fl ;TL®N ON OTHER ^CrCLf

mzm. wmum DJNZ 1
OPK" iDELfiV Fl^F^e

#S£ m ^£&um DEC
r-

/PEOEifMT KSSTIflN

mFmm 88278
m
jr ©C0MT2 ;oo ifmm

182

4ffi2 DD2 K28B INC IX ;P9!HT TO NEXT Wit

&mHfF MM 13 BC/-1 ilTOBITitiE

4/29 2iiffi0 W318 U) HL38H ; INlTlflL DELHV yffl.DE

IBC 65 88328 L00P4 HDD ILK jIEhV FOR IMHW1

4^>WEC4fi 88338 JF CL08P4 . BETWEEN DIES

€30 C3844fi 88348 JP KM! ;0MIftE

4SS fffi38 88358 TfitiE DEB! S088H jThBLE OF 1-MtSmm §8368 DEFH §OT ;EfiCH EMIBV IS HBDEUP

€1? SCfiC @378 yEFM BfiCSCH iOFMJBVTES. FIRST

4H39 6898 88388 DEFH 98S8H jBtTE IS DImiTION (F

*B8 flSSO 88396 DEFM S8ffl ;N07£ SOD BVTE IS

4H3D 4898 M400 DEFH 9848H ;FE01iEWCr WE
4ffiF 7888 88418 DEFW 807IH

#b sua? mm tm 8hsdh

4945 58® i84# oEFM gflDSGH

4B47S898 88458 DEF^ S8^H

4B49E66B 88468 DEFM 6SEBH

fflffi 4S5F mm im ih®
4MD FF54 88488 DEB! 54FFH

i4F 88 68493 DEF8 8 ; 7HSIBHIHR

^0 88588 END Vri-i=»£?iJ

LffiPi 4nli

Arrangement compliments of James Garon

183

Real-World Interfacing

Is it possible to use the TRS-80 to control real-world events?

An emphatic yes ! But here's the catch. It does take some hard-

ware. In this section, we will discuss how real-world control

is done. We will be talking about some simple hardware, but

you should find it interesting. (Just think about that TRS-80

controlled robot mowing the grass while you sleep in! But

seriously. . .)

First of all, let us talk about what types of control can be

provided to the external world with the TRS-80. Things ex-

ternally are controlled by on/off conditions in a large number

of cases. Such things as garage door openers, burglar alarms

triggered by a switch being opened, sprinkler valves being

turned on by a time switch—these are all events controlled by

an on/off state. This class of functions can be controlled by

discrete inputs and outputs to the TRS-80. One bit of an out-

put or input can control or detect the operation, as only an on

or off state is involved.

A second class of things in the external world are those

events that are not controlled in binary fashion. The tem-

perature of a room, windspeed, dampness of the soil, and

lighting intensity are but a few items that have a range of

values and cannot be represented by a single binary one or

zero. These physical quantities require many bits to represent

them, but they can be represented. There are many available

devices that convert external world quantities into voltage,

current, or resistance analogs that are then converted into

binary form by an analog-to-digital converter. The resulting

digital form, whether it is 8 bits or 24 can then be read into a

computer such as a TRS-80 and processed.

Discrete Inputs

Suppose that we want to input a set of eight bits into the

A register. These bits represent eight different discrete inputs

that are either on or off. A good example would be a set of

inputs from burglar alarm switches in eight rooms of a house.

The bits are either a one (switch closed) or a zero (switch

open), and we would like to read these eight inputs once a

second or so to find out whether a switch that is normally

closed is open, or a switch that is normally open is closed.

How do we go about designing interface circuitry to do this,

and what programming steps are required?

184

Earlier we discussed I/O ports. If we set up our burglar
alarm inputs for a particular I/O port, then that port must
have the following capability:

1. It must be able to recognize its address when it is sent
over the system address lines.

2. It must be able to tell when an I/O instruction is being
executed.

TRS-80

INTERFACE LOGIC

(5 PARTS)

07

D5

D4

03

D2

01

A7

A6

A5

A4

A3

A2

AI

A0

IN* *

i>>
\>> > 33H*

BURGLAR-ALARM
INPUTS (GROUND

OR +5VDC)

IN*
3>

ALARM 7

ALARM 6

ALARM 5

ALARM 4

ALARM 3

ALARM 2

ALARM \

twin
ADDRESS 33H*

AND IN*

Pig. 10-12. Inputting external data.

185

<5. <& jxrctsnt <5*c.* <x£r£G cv pexasi cite crg-ftc ordo wjt txttta- Co cxic upu
over the system date lines.

The circuitry for performing these tasks is shown in Figure
10-12. When signal RD* is active (this is the signal on pin

15 of the cpu or interface 40-pin connector), address lines

A7 through A0 contain the port address from the IN instruc-

tion (address lines A7 through A0 are on various pins of the

40-pin connector). If, for example, we have defined the ad-

dress of the port as 33H, executing an IN A, (33H) instruc-

tion would cause signal RD* to become active and simultan-

eously put 00110011 on address lines A7 through A0. The cir-

cuitry shown in the figure outputs a one for signal INPUT
when both RD* and address 33H are present. This will only

occur for the IN A, (33H) instruction. Signal INPUT allows

the burglar alarm inputs to be gated (transmitted) from the

eight lines onto the system data bus lines D7 through DO (on

various pins of the connector). During the execution of the

IN A,(33H) the cpu will take the contents of the data bus

and store it in the A register, completing the execution of the

IN instruction. Now the data from the eight inputs can be

processed, which might go something like this

LOOP IN A,(33H) ;GET INPUTS

XOR 0B3H ;TEST 7,5,4,1,0 ON;6,3,2 OFF
JP NZ.HELP :GO IF BURGLAR
JP LOOP ;TRY AGAIN

As the entire input, test, and loop takes under 20 millionths

of a second (I) the constraint of one test every second is in-

deed met. As a matter of fact, there is more than enough time

to do all kinds of other processing or control applications and
still meet the poll of the burglar alarms every second.

This implementation is one of the more simple real-world
applications. However, an output of discrete values is not
much more complicated. The signal decoded in this case is

analogous to the IN* signal, and, strangely enough, is called

OUT*. The output operation works as follows: When signal

OUT* is active a port address is present on the address bus
lines A7 through A0. If the port address matches the built-in

address of the hardware, then there is data for the port on
data lines D7 through DO. If this is the case, the data lines are
written into a memory latch similar to that used for the cas-

sette. When the data disappears (it is only present for a few
microseconds), the latch will retain the bit configuration and
transmit it to the outside world. This circuitry is shown in

Figure 10-13.

186

TRS-80

D7 -

D6 -

D5 -

D4 -

D3 -

02 -

Dl -

DO -

A7

A6

A5

A4

A3

A2

Al

AO

our

INTERFACE LOGIC

(4 PARTS)

8-BIT

LATCH

^>

X"

L>>-

r

>
SIGNAL

33H—ID^

EXTERNAL

WORLD

OUT 7

OUTS

OUT 5

OUT 4

OUT 3

OUT 2

OUT1

OUTO

ADDRESS 33H

AND OUT'

Fig. 10-13. Outputting data to the external world.

Suppose we have a set of lawn sprinkler valves that must be
turned on at certain times. Location TIME holds the time in
increments of one minute. The time at 12:00 noon is repre-
sented by a count of 720 in the two-byte variable. To turn
sprinklers 3 and 5 on at noon, the interface in Figure 10-13
is used, along with the code below.

LD HLJIME .-GET CURRENT TIME IN MINUTES
LD BC.720 jNOON
OR A ;RESET CARRY
SBC HL.BC ;TEST FOR NOON
JP NZrOTHER .-CONTINUE WITH OTHER PROCESSING
LD A.28H /SPRINKLERS 3 AND 5

OUT (033H),A jTURN THEM ON

Another method for implementing discrete input and out-
puts involves a memory-mapped approach similar to that used
for the line printer and other devices. Here IN and OUT in-
structions are not used, but the external logic is treated as

187

memory locations and loads and stores are used instead. This

is also a valid approach but requires slightly different imple-

mentation. The problem of reading in other than discrete in-

puts or of outputting other than discrete bit patterns is sim-

ilar to the methods described previously. The major considera-

tion in this case is the conversion between analog values and

digital 8-bit values required. The logic required for reading or

writing the digital values between the cpu registers and the

I/O port, however, is exactly the same as described above.

We hope that these very simple examples will give you

some insight into the nature of external-world interfacing.

With a little bit of external logic, the TRS-80 can indeed be

used to control any number of things around the home or in

industry, and with assembly-language programming, this con-

trol can be fast indeed.

188

CHAPTER 11

The subroutines presented in this section are the "common"
subroutines described elsewhere in the book. Many of them
are used continually in larger programs, and they are given
here so that the reader may incorporate them into his own
programs if he desires. All of them are subroutines and must
be CALLed from the reader's code. All are assembled at
4A00H, and must be reassembled by incorporating the source
code into the reader's source code, or by separate reassembly
with a new ORiGm. A brief description of each routine is

given below, with the assembly following.

FILL Subroutine

The FILL subroutine is used to fill a block of memory with
a given 8-bit value. FILL could be used, for example, to zero
a buffer, or to fill the video display area with blank characters.
On entry, the D register contains the character to be filled, HL
points to the start of the fill area, and BC contains the number
of bytes to fill, 1 through 65535. An entry with BC=0 is treated
as 65536 bytes to fill. On exit HL points to the last byte filled

plus one, D is unchanged, and A and BC are zeroed.

mm ;s™j7m io fir w® mmm
mm • EH71¥:cW=#7fi jil BE FILLED

m2B . C&)=STRR? OF FILL Mm
saLw - is.-/-* ur talks UJ ,iU.

189

86140- OIL Fill

88158 • EXIT: fl»=SKE

88168 . (H)=OB GF FIIW

•M.?d CBC)=8

nee (r)=5

BUS? KKW will

ilWi T-T fa5»W3 rtil ! T; /IT: » ft . CTflK DUTP

ra_ iHUP POINTER

#82 i8 8808 DEC BC ;fiWU5T COffl

mn mm u> as jisths gf count

4884 at 0S258 OR C ;HEH£LSGMT

«2SB 88260 J ©FILL iCOHTIISE IF DONE

ytst GS sfeVB nci .'RCiUwt lr tunc

HB8S TOTS. 08885

Fill 4BS8

MOVE Subroutine

The MOVE subroutine is used to move one block of memory
to another area in memory. The blocks may be overlapping

without conflict; the program is "smart" enough to calculate

the direction of the move based on the type of overlap. On
entry HL, DE, and BC are set up as in the block move instruc-

tions—HL points to the source block, DE points to the destina-

tion block, and BC holds the number of bytes to move. On exit,

HL and DE point either to the block areas plus one, or to the

block areas minus one, based on the direction of the move.

BC contains zero.

88168 /SUBROUTINE TO HOVE HEHORV

88116 = EMTRV:<HU=S01M> STRRT

88128 <D£;=P£STIMiTjd START

08138 .. fffi)=t OF BVTES TO HSVE

mm - HIT;O£>=S0iE£ HEM

'm&B <BC)=0

mLfo •

190

ffi %m m mm ;qhige on rebssehblv

m £5 msBtm push a ;ske source phir

4MB? KM OR B ;OBBCfflRV

AB2EG52 88218 SEC ILBE jSHROHJEST PNIE

$84 Ei 88226 POP HL iRESIDRE PfflR

4B65D88C4H S8Z38 JP &MNL0 ;GOIFHWEBflCK

msm 88248 LMR jHNEHKHflRD

flSRifflB S8258 JR H0U28 iOOl

mm mmwtm mi) hlbc ;pomto bm
4JD2B 88278 DEC HL iPOIMTTOEND

ffiEEB N3BB E4 (EM ;9H>

m HLK ;TU

418^ ©388 DEC HL jPOMTOEM)

miB mm ex d&hl jshphhc

4ffi2ED68 88328 LDDR Ml mi
m O BB38-HQV2B P£T ;RETURN

8888 8@?40 Off'

MffiS 4&4

IBH0 4S8C

MULADD Subroutine

MULADD is a subroutine to perform multiple-precision
adds. Two multiple-precision operands from one to 256 bytes
in length are added to each other, and the result is put into the
destination operand. The source operand remains unchanged.
The operands are located anywhere in memory desired, with
the data arranged most significant byte through least signifi-

cant byte from low memory through high memory. On entry
the IX register points to the first byte (most significant) of
the destination operand and IY points to the first byte (most
significant) of the source operand. Both operands are treated
as the same length. The B register contains the number of
bytes in each operand from 1 through 255. An entry of B=0
is treated as a length of 256 bytes. On exit, the destination
operand contains the result of the add. IX and IY are un-

191

changed. The B register is zeroed, and the A register is de-

stroyed.

88180; SIM)?JTIffi TO DO MiTIPLHmCISIOf^ flUS

8§U0- ENlRV:(IX}=POINTS TO HS BVTE OF DESTINBTION

S?lif> - (IV)=f'0MS TO ilS BVTE OF SOURCE

88138 £8Hf of bvtes in mms
1148 cm mm
§8158 milWD

EX IT:(KM
(m=UCHfiSGED

flftj AQ
(fl)=fiESTROVED

801S8 (B)=8

IWMfl

m ee&e ORG 4H88H tomsE mmmm
$S§ B5

rawwi !

t-n.-.-f7 !IIIDD PUSH C€ iSHE BE

fflfiSS 88238 10
r n

;#BVTES TO E

tfHH 1000 88240 LD fcg ;D£^M!tS #

ffittlB §0259 DEC DE /K Mai WO iTl

4S5DM3 mm ADD IJtffi .POINT TO 15 BVTE

4ffi? F!H9 68270 fiDD IV, DE /POM TO IS BVTE

mm $m pop DE ;REST08E QRIGINRL

im® 88S90 XDR fl ;RESETCfiRRy

m mm 893001.MP LD ft (IX) ; GET DESTINATION

m. mm 88318 m ft cm i HDD SOURCE

mwm mm LB (IX)/fl ;S7BRE RESULT

m mi 6SE338 D-M LOQRL ;G0 IF NOT fifSE

ms& 88248 RET /fiEIURH

m.7m 88358 KM DEC IX /PMTTOBEXrHIfla

WFffl B8368 DEC IV ;PNTTDH3T HIGHER

m C3SB4A 08378 JP LOOP ifflOTIlK

08389 EM)

6g@88 TOM. EM?S

L0OR1 »
LOOP 488b

BASS «
192

MULSUB Subroutine

The MULSUB subroutine performs multiple-precision sub-
tracts. Two multiple-precision operands from one byte to 256
bytes in length are subtracted from each other, and the result
is put into the destination operand memory locations. The
source operand remains unchanged. The operands are located
anywhere in memory desired, with the data arranged most
significant byte through least significant byte from low mem-
ory through high memory. On entry the IX register points to
the first byte (most significant) of the destination operand
and IY points to the first byte (most significant) of the source
operand. Both operands are treated as the same length. The
B register contains the number of bytes in each operand from
1 through 255. An entry of B=0 is treated as a length of 256
bytes. On exit, the destination operand contains the result of
the subtract. IX and IY are unchanged. The B register is

zeroed, and the A register is destroyed.

88168

i

sjbsoutine to m BiiMi-Fmisim subtmis

69118, M®:m>mm to m byte af destimmi

mm. <IV)=FOIfflS TO ffi BYTE OF Sfflfiffi

8al3@ (B)=# qf bvtes inmm
W±4Q. mi ffiLSIB

mm . (.mm)

MSB . mv.mmmm
88178- (IV)=UCffiHGED

(fl)=flESTSflffl)

8HS8 , (B)=8

88288

4HB8 P^21S ORG 4fiW ;CHRNOE CD REfcSEnBLY

4ffl@D5 8^28 fflSB PUSH BE ;SHWE BE

mi. 58 88238 LB E-B ;SBYIES7DE

#82108 88048 LD fcB ;BE NOW R3S t

m ib 68258
r-.rr-

Let. BE jBEHOHHKH

4885 DM3 88268 i-sOf)
tu sir mufioismE

Wf? FMS m?B fiBP I". ffi ;?miBisww
4889 Bi ssm DE imm msm.
man «mm hr m R RESET CfiKRV

4B8B 0D7E88 dmim Lv ft (IX) ;GET uBlimm

193

«EFP9E68 bvU-iU SBC a av) ;SLi!HnCT SOIIKE

fflu DDTTyy 8339 |
[i CI3X.fi ;STORE RESULT

4614 1881 M<M &.M L00F1 ;G0 IF HOT MrE

€16t3 mm iti j SETlffH

%4l/ LiEc' wmiOflRl DEC
TV?

ifflTTO HEXTHiae

4fli9 Fcee mm DEC IT ;PMT TO NEXT HIS®

4fiiij CisBiH SB78 JP LOOP iCOMTIMI

ffiffi
i-c-AC- m

Lllfi #il7

IMP 4fi§8

M1S18 4fl©

CMPARE Subroutine

The CMPARE subroutine compares two 8-bit operands in

true algebraic fashion, that is, a -5 is less than a —1, and so

forth. Three return points must be provided by the user after

the CALL to CMPARE. Each return point must have a jump
instruction of three bytes. The first return point is the return

made when the A operand is less than the B operand. The
second return point is the return made when the two operands

are equal. The third return point is the return made when
operand A is greater than operand B. By putting in jumps to

the same areas, any combination of equalities may be con-

structed. For example, if the three return points have

JP ONE
JP ONE
JP TWO

JUMP TO ONE ON LESS THAN
JUMP TO ONE ON EQUAL
JUMP TO TWO ON GREATER THAN

a jump will be made to location "ONE" if A is less than or

equal to B, and a jump to location "TWO" will be made if A
is greater than B.

On entry, the A register contains the first operand, and the

B register contains the second. On exit, the return point is

based on the comparison of A to B. A remains unchanged
along with B, and the HL register is destroyed.

88BB0 TOTfiL ERRORS

mm m
lest m
[JIFFER 4ffi5

194

mm ;SBRairiHE to cohfhe im 8-bit sioed oferhds

mid 0HRV:ffl>=flPEHH) i

mm . (B)=#e?ii® 2

88138 • (Hi QffffiE -CPU. SS

08149 OCTNFORflLIB) ;PUTJP LES5T HERE

00158- (RRTK FOR H=8) jffl JP EOtR HERE

Ia68 • CRTH FOR fi GT B) .;PUT JP 0REBTI? HRE

88178 . KIT; C8)HJCHf»

00180 ffi}=fflfflfflGB)

§HS0 • <FL»OTE&

$80 B@218 050 4fi0iJ ;(11SE ON REaSSEMBL?

f®0H 8a2280ff£E HP ft iGETWNKSS
*H IS ggg& FtP BE ;Slfft DE

ffi02 118308 88248 U) DB3 /IMiBS IMsEieT

4BB5 B8 88250 CP B ;CffiffKE .3:8

$8S2sm era jR z.EQia ;GoiFaua

^fs ga??8 push af ;mnsm
TOA8 63S88 XQR S ;TESTSIfflgITS

4fiSBi? 88238 HJ ;X0RT0C

m&m mm jp mm ;go if diffssebit sighs

fflffiFi 88318 POP flp ifiESHUE FlfflS

4fiBF3S@ 88328 JR C.-LESST ;GOIFfliTB

4ffii IS SgSeSSHIR fffiD !LDE iHJBPRINBV:

4M21S 1140 EBift HDD HL-PE iBWPeWBVi

mm 88358 LBST POP K ;i?EST08E DE

m& mm jp ad ;rt>i to 0,2.6

4-315 Fi 1370 DIFFER POP flF ;RESTORE FUGS

mmim mm jp asBinR ;go if bgtb

nmam?, mm jp lesst ;altb

BB88 ea488 END

E«iL 4fil2

bimu: ww
MXJL16 Subroutine

The MUL16 multiplies an unsigned 16-bit number in the

DE register by an unsigned 8-bit number in the B register,

195

putting the result in the HL register. As the numbers are

unsigned, DE may hold from through 65535 and B may
hold from through 255, Overflow may result if the product

is too large to he held in 16 bits. There is no check on overflow.

On entry, DE contains the 16-bit multiplicand and B contains

the 8-bit multiplier. On exit, HL contains the 16-bit product,

DE is destroyed, and B contains 0.

89189 ;9Mfflm TO -HULTIFL? 16 evs

88118 . BflBV:(BE)=fflLTIPLICffllmwm
0128 = CB>=ffftJIPUBL DNSIGMED

8809 > cat MilS

mm :- EXIT: <HL)=PR0KEr

88158 > (KMJESIHKD

«u£0 (BM!
T

eei78<

4808 mm OIS mm iODNGE oh Rssaav

4888 218088 MS8 fHilb U) M..8 ;ttEBR PfiRTIflL PiKT

mi CB38 8B28B LOOP srl B ;SHIFT OUT H'lER BIT

ifvar T«y
88218 JR H&CBiff ;G8 IF HO CfflSV (i BIT)

m?i3 fefeifc1 m JL.DE /AH) HlTIPLKfflD

#88 08 seesaw RET ? ;G0 IF H'lER

#9EB 88248 EX D&H ;HLLTIPUCiM> TO fC

4DSR29 88258 HDD HUH. jSHIFT KITIRM)

488BEB 88268 EX DErHL ;sh> eeoc

mm® §578 W LOOP iCOHTIfflE

fflffl SKC't- m
96888 TOTfi i

rnrvav"

m 4m
loop %m
13 S if I'r-Tsr,ma m tn0£!

DIV16 Subroutine

The DIV16 subroutine divides an unsigned 16-bit number
in the HL register pair by an unsigned 8-bit number in the D
register. The quotient is placed in the IX register and the re-

mainder is left in H. As the numbers are unsigned, the divid-

end in HL may be through 65535 and the divisor in D may

196

be through 255. Overflow will result on division by zero.
The remainder is less than the divisor. On entry, HL contains
the 16-bit dividend and D contains the 8-bit divisor. On exit,

IX contains the 16-bit quotient and H contains the 8-bit re-
mainder. The L and A registers are destroyed, E is zeroed,
and the D register is unchanged.

88118 • ES7RV: (H)=DIVIDEHD 16 BITS

mm (f»=fflVISSR S BITS

eai25< mi mm
§808 • &11: <IX)=§L€OTT IS BITS

8§i48 . m^mam s bits

88156 CLHCSIWitP

(£)=€

8188 . (fl)=DE5TKfflED

mdld 88218 DM6 LD ftL *LS BWEMM
m& mm ID LH iffifflTEDIWJH)

LD R.8 ;OEfiR FOR SIST

m4m mm ld &a- ;setup for smm
m dSi$ 88258 U> BAS ;iS ITERATION

4D8S D02188BB 68268 LD IX, 8 ; INITIALIZE QUOTIENT

mis mmm m hlh. ;shift divd hft

4M)i7 83288 Pifl ;SHIFT 8 LS BITS

4«£ D2124R 88238 JP ICLOQRi ;G0IF8BIT

4flU2C 88388 IE L /SHIFT TO HL

4ffi2DD3 88218 LOORi fiDD IX.. IX ;SHIFT SUOTIEHT LEFT

mim mm m. ix ;§bit=i

4fitss7 mm m b jclbr chrrv hk sub

m.?B& mm sac jloe ;trv sustrrct

4ftfS D21F4A 88358 JP NCGNT iffllFITfflff

€!CiS 88368 ADD HLK ;ffiST0RE

«HD O0S8 88376 DEC IX

.

;SETflBIT=8

fjfiOEB 68388 (M DJHZ LOOP s® IF MOT 16

197

4121 cs mm m

HEXCV Subroutine

HBXCV is a subroutine to convert an 8-bit value (two

hexadecimal digits) into two ASCII characters representing

the hexadecimal characters through 9 and A through F. On
entry, the A register contains the 8-bit value to be converted.

On exit, the H register contains an ASCII character repre-

senting the hex character for the four high-order bits and the

L register contains an ASCII character representing the hex

character for the four low-order bits. The A and C registers

are destroyed.

aeiee ;smmine to convert fkoh hex to asm

mm. £«:(fi>=8-BIT W£ TO BE OMRIED

so@, im HBEV

gh14B (RETURN)

-<n± en
it: my=n» flscii VHJJES, HIGH AN) LON

mm > ffl)=DESTR0©

ntu in
B3J.fi? -• CD=DESIROVH)

CsMOQ

4ffl0 88190 ORG «h ;CHfflg£ ON REHSSBH.V

WS 4f LD &fl ;SHffi ffiO HEX DIGITS

$81 8BF 1*218 SRI e iflLIGN HIGH DIGIT

Ml- C83F iSSS@ SRI b

JfBSC (WW
am-j Uur $9238 HfTj_ n

m? eef ft

4fi89 CDi-54fl tecSi? L-flLL TEST ; CONVERT TO fiSCII

g&r- c~ ilgyhrj LD
i! n
n-n

. nv.tr rm tmt

m>B 6§2?@ LD ftC iESTOIS ORIGINAL

•rftr rrnr
hue COST 88289 Ofifi m . r-i-T ! «l r»Tf;TT

198

4ffi.fi C$1549 ©298 mi TEbi ifftai to mu
mg 88388 LD Ln ;m mm
tru4 f-fi

truM Lj Mile RET

#5 cse «B2g'ffcbl ADD H..38H ;CfflMB5Iffl frctcs

88338 EP 3RH ilEST FCI? 6-3

ffl!9 RHEffl 8B348 JP ftTETl ;60IFe-3

m.t m? mm fiffi a.? /CORRECT Fffifi-F

4fll£ [3 WM TEST! RET ;REIURH

ffisy SSSf'S EH)

69638 TOTAL mm
IEST1 4fli£

TEST 4fli5

jbgv 4RS8

SEARCH Subroutine

The SEARCH subroutine searches a table for a given &ey
value of 8 bits. The table may be any number of entries from
1 through 256, with each entry a fixed-length of one to n bytes.
The table may be located anywhere in memory. The key value
is assumed to be the first byte in each entry.
On entry, the A register holds the 8-bit key of through

255. HL points to the start of the table in memory. DB con-
tains the length of each entry in bytes. The C register holds
the number of entries in the table, from 1 through 255. On
exit, the Z flag is set if the key has been found in the table,
and the HL register points to the entry containing the match-
ing value in this case. If the key is not found, the Z flag is not
set upon return. If the key is found, BC contains the current
number of entries left in the table. In this case the subroutine
may be called again to search for another occurrence of the
key, without changing the contents of HL, DE, BC, or A.

SET, RESET, and TEST Subroutines

These subroutines are used to set, reset, and test a point on
the screen in similar fashion to SET, RESET, and POINT in
BASIC. The screen coordinate values given are converted into
corresponding memory locations in video memory, which are

199

mm ismmim for imimm
mid. Bm:ii&m

mm • (HL)=mE strrt

mm . (BE>=tflfiffl of SKH Btm m bvtes

ggiffi • (CM OF p?IES IN TffltJE

use- CHI 50SCH

88168 . SIT: 2 FL86 SET IF FOUR NOT SET IF NOT FOLD

mgB . (HLMOfflTIGN OF HBICH IF FdD

88188 - CBC)=C!MHT i LEFT

88138

.

(f3E)4JHCHRHGB>

41188 88218 ORB 4B8SH ;CHRN0E ON REHSSEHBLV

4888 6688 . 63228 SEHRCH W B,0 >BC NOMHfSf

4ffl2 EEfll 88238 LOOP CPI ;PHE fl NITH (H)

4ffi4 QffiEffl 1*240 JF Z» FOUND .
; G0 IF FOUND

4*8?E28f4fi 88258 JP P0.HFIB ;BT END Hi) NOT FM>

m® mm m hlde ;cjjsfm*lb»i

#08 28 88278 DEC fl jOfiffiNmEHGIH

4ffic iff4 ea2se jr loop iWimm

i§£ 28 8888 FOLK DEC HL ifiDJUST TO FOOD LUC

4MFC3 88380 NF® RET ^RETlPi

ffie@ ffliS EH)

88888 TOiH. EHUS

m 4H8F

HD 4fi8E

i nwt .mat
LBUT tfrCk

;dml-n woe

then processed. The high-order bit of each memory location

is set when any of the three subroutines is called, on the as-

sumption that the coordinates addressed represent graphics

points.

On entry, DE contains the y,x coordinates. The D register

contains the Y value of through 47, while the E register

holds the X value of through 127. A CALL is made to SET,

RESET, or TEST to set, reset, or test the coordinate specified.

200

On exit, the A, B, C, D, E, H, and L registers are destroyed.
If a test was involved, the Z flag is set if the point was a zero
and reset if the point was a one.

Care must be taken in using this subroutine to make certain
that the x and y values are in the range given, as the sub-
routine may wreak havoc if invalid values are input.

mm iSMWM TO CONVERT SCREEN COMMIES

ffiUfl

ffii28

8§13@

S?140

imi en
S3l-Jy

B&ffl

6817ft

Bmim^zmmmm of pom

M TO 127/V=8 TO 4?

mi SET ;SETS POIHT

mi RESET iRESETSPOIMT

Oil TEST /lESTSFOIHTfiOMSeZFUE

EXIT: ffl mm® IMiSimB

2 FLffi SET IF TEST

«! SH1S9 Omh 4ft@»l

#2 I8f£ SELB Jfi

4ffiS 3E4& M248 TEST LD

;SE7 &(HL) IMS7MICTI0N

M 18 51m.

MS&mj mrnim
;60 TO STOE

1 46H ; BIT & (HI) iNSM£TIH

(IHST+iXfl ;ST0E ffl& BVIE

;6ET V

TESTIS

assh

TESH8

%Ui rida4n fttSS? Jp P=L0ff

Jinn -fr ftSTWi r- .-. --

.:SJCC£5I1E SUBS FOR M¥

} GD IF NOT H1MIS

i¥8 IN & VRINe

;¥S TO i

.= Itf lis HL

jlfii fim WliirVf St 64

201

m.iM uttjf*
PJN2 LOGRt iSO IF NOT ffi*S4

iA*V? A /'tits

V0--7Z! LO D.-8 •mmumn
4f25 CSiS mm SSL E m
4/2? 3881

nan s NDuM ;®i?mmi
'3i-"j fa. INC C itmm mm

Anji*M ivair
DfftiO IrUlfl HM> HLDE ;HL tiQN fjfg VBJft-XQ

4S2B H-ffiSC mm LP DBS iSTHRT'OF OISPLfiV

€E t? £#4-58 TO HLDE ilifflHHfBMSRJKE

ffi^ CM 88468 SLfl
n

jflLIGN TO FIELD

4H3E1 CB21 m?d SLfl ij

mi am rains
ERWJD SLfl L-

«B5 3SMR 684S8 LB a (1151+1) ;0ET IHSIHETIOB

C<8 81 KUfflJ RDD R.C ;SET FIELD

4E9 323MA G3--U.O LD (IN5MX.fi ;STC^E

«BC CS 88528 INST iifb 3CSH jPBJRBa 8JT..SELRES

4H2D68 88538 DEFB 8 ;HILL BE Ffiifl) IN

4fBE CffE 88548 SET Z- (ft) mmmm
88558 RET

falsB 88568 £N&

CONT 4ffifl

LOOP! 4828

LOOP 4MB

res «
iET 4niC

JEST 4R8S

TBH0 «
set m

202

SECTION S3B

Appendices

203

APPENDBX 3

Z-80 Instruction Set

A Register Operations

Complement CPL
Decimal DAA
Negate NEG

Adding/Subtracting Two 8-Bit Numbers
A and Another Register
ADC A,r SBC A,r
ADD A,r SUB A ?r

A and Immediate Operand
ADC A,n SBC A.n
ADD A.n SUB A.n

A and Memory Operand
ADC A,(HL) ADD A,(HL) SBC (HL) SUB <HL)
ADC A,(IX+d) ADD A,(IX+d) SBC (IX+d) SUB (IX+d)
ADC A,(IY-fd) ADD A.(IY-fd) SBC (lY-fd) SUB (IY+d)

Adding/Subtracting Two 16-Bit Numbers
HL and Another Register Pair
ADC HL.ss ADD HL.ss SBC HL,ss

IX and Another Register Pair
ADD IX,pp ADD IY,rr

Bit Instructions

Test Bit

Register BIT b,r
Memory BIT b,(HL) BIT b,(IX-fd) BIT b,(IY+)

Reset Bit

Register RES b,r

Memory RES b,(HL) RES b,(IX+d) RES b.(IY-fd)
Set Bit

Register SET b,r

Memory SET b,<HL) SET b,(IX+d) SET b,(IY+d)

205

Carry Flag

Complement CCF
Set SCF

Compare Two 8-Bit Operands

A and Another Register CP r

A and Immediate Operand CP n
A and Memory Operand
CP (HL) CP (IX+d) CP (IY+d)

Block Compare
CPD,CPDR,CPI,CPIR

Decrements and Increments

Single Register
DEC r INC r DEC IX DEC IY INC

Register Pair
DEC ss INC ss DEC IX DEC IY INC IX DEC IY

Memory
DEC HL DEC (IX+d) DEC (IY+d)

Exchanges

DE and HL EX DE,HL
Top of Stack
EX (SP),HL EX (SP),IX EX (SP),IY

Input/Output

I/O To/From A and Port

IN A,{n) OUT (n),A

I/O To/From Register and Port

IN r,(C) OUT (C),r

Block
IND,INDR,INR,INIR,OTDR,OTIR,OUTD,OUTI

Interrupts

Disable DI
Enable EI
Interrupt Mode
IM IM 1 IM 2

Return From Interrupt

RETI RETN

Jumps

Unconditional
JP (HL) JP (IX) JP (IY) JP (nn) JR e

Conditional
JP ccnn JR C.e JR NZ.e JR Z,e

Special Conditional

DJNZ e

Loads

A Load Memory Operand
LD A,(BC) LD A,(DE) LD A,(nn)

206

A and Other Registers
LD A,I LD A,R LD I,A LD R,A

Between Registers, 8-Bit
LD r,r'

Immediate 8-Bit
LD r,n

Immediate 16-Bit
LD dd.nn LD IX.nn LD IY,nn

Register Pairs From Other Register Pairs
LD SPJHL LD SPJX LD SP.IY

From Memory, 8~Bits

LD r,(HL) LD r,(IX+d) LD r,(IY+d)
From Memory, 16-Bits
LD HL,(nn> LD IX.(nn) LD IY,(nn) LD dd,(nn)

Block

LDD,LDDR,LDI,LDIR

Logical Operations 8 Bits With A
A and Another Register
AND r OR r XOR r

A and Immediate Operand
AND n OR n XOR n

A and Memory Operand
AND (HL) OR (HL) XOR (HL)
AND (IX+d) OR (IX+d) XOR (IX+d)
AND (IY+d) OR (IY+d) XOR <IY+d)

Miscellaneous

Halt HALT
No Operation NOP

Prime/Non-Prime

Switch AF
EX AF,AF'

Switch Others
EXX

Shifts

Circular (Rotate)
A Only RLA,' RLCA, RRA, RRCA
All Registers RL r RLC r RR r RRC r
Memory
RL (HL) RLC (HL) RR (HL) RRC (HL)
RL (IX+d) RLC (IX+d) RR (IX+d) RRC (IX+d)
RL (IY+d) RLC (IY+d) RR (IY+d) RRC (IY+d)

Logical
Registers SRL r
Memory SRL (HL) SRL (IX+d) SRL (IY+d)

Arithmetic
Registers SLA r SRA r

Memory
SLA (HL) SRA (HL)
SLA (IX+d) SRA (IX+d)
SLA (rr+d) SRA (IY+d)

207

Stack Operations

PUSH IX PUSH IY PUSH qq POP IX POP IY POP qq

Stores

Of A Only
LD (BC),A LD <DE),A LD (HL)A LD (nn),A

All Registers

LD (HL),r LD (IX+d),r LD (IY-fd),r

Immediate Data
LD (HL),n LD (IX+d),n LD (IY+d),n

16-Bit Registers
LD <<mi) fdd LD (nn),IX LD (im),IY

Subroutine Action

Conditional CALLs CALL ec.nn

Unconditional CALLs CALL nn
Conditional Return RET cc

Unconditional Return RET cc

Special CALL RST p

208

APPENDIX

209

o © o o o o o

© ©

< <
o

—J *"

o < < o
>•

u >
u < <

*" o >• + + < _i

+
>
u 5 + +

"a < < o
+

-a

+ o a

+ + X > X > S \m

+ + ++ + + + + + + + + +
X < < < < < < < < < < X

< <
o

c

a -a

+
-a

4*
X X >;

a n o o Q
7- z v.. /.. /
< < < < <
< < < < <

-a -D TJ •a TJ T3

o o O o 5 ,_ O o
"- _- •— **— i .< t—

c o o c a
X.

c 8 a
»-—

o _
•— ,..„ ,..., o »* ,„„ ^_ , , „

- o o k- ' o o Q o » o o
O

o 8 ooo o z o
o

oo o Z O o Z
oa
5

o
o o ^

,-, + + _ + + -a

£ X >- X >• 3 %m ^, + +
X < < < < < < < < < <

—

i

X X >: u e X >< >;

u U u o U u Q Q a Q Q a n Q o a Q Q n
Q O Q Q a O O a a o a a a a 32 >* ^ X ^
< < < < < < < < < < < < < < < < < < <

• 9 © ©

© «

• ©

- E

"D *. <
___ + + (J

X X >•

t^ u* **-

o u
J3 jQ J3 = E

< <

+ +
X 5- o
^_^ •—

'

< <
F

10 <3
a
h b

C C £ i.

UUOUuUcoS

a C
b a

F
SI

a
u b

TJ *. _

U Q Q Q

o o
»—

I

—

-D -Q

urt *—

•

o o

-a o c c T3 13

o
- n» n- r-»

8•*— o o »-~ *— o o o
c c c-D r— r— r— o

o 5 o o o o o

, _ _ r— ^ __ - o
o 5 o o 5 o _ h. •— o o o o 1— <~ o o

f— »— o «— p«* *~ F— •"— r" 1*

o o - - o
i o — o o _ _ oo oo oo oo

T3 jg-

+ + c
cX >- c

-Q jD -0

< < U
ea £0 ax u u u

+

u u u u u u u o

M © ©

M © •

o
Ik

a. +
5 x

-c ,_

m s *S «

O ttl O n <D
h* *- k- *ti w

"8

a _ .is

E E E C

a Q. a.
u 3 3 •*.

*
ai (S3 ID <

q a a a a o

T3 T3

— _ _ _ „ o o o
,— — r— r— r— f"- »

o o O •-•
cp- r~*

8 8. g 8 r— r—
e> o o

o
o o X O o »• • '

•—

»

t~~ +—

>

fHHM W *— t— J—

•

r— r—
o »- O fttlt in r— •»- o P- O o r- ,...

T3 T3

+ +
* > X

u u
UJ hi

Q a a

S < x

a a a
62.

s s s

• • • • • •

• •

• • • •

Z £,

.t: y. - y. -

c « c % 5
3 w-

^ E E E e
T3 SJ ID 01 a

~ ~ ~ C .= jo £ jo

tj t> tj £ ^ S *xs £OQO g-og-o 9-c^eE^E^E

-a -a c c

o 8 a ^, p. _ ,

-• F—
«— «w»

8 o
%m 1~ o o a — o o o

(U <b i>

o g 8 o
a oo o o o o

7Z
"

o 8 s o O o o o o o o - o
8 8 8

^ r— o ,... — r— »~ 8 J

o r~ o a o o
o o ,_ 1—

VHH p-*-
»—

*

<

"

r— r— IA »— *— *— *- —
_ o o - oo oo oo

a
^..^ + +

a X > X V)

*» u u (.) u u o u a a t£

z z z Z z Z .z z z z z z

— •- m2- <2> at U
.2 .2 ££•££ r£

a
F

a
F

? 5 5 * 5
< < < < <

TJ -a •a TJ

3 3 O O o o

2 £ 3 x
.2 ?

? ~ •? O

-C «? -r

£ 5
E X - - =

T>

c O + +
j: X X

X
o

c
o

13 TJ CJ a

c C c c

c c c c c c TJ TS

—

,

"
;z zz

o o o
-

c< •—
c c c

Cl © -a y o ~ "

o o o o o g y o
,... 1— o r- __ ,_ _ I— _ .—

tt» r—
Q r~ 1™" »— »— *—

a r— •**• o TJ t— *— H— r—

X p— *— F—
»— ^~ o o »" oo a o o *~ o *"" o u o *™

a c < <i c
tU _ c C£ tu ^r

< < < < < CD O X
a a a a a a a Q

c ^ c c + +
X X < X X X X

Q a a a a a a

c o -

^ E .i o
t? -2 5 ~
i S ^ 3
7* O w o

£ o a
i> o o

S 5? *

< v c
j§ £ £

i* «* **» -*-

JC «s ~
s ? ? "g -g

•a mn~o-o'a~o-a-a-ou
^ .-z .-s .•£ .-* 5 oto w «/> «

c c c c c c

c c -o "D c c c c c T! •u

„ o o — o _ _ „.

oo
o
o o o c

oo c
o o

c

oo oo o oo

o 8 o ,

o _ ** —
o o o o o o _ r~

.— ,_ .— p— _ _
o o oo

o o o
1*

o o oo o o o o
*""" r— o *- w *•* o zz. zz o

"~ o o
,_ r- •~ _ o •" o ~ — - o o o

g I + + 5 1 H 5 - I I x >< >-

§ 2 fe fe I I 1: i I 5 V S 5 l l | fe. J- «
q q a oo a a q o. o o • q a . a . a a a act §

o © o o o

" -a Z
a a ja

z

< <
o

< X
< <

o

o
+

-a

+
X >

*» **—

*

-—

*

tY. DC cc OJ cc:

u o O u U
< < < < <

a a £

a
Q
c o

c
TJ -a

c <a

** £ *
o

%

**

<

2 j 2 a

cr x
X? i? o

5 5 O O ca a. a. a.

~o TJ

o .-^ „ ,_ .— r— _ T— f-

s ^3 1—* *~ "- p—

o »— ^— r— o o o o o o
c **— c *— oo •— •— r 1— "" o

o o **— o o o o r— o »— p-> #—
•

' r- '"" —
'

' "™ • '"" "~ fl„

o o a oo ^
o o o o o o o o o o o oo o

r™ f"- r~- »— r~ ^— *~- 1— r—

»

w-~ »— w— r~o ^~ r— o a ^— »-• ^_
^— o *•*- <"- » r_ *— * — «—

o o o

+ + -. <
X c
-* cs;

a: l_ »- >— t—
Di az 1— -J :a -i -1

u U O U u U u o o o o

© •

• • • • • • •

• • • • ©

• • • • e •

2 -2

"O "O

+ +
X >-

="•=&

-D -Q -O J3

t E

C -Q -£t .£

? £• >•
5 t t S - £

3 •£

•: — i. Z _« Z
- ii ^ !i < !s

o o o o o o
1— *** _ '

.

'

o
J3 J3

o oo o

O o oo oo
ooo

aoo

Tt T3 T) -a -a -o

5 *~
O ~ = o o u o - - o - _

Oa J3 -0

o
oo l

oo
o

o
o

o
ooo

o
ooo

o
oo

o

1
oaooo

aoooo

o
oo

o
oo

t— w—

•

o o o »— r—

•

o *—
1 o o,«•

o
cr

•— r*» o o «—

•

*—

_ o
' 1 o u 5 — o _ *~ oor™ o *— o o o o o r—o oo

cz a- ,_

"3 w
-a _n -a _q

u u u u

N © ©

Ul © © © ©

-T - X

•R .*- 3

w 3

•?= x .£ *3 °>
U) Oj >•

S5 tj .. i. i. £

r- " _ Ml Ul .*^

:

*- =
*- -Sj j= "C *c u *: .=

= •-'
••; lj < w O

a. a. oc en.

< <
o o

u

< <

o o o o
»-* r— F" »—

»-— lima

o o o
o o o s

T3 t> a TS TJ T5

_ _ o ,,„ ,
... ,_ O O o

r— i* o
** ,„„

o o ,-
' U o

C
fmm »— o o o o o o o i

—

*~-

o o
s

o
Ji

o ~ o o
o o *~ .- o o " "" *~" —

O o .— «— _
^— r— *— r~ ** 1— hi o oo O r— »— o *~" — r— .— "" "~ *~ —

_ ,__ _ o o — •— o o *. ,_ r— ,_ *— r— o
w~ r—

y
"" «-—

»— *— r— »— **» r~ ^-, f— »-•

"~ *"" _ *™ o o

u u otx.tY.tx.

-a 13

+ +
X X > s

< < < <. < i
V o u U-- u Um ra
<S1 1/1' 1/3 1/7 </}

£ E

*: r£ to
•£: o j j ;:

£ £
° *: £ £ E *IE ~

.« E E
«j £ -c

E -C -c

- ~ x •£ 3 -|: £ j=

" •- o - -c -c

£ JJ -fl J3 JJ

-D -Q J3 JJ «- *.

<
< 2

< <

o o o
1—

»

o o
* 1 *— — ^ r— p. r—

J3 J2 o o o o "
ZZ

Z - oo oo oo 8 oo oo

-a -Q 13 TS "D -a 13 "0

o
o O

- to
o

o O
- o

o o *.
o

O o
o o o c
r~ f— o t~ ,

r ' *~ r~ *— o P-,

— ' """ *~ ,— o o ,— — o o r~ —

r-* O o o o o
'

" P-" _ »— ,-_ , .

o o o o o o o
*— o » " *— o •—

»

r—

o o o

sT —
"S,.

O o o o o O

© © ©

N © © ©

<
O

+
X
2"

<
< < 5
o £ a
r c £
a; oc en

. o o o
<! uj uj ui

o > > >
X «n «> w

II d$™

°- 2 <°, O

a. q. <o
"i to »

I! II =no II

x >-« ' In — ™ iu

a. ^
I
w

•— « +

O T

o c

^

a c ^
II 1 5

y n «i

m a-S
J2 TJOf O

« § =5

« •- *
o»JS |
£ 2 —

««o

uu Vmm ||

o o m

a. o."
« » «

"U

4> ° S
6i o
m as —

*

>i
O 0) o
Ut in

"Si rate

u « ts tt:

II il II i!

T3 TJ -a T3

o O o O
— „.. ,...

T
...

O O c H. •«•*

O o o o_ r- "~ •—

,_ r- fM. ,,,„

i- o
' " ^~ . .1.1.

• 1
'""

_ _ o ,_ „
I— *— »—

o

0© o

+ + rt + +
X >

Q3 ca
en OS C£ q; cc

O O O (> o
1/5 U3 X X X X X

Index

A bed add with erroneous result,

126
Access, memory, 27
Accumulator, 34

register, 19
Action, subroutine, 208
Adding and subtracting

8-bit numbers, 113-115, 205
16-bit numbers, 116-119, 205

Address
effective, 22
symbolic, 63

Addressing
bit, 57
direct, 42, 49-51

immediate, 43-45
implied, 42

indexed, 42, 54-57

index register, 47
register pair, 47
relative, 52-53

screen, 59
ALU, 19

AND, ORs, and Exclusive ORs,
131-134

An elegant block move, 96-100
An unsophisticated block move,

94-96
Architecture, Z-80, 18
A register operations, 205
Arithmetic

logical, and compare, 31-34
shift operation, 140
shifts, 139-140

ASCII representation of decimal
and hexadecimal, 132

Assembler
formats, 65-67

-generated strings, 151-152
Assembling, 64-65

Assembly-language
coding, 58

listing, typical, 26
Assembly operations, 64

B

Bed corrections, 127
Binary

data, 13
notation, 14
number, 13

Bit, 14
addressing, 57
instructions, 134, 205
least significant, 57
most significant, 57
operations, 39-40

Block

compare, 34, 155-158
input/output, 40
move, unsophisticated, 94-96

Breakpoint, 78
Buffers, I/O, 40
Bubble sort, 164-166

sample data, 166
Byte, 15
and word moves, 87-91

CALL
instructions, 36
stack action, 37

Carry flag, 206
Cassette data waveform, 180

221

CCP, 42
Chip, microprocessor, 15

CMPARE subroutine, 194-195

Coding
assembly language, 58

machine language, 58, 59-61

Command (s)

G,82
L, 82

P, 82

T-BUG, 76-81

Comments, 67

Compare
operations, 128-130

two 8-bit operands, 206

Computers, shiftless, 134

Computer system, functional blocks,

11

Conversions
decimal /binary, 110
decimal/hexadecimal, 111

input and output, 147-150

Cpu, 11

D
Data

binary, 13
hexadecimal, 13

movement, 28-31

transfer for an LDDR, 98

transfer paths, 31

Decimal
arithmetic, 125-127

/binary conversions, 110
/hexadecimal conversions. 111
notation, 13
versus binary numbers, 109

Decrements and increments, 206
Dedicated

locations, 16
memory addresses, 168

Decision making and jumps, 34-36

DEFB, 68

DEFL, 71

DEFM, 69

DEPS, 69

DEFW, 68

Desk checking, 62

Devices, I/O, 18

DI,42
Direct addressing, 42, 49-51

involving HL, 51

Discrete inputs, 184-188

Display
memory format, 175

Display—cont

programming, 174-177

Divide register setup, 146

DrV16 subroutine, 196-198

E

Editing new programs, 63-64

Effective address, 52
EI, 42

EOU.70
Examples of add and subtract flag

bit, 116

Exchanges, 206

F

Family tree, Z-80, 24-26

Fields, 39, 46
File of object code, 64

Filling or padding, 92-94

FILL subroutine, 100, 189-190

Flag register bit positions, 116
Flags, 22
Formats, assembler, 65-67

Form, symbolic, 61

Functional blocks of computer
system, 11

G
G command, 79
Generalized string output, 152-153

General table structure, 161
Group, instruction, 28

H
HALT, 42
Hexadecimal

data, 13
number, 13

HEXCV subroutines, 198-199

Immediate addressing, 43-45

Implied addressing, 42
Increments and decrements, 34

Index register addressing, 47

Indexed addressing, 42, 54-57

Indexing into tables, 160
Indirect, register, 48-49

Input
buffer, 154
and output conversions, 147-150

/output, 206
Inputting external data, 185

Instructional set, 15

222

Instruction (s), bit, 134
CALL, 36
group, 28
length of, 26-27
restart, 54-57
Z-80, 24-40

Interrupts, 206
1/0,11

buffers, 40
devices, 18
instruction format, 170
operations, 40
ports and port addressing, 171

J
Jump

action, relative, 53
and CALL format, 51

Jumps, 206

K
Keyboard

addressing, 169
decoding, 172-174

L command, 82
Least significant

bit, 57
registers, 30

Length of an instruction, 26-27
LIFO stack, 21
Load, 28, 206
Loading, 65
and using T-BUG, 75-76

Locations, dedicated, 16
Logical

operations, 33, 207
shifting, 137-139
shift operation, 138

M
Machine-language coding, 58, 59-61
Mark II version of store "1"

program, 72-74
Matrix decoding, 172
Memory, 11

access, 27
arrangement for 16-bit data, 30
mapping

TRS-80, 17
with I/O addresses, 168

RAM, 16
ROM, 16

stack, 21
versus I/O, 167-172

Message buffer, 153
Microprocessor

chip, 15
Z-80, 16

Mnemonic, 29
Modifying instructions, 176
More pseudo-ops, 68-71
Most significant

bit, 57
registers, 30

Movement, data, 28-31

MOVE subroutine, 101, 190-191
Moves, byte and word, 87-91
MULADD subroutine, 191-193
MUL 16 subroutine, 195-196
MULSUB subroutine, 193-194
MULTEN, 138
Multiplication methods, 142
Multiple-precision adds by manual

methods, 120
Mysteries of the cassette, 179-183

N
New programs, editing, 63-64
NOP, 42
Notation

binary, 14
decimal, 13

two's complement, 112
Number

binary, 13
formats, 108-110
hexadecimal, 13

O
Operations

assembly, 64
bit, 39-40
I/O, 40
logical, 33
shifting and bit, 38-40
stack, 36-38

Ordered tables, 163-165
ORG, 62
Outputting data to the external

world, 187
Overflow conditions, 114

Patching technique, 81-82
PC, 19-20

P command, 82
Precision instrument, 120-123
Prime/non-prime, 207
Pseudo-operation, 62

PUSH stack action, 38

R
RAM memory, 16
Real-world interfacing, 184
Register

accumulator, 19
addressing, 45-47

indirect, 48-49

least significant, 30
locations, T-BUG, 80
most significant, 30
pair

addressing, 47
data arrangements, 29

SP,37
Relative

addressing, 52-53

jump action, 53

Reserved words, 65
Restart instruction, 54
ROM memory, 16

Rotate operation, 136
Rotates, 134
RST, 53

SRA, 139
Stack

action

CALL, 37
PUSH, 38

operations, 36-38, 103-107, 208
Store, 28, 208
String input, 154-155

Subroutine
action, 208
CMPARE, 194-195

DIV16, 196-198
FILL, 189-190

format, 102
HEXCV, 198-199

MOVE, 101, 190-191

MULADD, 191-193

MUL16, 195-196

MULSUB, 193-194

SEARCH, 199-200

SET, RESET, and TEST,
200-202

Symbolic
address, 63
form, 61

Sample
add operation, 32
table of

disc files, 162
T-BUG commands, 159

SCF, 42
Screen
" addressing, 59
coordinate algorithm, 177

SEARCH subroutine, 199-200

Set, instructional, 15
SET, RESET, and TEST

subroutines, 200-202
Shifting and bit operations, 38-40

Shiftless computers, 134
Shifts, 207

in the Z-80, 39
Signed numbers, 110*113
SLA, 139 $
Software multiply and divide,

140-146

Source code, 64
SP, 20

register, 37
Square wave tones, 181

Table searches, 158-161

T-BUG
commands, 76-81

register locations, 80
tape formats, 81-83

The bed representation, 126
TRS-80

Editor/Assembler, 61-63
memory mapping, 17

Two's complement notation, 112
Typical assembly-language listing,

26

U
Unordered tables, 161-162

W
Words, reserved, 65

Z

Z-80
architecture, 18
family tree, 24-26

instructions, 24-40

microprocessor, 16

224

Radio /haek
§A TANDY CORPORATION COMPANY

