
UJilliQfn Borden, Jn
Bmi

flssembly Language
Subroutines

~
r:jM^S_i'

?^/-;J-^¥^

o:^i;s^
.--*'5<»i^. r^uX'-.-yj^S^^e-

tisS,^ :#;'-/!

;a^£r*c-^^.-r,,f -:-

'2^^^
rf:

TV

-i"^!^;'

lii'-l:^

fe^^rfer:V4»'''@i

L-lv^V^i:3
"" ^•^"^"?->. '.^:_?^

!fe:^'

:Sgii^3-»^^

fe*V'.i^^,

^:^?m. «.*i.S5i|f=^

^i--" '%/?ii^¥v

;w^;'*&

.^:3S3

'^^^e?

;'<V:^^fc>i

fl collection oP
easy-to-use subroutines
for your TRS-80

=¥i^^~~r

W7X

^W^^^^y-,

$18.95 A SPECTRUM BOOK

P

WILLIAM BARDEN, JR.

TRS-80
ASSEMBiy
LANGUAGE
SUBROUIINES

A SHCinUH BOOK

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Catalo^ng in Publication Data

Barden, William T,

TRS-flO assembly language subroutines.

(A Spectrum Book)

1. TRS-80 (Computer)— Programming. 2, Assembler

language (Computer program language) I, Title,

QA76.8.T1 88373 001 .64 '2 82-383

ISBN 0-13-931188-2 (pbk.) AACR2

This Spectrum Book is available to businesses and organizations

at a special discount when ordered in large quantities. For

information, contact Prentice-Hall, Inc., General Publishing

Division, Special Sales, Englewood Cliffs, N. J. 07632.

© 1982 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

A SPECTRUM BOOK

All rights reserved. No part of this book

may be reproduced in any form or by any means
without permission in writing from the publisher.

10 98765432
Printed in the United States of America

Editorial production supervision by Frank Moorman
Cover design by Ira Shapiro

Manufacturing buyers: Cathie Lenard and Barbara A. Prick

PRENTICE-HALL INTERNATIONAL, INC., London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

PRENTICE-HALL CANADA, INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore

WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Contents
Preface, v

I

1

2

TRS-80 ASSEMBLY-LANGUAGE PROGRAMMING
TECHNIQUES

A Brief Look at TRS-80 Assembly-Language Programming, 3

Using Assembly Language on the TRS-80, 13

I I TRS-80 ASSEMBLY LANGUAGE SUBROUTINES
ABXBIN: ASCII BINARY TO BINARY CONVERSION, 31

•

ADEBCD: ASCII DECIMAL TO BCD CONVERSION, 34

ADXBIN: ASCII DECIMAL TO BINARY CONVERSION, 37

AHXBIN: ASCII HEXADECIMAL TO BINARY CONVERSION, 40

AOXBIN: ASCII OCTAL TO BINARY CONVERSION, 43

BCADDN: MULTIPLE-PRECISION BCD ADD, 45

BCDXAD: BCD TO ASCII DECIMAL CONVERSION, 49

BCSUBT: MULTIPLE-PRECISION BCD SUBTRACT, 52

BXBINY: BINARY TO ASCII BINARY CONVERSION, 55

BXDECL: BINARY TO ASCII DECIMAL CONVERSION, 59

BXHEXD: BINARY TO ASCII HEXADECIMAL CONVERSION, 62

BXOCTL: BINARY TO ASCII OCTAL CONVERSION, 65

CHKSUM: CHECKSUM MEMORY, 68

CLEARS: CLEAR SCREEN, 71

CSCLNE: CLEAR SCREEN LINES, 72

CSTRNG: STRING COMPARE, 74

DELBLK: DELETE BLOCK, 78

DRBOXS: DRAW BOX, 81

DRHLNE: DRAW HORIZONTAL LINE, 85

DRVLNE: DRAW VERTICAL LINE, 87

DSEGHT: DIVIDE 16 BY 8, 89

DSSIXT; DIVIDE 16 BY 16, 92

EXCLOR: EXCLUSIVE OR, 95

FILLME: FILL MEMORY, 96

FKBTST: FAST KEYBOARD TEST, 99

FSETGR: FAST GRAPHICS SET/RESET, 100

INBLCK: INSERT BLOCK, 104

METEST: MEMORY TEST, 108

MLEBYE: FAST 8 BY 8 MULTIPLY, 112

MLSBYS: SIXTEEN BY SIXTEEN MULTIPLY, 114

MOVEBL: MOVE BLOCK, 117

MPADDN: MULTIPLE-PRECISION ADD, 120

MPSUBT: MULTIPLE-PRECISION SUBTRACT, 124

MSLEFT: MULTIPLE SHIFT LEFT, 127

MSRGHT: MULTIPLE SHIFT RIGHT, 129

MUNOTE: MUSICAL NOTE, 131

MVDIAG: MOVING DOT DIAGONAL, 136

MVHORZ: MOVING DOT HORIZONTAL, 139

MVVERT: MOVING DOT VERTICAL, 142

NECDRV: NEC SPINWRITER DRIVER, 145

PRANDM: PSEUDO-RANDOM NUMBER GENERATOR, 147
RANDOM: RANDOM NUMBER GENERATOR, 149

RCRECD: READ CASSETTE RECORD, 151

RDCOMS: READ RS-232-C SWITCHES, 155

READDS: READ DISK SECTOR, 158

RESTDS: RESTORE DISK, 162

RKNOWT: READ KEYBOARD WITH NO WAIT, 164

RKWAIT: READ KEYBOARD AND WAIT, 168

SCDOWN: SCROLL SCREEN DOWN, 171

SCUSCR: SCROLL SCREEN UP, 173

SDASCI: SCREEN DUMP TO PRINTER IN ASCII, 175

SDGRAP: SCREEN DUMP TO PRINTER IN GRAPHICS, 177

SETCOM: SET RS-232-C INTERFACE, 181

SOIARR: SEARCH ONE-DIMENSIONAL INTEGER ARRAY, 184

SPCAST: SERIAL PRINTER FROM CASSETTE, 188

SQROOT: SQUARE ROOT, 191

SROARR: SORT ONE-DIMENSIONAL INTEGER ARRAY, 193

SSNCHR: SEARCH STRING FOR N CHARACTERS, 196

SSOCHR: SEARCH STRING FOR ONE CHARACTER, 200

SSTCHR: SEARCH STRING FOR TWO CHARACTERS, 203

SXCASS: WRITE/READ SCREEN CONTENTS TO CASSETTE, 206

TIMEDL: TIME DELAY, 208

TONOUT: TONE ROUTINE, 210

WCRECD: WRITE RECORD TO CASSETTE, 213

WRDSEC: WRITE DISK SECTOR, 216

III APPENDICES
Appendix 1

:

Z-80 Instruction Set, 223

Appendix 2:

Decimal/FHexadecimal Conversion, 231

IV

Preface

Radio Shack TRS-80 Model 1, II, and III assembly language is a powerful way
to program. Assembly- language programs may run as much as 300 times faster

than their BASIC counterparts, turning a boring BASIC game into a high-

speed video chase or a day-long sort into minutes. Unfortunately, assembly lan-

guage is also difficult to learn and, once learned, a tedious language in which

to program.

What is the solution in using assembly language on the Radio Shack com-
puters? This book offers one solution—precanned, debugged, and documented
assembly-language subroutines for the TRS-80 computers. In it, you'll find sub-

routines that will speed up your graphics by a factor of 300, subroutines that

enable you to perform high-speed sorts, general-purpose subroutines that will

allow you to do number base conversions and square roots, and special utility

subroutines, such as subroutines to "dump" the video screen to cassette or to

read a disk sector.

There are 65 of these assembly-language subroutines. The subroutines may be

easily interfaced to BASIC programs—they are specifically geared to BASIC

interfacing, as a matter of fact. Each subroutine is relocatable; the assembly-

language code is such that the subroutine may be placed anywhere in memory
without reassembling the subroutine. To make this task very easy, we've in-

cluded the equivalent decimal code after the listing of each subroutine. It's

simply a matter of taking the dozen, or two dozen, or three dozen decimal

values and embedding them in BASIC programs as DATA statement values or

strings. From that point on, the subroutine exists as part of the BASIC program.

Of course, you may not want to always use the subroutines in BASIC programs.

You may want to CALL them in your own assembly-language code. We've also

made it easy for you to do this. Each set of code can be called as a separate

assembly-language module. You may want to reassemble and modify the code,

but, if not, the code is usable as it stands, and it is completely relocatable.

Although the subroutines are slanted toward the TRS-80 Model I and III, many

of them can also be used on the TRS-80 Model II; all three computers, of course,

use the Z-80 microprocessor.

The first chapter of this book, "A Brief Look at TRS-80 Assembly-Language

Programming," contains introductory material on Z-80 assembly-language pro-

gramming, to make you familiar with some of the techniques. It's not abso-

lutely necessary that you read this chapter. The next chapter, "Using Assembly

Language on the TRS-80," shows you how assembly language may be used in

either a BASIC or stand-alone environment. This chapter is not an absolute

requirement, either, but you may want to study it further when you start using

the subroutines and embedding them in BASIC programs or running them as

separate entities.

The bulk of the book consists of 65 separate assembly-language subroutines.

Each subroutine consists of a description, the subroutine listing, and equivalent

decimal values for the "machine code" of the subroutine.

The description gives a brief idea of what the subroutine accomplishes and

shows the input and output parameters that are used to pass information back

and forth between the subroutine and the calling program.

The description also includes a complete explanation of the algorithm used in

the subroutine—how the subroutine accomplishes the function in Z-80 code.

Another element in the description is a sample call to the subroutine using

actual input and output values. The sample calls use a "TRS-80 Assembly-

Language Subroutines Exerciser" program, TALSEX for short. TALSEX is a

Model 1/1 II Disk BASIC program that was used to exercise the subroutines; it is

fully described in Chapter 2 and is used in the descriptions to conveniently

show the action of each subroutine.

Notes pertaining to the use of the subroutine are also included in the descrip-

tion along with a "checksum" value that can be used to verify that you have

entered the program data correctly.

The assembly-language listing is the actual listing from the Z-80 assembler. It

shows every instruction used in the subroutine and also is heavily "com-

merited." Because of this, the listing may be used in self-study on assembly-

language programming and techniques.

The last portion of each subroutine is a complete set of decimal values to be

used for inclusion in a BASIC program in DATA statements or the like. We've

done the conversion from hexadecimal to BASIC for you, to minimize operator

error. These values, when added together by the CHKSUM subroutine, should

correspond to the Checksum value in the description, giving you a way to

check the validity of the data in your program.

An appendix on Z-80 instructions and a second on decimal/hexadecimal con-

version complete the book.

We hope that you'll find these subroutines useful in BASIC, in assembly-

language programs, and in self-study of Z-80 assembly language on the

TRS-80S.

To John Foster and "ASHEE"

TRS-80 ASSEMBLY
LANGUAGE
PROGRAMMING
TECHNIQUES

A Brief Look at TRS-80
Assembly-Language
Programming

In this chapter we'll discuss some rudimentary assembly-language concepts. It

isn't necessary that you understand everything in this chapter, or even that you

read the chapter to use the subroutines in this book. If you choose to do so,

however, you'll get a better idea of how assembly language is done,

The Z-80 Microprocessor

The Z-80 microprocessor is used in the TRS-80 Model I, II, and III microcom-

puters. It is a third-generation microprocessor that is truly a "computer on a

chip." When we speak about TRS-80 assembly-language programming we're

really discussing the built-in instruction set of the Z-80 microprocessor.

Unlike BASIC statement execution, the Z-80 performs instructions at the most

rudimentary level. Typical instructions would add two 8-bit numbers, subtract

two 8-bit numbers, load a CPU register with the contents of a memory location,

or store a CPU register into a memory location.

Z-80 Registers

All assembly-language programs are built up of a set of Z-80 instructions in

sequence, which are executed by the Z-80. These instructions are held in mem-
ory In binary and may be one to four bytes long. The binary values for the

instructions are called machine language, because this is the form that the Z-80
computing machine recognizes.

Before we look at some of the Z-80 instructions, let's take a further look at the
Z-80 architecture. Figure 1-1 shows the internal registers available to the ma-
chine-language or assembly-language programmer. We won't show some of
the other registers involved in internal microprocessor operations, such as

memory access or timing.

GENERAL
PURPOSE
REGISTERS

8 BITS

>

^

^
^
^
^

^
ÎX

lY

PC

SP

ONLY ONE SET,
A-L OR A'-L'

CAN BE ACTIVE
AT ONE TIME

INDEX REGISTER

INDEX REGISTER

PROGRAM COUNTER

STACK POINTER

INTERRUPT, REFRESH
REGISTERS

16 BITS

J DENOTES REGISTER PAIRS

FIGURE 1-1 Z-80 registers for use in assembly language.

The Z-80 registers are fast-access memory locations located in the Z-80. The A,

B, C, D, E, H, and L registers are general-purpose 8-bit registers in the Z-80.

They are used to hold temporary results and for processing.

The A register is the main accumulator register. It holds one operand for adds,

subtracts, and other arithmetic operations while the other operand may come

from memory or another register. The other registers are used as auxiliary regis-

ters, with the exception of H and L.

H and L, along with B and C and D and E, can be grouped together as register

pairs of 16 bits. When this is done, the registers act as three 16-bit wide registers

called HL, BC, and DE. The HL register pair (often called the HL register) is a

kind of 16-bit accumulator similar to the A register. It can be used for 16-bit

adds, subtracts, and other operations.

The IX and lY registers are 1 6-bit registers that can be used as index registers, or

pointers to memory locations. We'll discuss these a little later on, when we talk

about Z-80 addressing modes.

The PC, or program counter, register is the main control register not only in the

Z-80 microprocessor, but in the whole TRS-80 system. It controls execution of

all programs, assembly-language or BASIC. After all, BASIC is simply an assem-

bly-language program that operates on a series of higher-level statements. The

PC is 16 bits wide and points to the first byte of the next instruction in memory to

be executed. As an assembly-language program executes, the PC Is constantly

being updated by one to point to the next byte of the instruction or is loaded

with a jump address to enable a jump to a new location in memory.

The SP, or stack pointer, register, is a 1 6-bit register that points to the stack area.

The stack area is a special section of RAM memory that is set aside to hold

return addresses from CALL instructions, temporary results, or interrupt loca-

tions. This stack area, typically only one hundred bytes long, builds downward

as the stack is used. Every time an assembly-language CALL instruction (similar

to a BASIC GOSUB) is executed, the return address from the PC register is

pushed onto the stack. A subsequent RET(urn) instruction pops the stack and

reloads the PC with the return address.

The R and I registers can be largely ignored by the programmer. (The R register

is used in one subroutine in this book.) The I register is used for a special

interrupt mode in other Z-80 systems, and R is used for refresh of the dynamic

memories in the TRS-80 systems.

We've given a thumbnail sketch of all of the Z-80 registers except one, the F

register. The F register is a collection of the eight flags shown in figure 1-2.

These flags are set by the action of assembly-language instructions. The Z flag,

for example, stands for Z(ero) flag. The Zero flag is set whenever the result of

certain adds, subtracts, or other types of arithmetic operations is zero. The

other flags are set for similar conditions. The flags are used in conditional jump

instructions to alter the flow of an assembly-language program. The program

could jump to a new set of codes if the result of an add was a negative number,

for example. The A and F registers are treated together as one 16-bit register

pair for storage in the stack and other operations.

The seven general-purpose registers and the flags register are duplicated in the

Z-80. The second set, called the prime set, is available as additional register

storage. One or the other set may be selected by two instructions.

Z-80 Instructions

FIGURE 1-2 F registers.

SIGN FLAG. SET IF

RESULT IS NEGATIVE,
RESET IF RESULT
IS ZERO OR POSITIVE.

ZERO FLAG. SET
IF RESULT OF
OPERATION IS ZERO.

HALF CARRY FLAG. -
HOLDS CARRY FROM
BIT 3.*

PARITY (P)/OVERFLOW (V) FLAG.
RECORDS "ODD/EVENESS" OR
OVERFLOW CONDITIONS

ADD SUBTRACT FLAG. RECORDS
ADD/SUBTRACT MODE.*

CARRY FLAG. HOLDS
"CARRY" FROM ARITH-
METIC AND OTHER

OPERATIONS

s z X H X P/V N C

X= NOT USED
• = NOT GENERALLY ACCESSIBLE

TO PROGRAMMER

The instruction repertoire of the Z-80 contains well over 700 unique instruc-

tions. Fortunately, many of these instructions can be grouped together, and the

actual number of similar groups is much easier to manage.

Loads generally load the contents of an 8-bit memory location, CPU register, or

immediate value in the instruction itself Into a CPU register. A second class of

loads store the contents of an 8-blt CPU register into memory. Loads may also

be done on 16-bitsof data in a register pair, loadingorstoring two bytes of data.

There are a great number of load-type instructions in the Z-80. A load instruc-

tion in the Z-80 is denoted by an "LD," and you will see many, many loads in

every program. A load is really just a way of transferring data.

Arithmetic instructions add or subtract 8 bits of data with the A register, or 1

6

bits of data with the HL, IX, or lY registers. These are simply adds and subtracts

of binary numbers, sometimes with the state of the Carry flag (a one or a zero)

being added into the result. Adds and subtracts are denoted by ADD, ADC,
SUB, or SBC. A special type of subtract, the compare (CP), compares two 8-bit

values.

A number of instructions related to arithmetic instructions allow adding (INCre-

menting) or subtracting (DECrementing) one count from the contents of a CPU
register or memory location.

Logical instructions perform AMDs, ORs, or exclusive ORs on operands in the

A register. The AMDs and ORs are identical to BASIC AMDs and ORs, except
that they operate with 8 bits of data, while the XOR is similar to an OR except

that two one bits produce a zero bit in the result.

Shift instructions shift data in any of the 8-bit CPU registers one. bit position

right or left. There are several different types of shifts, including the rotate,

which rotates the data out of the register and into the other end, the logical

Z-80 Addressing Modes

shift, which shifts data out with zeroes filling vacated bit positions, and the

arithmetic shift, which sign extends the value in the register. Mnemonics for

shifts are RLCA, RLA, RRCA, RRA, RLC, RL, RRC, RR, SLA, SRA, SRL, RLD, and

RRD.

Jumps, CALLs, and return instructions handle alterations of the program path

similar to BASIC GOTOs, IF . . . THEN, GOSUBs, and RETURNS. There are

two types of jumps, conditional and unconditional. Unconditional jumps al-

ways jump to a new location, while a conditional jump jumps /Y the condition, ^

such as Zero Flag= 1 , is present. CALLs are identical to BASIC GOSUBs. They

call an assembly-language subroutine and save the return point in the program

stack. A RET{urn) retrieves the return address from the stack and returns to the

instruction after the CALL. CALLs and RETurns may also be conditional or

unconditional, jumps are denoted byJPorJR, CALLs by CALL, and RETurns by

RET.

A special type of jump is used in conjunction with a loop count in the B

register. The DJNZ instruction (Decrement and Jump if Not Zero) decrements

the count in B by one and then jumps back to the beginning of a loop if the

count is not zero.

Bit manipulation instructions allow operations on a bit level. Data in a CPU
register or in memory can be referenced by the bit address, 7 through 0, and the

applicable bit can be set, reset, or tested. Bit manipulation instructions are

denoted by SET, RES, or BIT.

"Block" instructions allow operations on many bytes of data in a block. Blocks

of data may be searched {CPI, CPD, CPIR, CPDR) or moved (LDl, LDD, LDIR,

LDDR) using these instructions.

Input/output instructions handle operations between CPU registers and an ex-

ternal input/output device, such as cassette tape. The TRS-80s allow both

"memory-mapped" and "I/O mapped" input/output. This means that an

input/output device may look either like another memory location (memory

mapped) or as a special device addressed through an input/output port. When
the system I/O ports are used, input is normally done with an IN instruction and

output with an OUT instruction.

Stack instructions allow data in CPU register pairs; including the AF register

pair, to be temporarily stored in the system stack. PUSH pushes a single register

pair to the stack and POP retrieves the data into the original register pair or

another.

We haven't mentioned all of the Z-80 instructions, but the above list would

encompass most of the instructions used in common Z-80 assembly-language

code. Special instructions are sometimes described in the documentation on

the subroutines, and there's always reference material in Zilog or Radio Shack

publications that describe the Z-80 instructions in great detail.

There are a number of different ways to access data with the Z-80 instruction

set. These are called addressing modes.

One type of addressing mode allows operations between CPU registers. You
can see that it's convenient to add two numbers located in two CPU registers,

for example. A complete instruction using this type of addressing mode might
be"ADDA,B/' which adds the contents of the B register to the contents of the

A(ccumulator) register and puts the result into the A register. Another sample of

this type of instruction is "INC DE," which adds one to the contents of the DE
register pair and puts the result back into the DE register pair.

Register addressing is normally used for arithmetic and logical instructions,

shifts, and load instructions.

Load and store instructions must transfer data between CPU registers and mem-
ory. One addressing mode that implements this in load-type instructions is the
direct addressing mode. This mode allows a CPU register to be loaded or stored

directly to a RAM memory address specified in the instruction. A "LD
A,(3C00H)," for example, would load the contents of the first video display
memory location into the A register. Similarly, a "LD (3FFFH),A" would store

the contents of A into the last location of the video display memory. Not only 8
bits of data can be transferred. Sixteen-bit operations are possible with instruc-

tions such as "LD (3C00H), HL," which stores the contents of the HL register

pair into video memory locations 3C00H (L) and 3C01 H (H).

Direct addressing is also used in some types of jump and CALL instructions. In

this case the address specified in the instruction is the address to which the

instruction will jump or which the instruction will call. The instruction "CALL
212H," for example, CALLs the ROM subroutine located at memory location

212H. The 212H is a part of the instruction as a direct address.

The immediate addressing mode is used to load a data value into either an 8-bit

CPU register or into a 16-bit register pair. The data value is usually a constant
value when loaded into the 8-bit register, but is often an address value when
loaded into a 16-bit register pair. The term "immediate" means that the data is

present as part of the instruction itself. The advantage to this mode is that of
speed and convenience. The immediate mode is faster than accessing a data
value from a memory location and one does not have to keep track of a large

number of constants in memory. The following code loads the value of 41 H
(ASCII "A") into the A register, and the address 3C00H into the HL register pair:

LD A,41H ;load "A" into A
LD HL,3CO0H ;load start video memory to HL

Notice that when immediate addressing is used, the data is not surrounded by
parentheses, as it is in direct addressing, where the data represents a memory
address. The exception to this is in the jump or CALL instructions where the
memory address for the jump or CALL does not have parentheses.

Another type of memory reference addressing mode uses a register pair as a
pointer to a location in memory. The most commonly used pointer is the HL
register pair. In this type of addressing, the HL, BC, or DE register is preloaded
(by another instruction) with the address of the memory location to be used in

the "register indirect" instruction. An example of this would be the two instruc-
tions

LD HL,3C(X)H ;load video memory start

LD {HL),A ;store into video start

The first instruction loads the memory address of 3C00H (the first byte of the

video memory) into the HL register pair. The next instruction stores the con-

tents of the A register by a "register indirect" store, using the memory address

in the HL register pair.

Another type of addressing mode that is similar in concept to that of using the

register pairs as pointers is the indexed addressing mode. In this mode, the IX or

lY index register is used as a pointer to a memory location. The index register

by itself, however, does not represent the complete address of the memory

location. The effective address, the one used in the instruction, is formed by

adding the contents of the lY or IX index register together v^ith a displacement

address in the indexed instruction. The displacement is a "signed" binary value

of 8 bits that may be a positive or negative quantity. The effective address,

therefore, is largeror smaller than the address in the index register. The indexed

addressing mode is commonly used where the index register points to the

beginning or end of a table or list of data; the displacement in the instruction

can then be used to reference memory locations close to the address in the

index register.

Suppose, for example, we had a table of data at memory location 8000H. The

following code would load 8000H + 5 into the A register, and 8000H + 10

into the B register:

load index register with 8000H

load 8005H contents into A

load 800AH contents into B

One important addressing mode for our purposes is the relative addressing

mode. In this mode, the memory address is not present in the Instruction, as it

wasforthe jump or CALL, but is re/at;Ve to the location of the instruction itself.

A displacement value in the instruction is used by the CPU, along with the

contents of the program counter, to figure out the effective address for the

jump. For example, if we looked in the machine-language code for a "DJNZ"

instruction, we would not see a two-byte memory address, but a one-byte

displacement value. If the jump in the DJNZ was to be made back to location

8000H, and the DJNZ was at location 800AH, the displacement value would be

0F4H, a negative OCH or twelve (the program counter points to two more than

the start of the DJNZ instruction).

Relative addressing is important for our purposes because it makes relocatable

code possible—assembly-language code that can be moved around anywhere

in memory and still execute properly. The key to relocatability is to avoid direct

addresses within instructions, and relative jumps such as DJNZ and JRs are

used to advantage.

Bit addressing is another type of addressing mode. This mode is used only for

the bit-processing instructions. The bit position within a byte is referenced in

this mode, along with one of the other addressing modes we've mentioned

LD IY,8000H

LD A,(IY+5)

LD B,(IY+10)

above. To set bit6 in the memory location pointed to by the HL register pair, for

example, we'd have

BIT 6,(HL)
; set bit 6 in memory location

Bit positions in 8-bit bytes are numbered from left to right, bit 7 through bit 0.

Bit positions in 16-bit "words" are numbered from left to right also, bit 15

through bit 0. The bit position number represents the power of two associated

with the bit.

There are no hard and fast rules about which addressing type to use. Many
times the choice Is dictated by the instruction— not all addressing types are

permitted with every instruction.

Machine Code and Assembly Language

We talked briefly about machine code, but haven't really made a distinction

between machine and assembly code. The difference can be seen quite easily

by reference to a typical listing in this book.

Figure 1-3 shows a short listing for CHKSUM. The listing is divided into several

parts. Starting from the left, we have the memory locations, In hexadecimal, for

which the subroutine was assembled. The value for each line shows where the
instruction on the line will reside. The code always starts at location 7F00H. In

the case of subroutines in this book, these locations are meaningless, as the
code can be used not only at locations 7F00H, but 8CX)0H, 888FH, 9013H, or
any place in memory the user cares to put them. (More on that in Chapter 2.)

The next column is the actual machine code for the instruction in hexadecimal.
Two hexadecimal digits (0 through 9, A through F) make up one byte, so you
can see that the machine code is from two to six hexadecimal characters or one
to three bytes long. The maximum length of an instruction is four bytes, or eight

hexadecimal digits. Note that the memory location for the instruction in the
first column reflects the size of the previous instruction. If an instruction is three

bytes long and is located at 7F0BH, for example, the next memory location
will be three bytes greater, or 7F0EH.

The third column shows the editing line number for the instruction. The editing
line numbers are used only during the editing process and are never used
during program loading or execution.

The fourth, fifth, sixth, and seventh columns represent the assembly-language
code for the instructions. Sometimes this portion is called the "source image,"
because this is the portion that appears in the source file that is assembled.

The fifth column is the mnemonic for the Instruction operation code, or op-
code. We've been using mnemonics all along. They are just a shorthand way of

writing down the instruction in convenient and recognizable form. The opera-
tion code describes the primary function of the instruction, as, for example, an
"ADD."

10

FIGURE 1-3 Partial CHKSUM listing.

7F00

7F0i3 F5
7F01 C5
7F02 D5
7F03 DDE5
7F05 CD7F0A
7FB8 E5
7F09 DDEl
7F0B DD6E02
7F0E DD6603
7F11 DD5E00
7F14 DD5601
7F17 D5
7F18 DDE!
7F1A 010100
7F1D AF
7F1E DDS600
7F21 DD23
7F23 B7
7F24 ED42
7F26 20F6
7F28 6F
7F29 2600
7F2B DDEl
7F2D Dl
7F2E CI
7F2F Fl
7F30 C39A0A
7F33 C9
0000kk V
00000i TOTAL ERRORS

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470

SOURCE IMAGE

ORG 7F00H ;0522
|

******* *+t************* **^(.***^^*^(.*^(.*^n(.^(.#^^*#^n^^^#^n^^nnnnn(.
* CHECKSUM MEMORY. CHECKSUMS A BLOCK OF MEMORY. *
* input: HL=>PARAMETER BLOCK *
* PARAM+0,+1=:STARTING address OF BLOCK
* PARAM+2,+3=# OF BYTES IN BLOCK *
* OUTPUT:HL=ADDITIVE CHECKSUM *
*************************.)(.* ^^^(.*.«.^f.#^(.*^n(.*^f.*^(.^(.^^^^^^(.^(.^(.^f.^n^#^(.

CHKSUM

CHK010

JB TOTAL ERRORS V V
\

PUSH AF
PUSH BC
PUSH DE
PUSH IX

CALL 0A7FH
PUSH HL
POP IX
LD Li (IX+2)
LD H, (IX+3)
LD E, <IX+0)
LD D, (IX+l)
PUSH DE
POP IX
LD BCj 1

XOR A
ADD A» < IX+0)
INC IX
OR A
SBC HL»BC
JR IMZ,CHK010
LD LtA
LD H)0
POP IX
POP DE
POP BC
POP AF
JP 0A9AH
RET
END

OPCODE
\

OPERANDS

;SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER HL TO IX

;GET # OF BYTES

iGET STARTING ADDRESS

; TRANSFER TO IX

; DECREMENT VALUE
; CLEAR CHECKSUM

; CHECKSUM
;BUMP ADDRESS PNTR
; CLEAR CARRY
; DECREMENT COUNT
;G0 IF NOT DONE

IMOVE CHECKSUM TO HL

; RESTORE REGISTERS

:***RETURN STATUS***
1 NON-BASIC RETURN

COMMENTS

MEMORY
LOCATIONS

MACHINE
CODE

EDITING

LINE #
INSTRUCTION
LABEL

The sixth column is the operands column. The column is used to show which
operands will take part in the instruction. The instruction at CHK010, for exam-
ple, ADDs the location pointed to by the IX index register plus a displacement

of to the contents of the A register. The formats for the operands are relatively

fixed and can be found in other reference materials for Z-80 assembly lan-

guage.

The fourth column is the label of the instruction. This is an optional column,
but really delineates the difference between machine language and symbolic

assembly language. The label is used by the assembler program in lieu of a

memory address. The instruction at7F26H in figure 1-3, for example, refers not

to a jump address at 7F1 EH, but to a label of "CHK010." The assembler trans-

lated the label reference to the proper address in the instruction, in this case, a

relative displacement.

11

The last column on the listing is the comments column. This column contains
descriptive text about the use of the instruction. Note that we've indented the
comments column to show loops. Each level of loops is indented two spaces,
and there may be as many as three levels of loops. Also in the comments
column, we've marked certain instructions with asterisks. These represent in-

structions which may be ignored under "stand-alone" conditions when the
subroutine is not used with BASIC. This is explained fully in Chapter 2.

Additional Z-80 Assembly-Language Materials

As the title of this chapter indicated, we've briefly discussed Z-80 assembly
language. If you would like a more in-depth discussion of instruction formats,
addressing modes, and assembly-language techniques, we suggest you obtairi

the reference manual for the Zilog Z-80 microprocessor, or refer to the instruc-

tion manual for the Radio Shack Editor/Assembler, which reproduces much of
the same material. The author's Radio Shack book, "TRS-80 Assembly-
Language Programming," is also a good place to start.

In the next chapter we'll discuss some of the general techniques of using as-
sembly language, and specific details about the use of the subroutines in this

book.

12

Using Assembly
Language on the TRS-80s

In this chapter we'll look at some of the techniques involved in using assembly

language on the TRS-80 Models I, II, and ill, especially in regard to interfacing

the machine-language representation of assembly-language code with BASIC

programs.

Using the Model I and III Assemblers

There are a number of editor/assemblers for the Model I and III computers, and

they are very similar. All are modifications of the basic Radio Shack cassette-

based Editor/Assembler. The following description of the assembly process will

use the Radio Shack Editor/Assembler as a point of reference; material on disk

files will refer to the various modifications available for the Radio Shack Editor/

Assembler to enable it to read and write source and object files on'disk.

This material Is offered in case you wish to assemble some of the subroutines In

13

the book and modify them for your own use; let's stress once again that you
can use the subroutines in the book without ever touching an assembler.

Editing the Source File

The first step in assembly is to edit the source file. Let's use another short

subroutine as an example. The SQROOT subroutine is shown in figure 2-1 . To

start the edit, the assembler is loaded from cassette or disk. The SYSTEM com-
mand is used to load from cassette. Loading from disk simply involves entering

"EDTASM" followed by ENTER.

ORG 7F00H ;0322

;* SQUARE ROOT. CALCULATES INTEGER PORTION OF SQUARE *
;* ROOT OF A GIVEN NUMBER. #
;# INPUT: HL=NUf1BER
;* OUTPUT :HL= INTEGER PORTION OF SQUARE RT OF NUMBER *

SQROOT

SQR010

FIGURE 2-1

PUSH
PUSH
CALL
LD
LD
INC
ADD
DEC
DEC
JR
LD
LD
POP
POP
JP
RET
END
Sample

BC
DE
0A7FH
Bt0FFH
DE,-1
B
HLjDE

DE
CiSQR010
L.B
Hi0
DE

0A9AH

Source fiie for edit.

;SAVE REGISTERS

J***GET NUMBER***
; INITIALIZE RESULT
? FIRST ODD SUBTRAHEND

5 INCREMENT RESULT COUNT
; SUBTRACT ODD NUMBER
;find next odd number

; CONTINUE IF NOT MINUS
;GET RESULT
;NOW IN HL
? RESTORE REGISTERS

;#**RETURN ARGUMENT***
?N0N~BASIC RETURN

The "I" command is used to enter a new file. The "I" command is the insert

command, and is normally used to insert lines between existing lines in an edit

file. In this case, however, there are no existing lines and the "I" command
starts a new set of lines with the starting number TOO and line increment of 10.

The "source image" text of the subroutine can now be entered. Each line is

typed in its entirety and an ENTER is used to terminate a line. The first several

lines look like this:

*l

00100

00110

00120

ORG 7F00H ;0522

;* SQUARE ROOT. CALCULATES

The left arrow key can be used to backspace to correct errors in entry. Other

editing features are very similar to the BASIC line editor—such things as "I" for

line, "S" for search, and so forth. After the entire text has been .entered, the

BREAK is pressed. This terminates the insert mode and displays the greater than

prompt.

14

The source text is now in memory. The source text can be written out to cas-

sette by the command "W SQROOT." This command produces a source file

with the name SQROOT. A subsequent "L SQROOT" enables the source file

to be read in from cassette as a text file.

The source text can be written out to disk as a source file by the command
"WD SQROOT/SRC" ("W D=SQROOT/SRC" in some versions). If this is

done, the text will be transferred to disk as a source file and can be read in for

further editing at any time by a "LD SQROOT/SRC" (LD= SQROOT/SRC).

After the source file has been created on disk or cassette, it can be reloaded as

a check on its validity, or you can simply work with the text in memory,

Assembling the Source File

To assemble the SQROOT subroutine, type "A/NO/WE/NS" followed by

ENTER, The source file will now assemble and the listing will be displayed on

the screen. If there are any errors in the text, the Editor/Assembler will stop and

any key may be pressed to restart the assembly. At the end of the listing you'll

see a message that looks like this:

00000 TOTAL ERRORS,

indicating that there were no assembly errors. The "/X" entries were "switch

options" calling for "No Object," "Wait on Error," and "No Symbol Table

Listing."

What has been produced up to this point? The machine code was generated,

but it was simply part of the listing that was rapidly displayed on the screen. All

we've done to this point was to assemble and display the listing on the screen

to check for errors. If everything is all right, we can proceed. Otherwise, the

errors in the source file can be corrected, another assembly done, and the

process repeated until we get a "clean" assembly. Many errors will relate to

instruction format, and these can be corrected by reference to the Radio Shack

Editor/Assembler manual. There are also slight quirks in some of the assembler

versions—such things as "{lY+O)" not assembling and "(lY)" assembling prop-

erly. We can't detail all of these here. It's a shame they exist; try to workaround

them!

When we have a clean assembly, we can create an object file and save it on

disk. The object file is really a machine-language version of the program, with a

"header" for the disk file and other data pertinent to the load. Most of the

content on the disk file will be the actual machine-language code that you see

on the listing. To create the object file,. assemble without the "No Object"

switch, which is the default mode of the assembly. You may also assemble to

line printer, while you're at it:

*A/LP/NS

The Editor/Assembler version may ask for a "destination" (disk or tape) and for

a file name before the assembly. As we've used SQROOT/SRC for the source

15

Using the Model II Assembler

file, we might use SQROOT/OBJ for object. The assembly will proceed as

before, except that the object file will be written to cassette or disk.

Loading the Object File

At this point we have both the source file and object file on cassette or disk. The
source file is saved for possible modification. The object file can now be
loaded and executed. To load the object file from cassette, the SYSTEM mode is

used once again to load the file named at assembly time.

To load the object file from disk, we must first get back to the Disk Operating
System, and then use the LOAD command:

*B

DOS READY

LOAD SQROOT/OBJ

DOS READY

The object file is located by the LOAD command but it is not executed. It is just

as well, as we were not set up properly to execute the SQROOT program.
Where is SQROOT loaded? The ORG command establishes the starting point
for the program, which in all cases in this book is 7F00H. The ORG command
can be modified to make the load point compatible with your system; just put

in a new argument in place of 7F00H. If you want a square root subroutine at

OFOOOH ina48KModel I, for example, reassemble with "ORG OFOOOH." It may
also be necessary to protect the memory area in which the object program was
loaded by responding with one less than the ORG point when BASIC asks the

question "MEMORY SIZE?".

Now that we have the program loaded, what do we do with It? We'll answer
that question in the last part of the chapter in which we'll show you an easier
way to work with the subroutines in this book when they are interfaced to

BASIC.

The edit, assembly, and load process is similar for the Model II. The Model II,

however, uses the Radio Shack Disk Assembler, which is a more sophisticated

editor/assembler. There is also a version of the Radio Shack Disk Assembler
available for the Model I and III. Use of this assembler is beyond the scope of

this book. The author's Radio Shack book "More TRS-80 Assembly-Language
Programming," goes into some detail on the Disk Assembler.

Keying In the Object Code Directly

The assembly process can be bypassed completely by working with the object

code alone and T-BUG (Radio Shack's Debug package for cassette-based sys-

tems) or DEBUG (Radio Shack's Disk Debug Package). A DEBUG utility is also

present on the Model II system. The result can be saved on cassette or as a disk

"core image" file. Let's see how this can be done by using the DEBUG program
on a disk-based system.

16

t
I

I

I
I

K

The modify memory command "M" in DEBUG can be used to enter the data

one byte at a time. The format of the M command Is "MHHHH space," where

HHHH is the hexadecimal address for the start of the memory area. Choose

any memory area that is nonconflicting with TRSDOS or BASIC and in which

you'd like the subroutine to reside. Now go to the listing and key in each byte

in hexadecimal, following each byte with a space, and the last byte with an

ENTER. The process is shown in figure 2-2, where a portion of SQROOT has

been keyed into the memory area starting at 9000H.

FIGURE 2-2 Keying in object code using DEBUG.

RF =2 SB 08 — -

—

I——
BC a= 0FI 53 :=> B7 CR 55 09 21 5E 09 E5 CD 55 09 IB IR 4F ce 21

DE .7i 01 04 =) IR 4D 45 4D 4F 52 59 20 53 49 5R 45 00 52 41 44
HL nr. 00 54 =) 01 01 58 IB 0R IR 0© 13 09 19 20 20 ©B "?0

r o Bl 20
RF-' = FF FF IHIPHC
BC = 51 5B =) C4 CF 51 10 DE CI C9 ED 58 60 40 13 E5 RF ED 52
DE^ == 02 02 a: >-

HL' i:: 51 00 as '^1 CG 02 FF CB 02 F7 10 E7 20 -^'^f 01 C7 43 04 F7
IX M 40 15 ==;;; 01 9C 43 20 30 00 4E 49 07 53 04 31 3E 20 44 4F
IV s: 00 00 =:) F3 RF 03 74 06 C3 00 40 C3 00 40 El E9 C3 9F 06
SP :::: 41 CR .^.y 52 04 C3 4B DD' 03 15 40 FP FF 18 43 3F 3F 4C ©0
PC = 00 60 w> 08 78 Bl 20 FB C9 31 00 06 3R EC 37 3C FE 02 D2

9000 •X ; |C5 D5 CD 7F 0R 06 20 70
1 t^H 65 70 65 61 74 65 64 2©

3m€r" 901© ^; 7cr
1 -1 GE 74 69 6CA2© 77 €5 20 67 65 74 20 61 20 22

r::9-"FF 3928 63 GC 65 61 6E fH^.'hL. 20 61 73 73 65 6C' 62 6C 79 2E
»^ 9030 :=:;: 20 4D 61 6E 79 20 65 72 1 tl. 6F 72 T*'*^' 20 77 69 6C

\
1

SIX BYTES KEYED IN

NEXT BYTE FOR 9006H AT 9000H-9005H

The machine code values shown on the listings do not have to be modified

unless the subroutine will not be used in conjunction with BASIC. In this case,

substitute the OOH code (a "NOP" instruction) for each byte of the starred

instructions. The hexadecimal machine code is relocatable and can be used

anywhere in memory.

After the data has been keyed in, perform a "C66" to reboot TRSDOS and

dump the memory area by a "DUMP"- command as follows:

DUMP (START=X'SSSS',END=X'EEEE')

where SSSS is the starting address in hexadecimal and EEEE is the ending ad-

dress in hexadecimal.

The memory image will now be written out as a "core image module" with

the file extension "/CIM." It can be loaded by the TRSDOS LOAD command in

the same fashion as the assembly object file.

Using Assembly Language with Model I and III BASIC

There are two general approaches to using assembly-language code with

BASIC. The first of these uses two modules, an object code module and a

BASIC program module loaded at separate times. The second method embeds

the machine-language code in BASIC statements which then become part of

the BASIC program.

17

The "Two-Module" Approach

Let's look at the ''two module" approach first. In this approach, the object
program from assembly or debug dump Is loaded first with TRSDOS. Then the
BASIC interpreter is loaded and the memory area in which the object program
was loaded is protected with the "MEMORY SIZE? " response. Now the BASIC
program can call the assembly-language subroutine at will.

How the BASIC program calls the machine code is slightly different between
Level II BASIC and Disk BASIC. Level II requires that the address of the machine
code be put into locations 16526 and 16527. All addresses in the Z-80 are
stored, least significant byte followed by most significant byte; so a typical
sequence to establish the call address for Level II BASIC might be as follows for
a machine-language program at 7F00H:

100 POKE 16526,0 'least significant byte

110 POKE 16527,127 'most significant byte

In Disk BASIC on the Model I or III, the call address is established in simpler
fashion. The address of the machine-language subroutine is assigned a number
from to 9. A DEFUSR statement is then used to establish the address:

100 DEFUSR0=&H7F0O

where &H is the prefix for hexadecimal.

Once the address is established, the machine-language subroutine can be
called by a BASIC USR statement of the form A= USR(M) for Level II or
A= USRn(M) for Disk BASIC. The n in the Disk BASIC version stands for the id

number from through 9. The M is an integer argument that can be automati-
cally passed to the machine-language subroutine. The A is an integer argument
that is passed back from the machine-language subroutine. Either or both of
these arguments can be "dummies" if no arguments need to be passed.

To see how the complete sequence works, let's call the SQROOT subroutine.
Assume that it has been loaded at 7F00H and BASIC has protected memory by
a "MEMORY SIZE? 3251 1

." We see from the listing that the SQROOT subrou-
tine takes a 16-bit number and computes the integer square root, passing the
argument back in HL The following code would set up the call address in Level
II BASIC, make the call, and return the result for printing:

100 POKE 16526,0 'least significant byte

110 POKE 16527,127 'most significant byte

120 INPUT X% 'input square

130 Y=USR(X%) 'call machine lang SQROOT
140 PRINT X%,Y 'print square, root

The sequence for Disk BASIC would be similar:

100 DEFUSR0=&H7F00 'address

110 INPUT W% 'input square

18

120 Z= USRO(W%) 'call machine lang SQROOT
130 PRINT W%,Z 'print square, root

In both cases, the argument passed to the SQROOT subroutine was the integer

variable in the USR call. The argument passed back was the variable equated to

the USR call.

In some subroutines, no arguments are required, or only one argument is

needed. In these cases either a dummy argument, such as 0, may be used, or a

variable that is not used elsewhere may be used. The SCDOWN subroutine, for

example, scrolls the screen down one line and requires no input or output

arguments. The call (assuming that the address has been set up) would be:

200 A=USRO(0) 'scroll screen down

and the A variable would be Ignored.

Embedding Machine Language in BASIC

The second method for interfacing BASIC and assembly language is to embed
the machine-language code in BASIC. There are a number of methods for

doing this.

Taking the example of the SQROOT subroutine, let's look at one method that

uses DATA values. The decimal values for the machine-language code of

SQROOT is placed into a DATA statement:

100 DATA 197,213,205,127,10,6,255,17,255,255,4,25,27

110 DATA 27,56,250,104,38,0,209,193,195,154,10,201

The DATA values are then moved to a known area of memory on the first pass

through the BASIC code. Let's use 7F00H again:

120 FOR 1 = TO 24 'loop

130 READ A 'read DATA value

140 POKE 15212-FI,A 'store value

150 NEXT I 'loop 25 times

After the loop is done, the DATA values have been moved to the 7F00H area,

and the machine-language code can be called in the usual fashion after setting

up the address in 16526,16527 or with a DEFUSRn statement. This procedure

will work with all of the subroutines in this book.

Is there a way to avoid using a predefined area, a way to make the procedure

more automatic? Yes, with qualifications. Machine-language code can be em-
bedded in strings, arrays, and even BASIC statements, but there may be some
problems with this method. Again taking the SQROOT subroutine as an exam-

ple, let's construct a string of machine-language values and then call the string.

We can set up the string by;

100 A$=CHR$(197)-FCHR$(213)-FCHR$(205). . . . +CHR$(201)

19

One statement can be used if the number of characters in the line does not ex-
ceed the maximum line length of 255 characters. If there is not enough room in

one line, two strings can be established and the two can then be concatenated
into a third.

Where is the machine-language code in this case? It's somewhere in the string

variable region at the top of memory. We can find out where it is by using the
VARPTR function. The VARPTR function will return the location of the string

parameter block. The string parameter block holds the length of the string and
the string address as shown in figure 2-3. We can then put the string address
into locations 16526, 16527 or use it in a DEFUSRn statement. A sample call of
SQROOT using this technique is shown here:

100 A$=CHR$(197)+CHR$(213)+CHR$(205)+
. . . +CHR$(201)

110 B = VARPTR(A$) 'get string parameter block location

120 POKE 16526,PEEK(B+1)

130 POKE 16527,PEEK(B+2)

MO A=USR(M)

where M is the square and A is the square root returned.

For Disk BASIC, the sequence would be similar:

100 A$=CHR$(197)+CHR$(213)+CHR${205)+
. . . +CHR$(201)

110 B=VARPTR(A$)

120 C= PEEK{B-I- 1)+ PEEK(B+ 2}*256

130 IF 032767 THEN C=C-65536
140 DEFUSRO=C

150 A=USRO(M)

B=VARPTR {A$)

B POINTS TO

LENGTH OF STRING

STRING ADDRESS

LSB, MSB FORMAT

STRING ADDRESS
POINTS TO . . .

'STRING EXAMPLE"

FIGURE 2-3 String parameter block format.

The IF . . . THEN statement is necessary because of a quirk of BASIC. It does
not handle addresses well as integer arguments, and the subterfuge above is

necessary to "fool" the interpreter into thinking that the 16-bit memory address

is a signed integer value.

20

Passing Multiple Arguments

Now, there's one strong bit of advice that we must give. If you use the above

method, be aware that everything in BASIC moves! Any time that BASIC en-

counters a new variable, a new array, or computes a new string, variables are

readjusted. Periodically, string variables are "cleaned up," and this is done at

unpredictable times. Therefore, when using the VARPTR to find the address of

a string, do so only directly before the USR call, and make certain that no new
variables are introduced in the call.

There are other methods similar to the above for embedding machine language

in BASIC code. They all rely on using VARPTR to find the location of a string or

array. The string could be a dummy string in a program statement, for example.

The string

100 A$=''THIS IS A DUMMY STRING!!!"

has 25 characters and can accommodate the 25 bytes of the SQROOT subrou-

tine. Another advantage of this approach is that in this case the string is at a

fixed location in memory—as long as the program statements do not change

(no edits allowed). The machine-language values can be picked up from DATA
statements and stored in the dummy string, and a VARPTR could then be used

to find the dummy string location.

Another method is to establish a large array by a statement similar to DIM
AA(IOO). DATA values can now be stored in the array and a VARPTR done with

the first element of the array to find the start of the contiguous area for the array.

(Don't try this on string arrays!)

100 B=VARPTR(AA{0))

Here again, do not introduce any new variables after finding the VARPTR ad-

dress or the address will be Incorrect. (New variables are placed before the

array areas and the array areas are moved down!)

In the subroutines that follow we will assume that they are located In 7F00H. If

you wish to use one of the methods described above to embed the machine-

language code in your programs, that is perfectly feasible as long as you follow

the rules. However, be careful of variables that move and things that go bump in

the RAM!

In many of the subroutines in this book, it's necessary to pass more than one

argument to the subroutine and back from the subroutine. Take the MOVEBL,
or Move Block, subroutine. MOVEBL moves a block of memory from one area

of memory to another area of memory. Three parameters are involved—the

address of the existing block (the ''source" address), the address of the "desti-

nation," and the number of bytes to move. All are 16-bit values.

The USR calling sequence allows only one 16-bit value to be passed. JHow do

we pass three 16-bit addresses? The way we have established as a standard for

the subroutines in this book is to pass the address of a "parameter block." The

21

parameter block holds the necessary parameters in a predefined order. The

parameter block may be anywhere in memory, either at a fixed location or in a

string or array. As an example, assume that the MOVEBL subroutine is located

at FF06H. The parameter block could be six bytes before, starting at OFOOOH,

and we'd have this Disk BASIC calling sequence:

100 DEFUSR0=&HF006 'address of subroutine

110 POKE 61440-65536,0 'source address=8000H

120 POKE 61441-65536,128

130 POKE 61442-65536,0 'destination address=9000H

140 POKE 61443-65536,144

150 POKE 61444-65536,0 '256 bytes

160 POKE 61445-65536,1

170 A=USR0{61440-65536) 'move block

In this BASIC code, we first defined the address of the subroutine as 0F006H by

the DEFUSRO. Next we POKEed the source address into OFOOOH and OFOOl H,

least significant byte followed by most significant byte (0,128 becomes

128*256+0=8000H). Then we POKEed the destination address into 0F002H

and 0FO03H (0,144 becomes 144*256+0=9000H). Next, we POKEed the num-

ber of bytes into 0F004H and 0F005H (0,1 becomes 1*256+0=256). Finally, we

called the subroutine by the USRO call with the input argument equal to the

start of the parameter block at 61440 (OFOOOH). Note that we had to use the trick

of subtracting 65,536 from the addresses in order to use the POKE and USR

statement with BASIC integer values.

Alternatively, you could put the arguments in a dummy CHR$ string or dummy
string and use VARPTR to find the string address, or you could put the argu-

ments in an array and use VARPTR to find the first element of the array. (Just

follow the rules, and make certain that no new variables are introduced after

the VARPTR finds the address!)

Using Assembly Language on the Model II

The general approach for the Model 11 is virtually identical to that used on the

Models i and III. The calling sequence uses the DEFUSRn and USRn formats of

Model I/Ill Disk BASIC. The major difference Is in the Model ll's approach to

passing arguments to the machine-language subroutine and back to the BASIC
program.

Two system subroutines, FRCINT and MAKINT, are used in place of the ma-

chine-language code in place of ROM subroutines at 0A7FH andOAQAH. If you

are using these subroutines on a Model II together with a BASIC program, you

may reassemble with the calling sequence given in the Model II BASIC refer-

ence manual. The two calling sequences would be substituted in place of the

"starred" "CALL 0A7FH" or "JP 0A9AH." If you are not using a BASIC pro-

gram, then many of the subroutines in this book may be used "stand alone" by
replacing the starred instruction bytes with zeroes (NOPs).

22

How to Use the Subroutines in This Book

Now we come to the most important part of these two chapters—how do we
use the subroutines in this book?

To use any of the 65 subroutines, follow this procedure:

1

.

Read the description of the subroutine. See if it can be used on your system.

Note what parameters are involved and how large {8 or 16 bits) each one is.

2. If the subroutine is to be used without BASIC and called from your own
assembly-language code (including Model II code), reassemble the subroutine

to create your own source file, or create a machine-language core image mod-

ule using T-BUG or BASIC. Put a OOH byte in every instruction byte that is

mar/fed with asterisl<s. This NOPs the calls to BASIC ROM routines that pass

parameters. {On reassemblies, leave out these instructions.)

3. If the subroutine is to be embedded in BASIC, put the decimal values into

DATA statements, and write the BASIC code to move the subroutine to a fixed

area or variable area as outlined above.

4. Call the subroutine from BASIC or your own assembly-language code with

the proper number of arguments. The subroutine may require no arguments, in

which case dummy arguments would be used tn BASIC. The subroutine may
require one input argument, In which case the USRn call would specif/ a single

integer argument. The subroutine may require one output argument, in which

case the USRn call would specify a dummy input argument with a valid output

argument. The subroutine may require multiple arguments, in which case the

USRn call would specify the address of the parameter block containing the argu-

ments. In assembly-language calls, the arguments are also held in a parameter

block pointed to by the HL register pair.

Here are some additional rules:

1. For assembly-language calls only: HL contains the single argument on
input, the single output argument, or the address of the parameter block.

2. For assembly-language calls only: Most subroutines save all registers. The
ones that do not are clearly denoted.

3. For assembly-language calls only: The stack pointer is assumed initialized

before the call.

4. All subroutines have relocatable code.

5. All listings have been assembled at 7F00H. The ORG point must be

changed if you are reassembling at a specific area for a "two module" load. If

you are using only the machine code, it is correct as it stands.

6. Certain assemblers have minor bugs in instruction formats; instructions

may not assemble properly. The assembler used in these subroutines corrects

some of the assembly errors. If your assembler does not assemble the source

code as listed, your assembler may be flawed!

7. Error checking in these subroutines is minimal. In other words, it may be
easy to blow up the system with improper arguments. This was done to keep
the subroutines short. Checks should be made for proper arguments before

calling the subroutine.

23

TALSEX: TRS-80 Assembly-Language

Subroutines Exerciser Program

8. Every effort was made to keep the subroutines relocatable. Some of the

resulting code may not be good programming practice in nonrelocatable code.

So be it.

9. We have purposely stayed away from ROM subroutine calls because of the

possibility of ROM changes. Those ROM calls that are used are clearly marked.

10. Tables have generally been avoided because of relocatability problems

resulting in linear code. Here again, this may not be code to emulate in non-

relocatable environments.

11. Nested subroutines within the subroutines have been avoided because

of relocatability problems resulting in linear code. Again, this was done for

relocatability.

12. Names of subroutines and labels are nonconflicting. You may assemble

all subroutines together en masse without fear of duplicate labels on assembly.

13. All loops are indented in the comments column. Each level of loop is

indented two spaces. Block moves and compares are essentially loops and are

indented.

Figure 2-4 shows the complete listing of TALSEX. It is a Model I/Ill Disk BASIC

program that we have used to exercise (and hopefully exorcise) all of the sub-

routines in this book. You will probably not want to use TALSEX, but we'll

describe how it works in case some of the code is helpful in your BASIC inter-

facing. All of the sample calls for the subroutines are the output of one test

case of TALSEX.

TALSEX first asks for the name of the subroutine. The name is then displayed on
the screen and printed on the system printer. Next, TALSEX asks for the value to

be put into HL. If no argument is required, ENTER may be pressed, otherwise

the argument value is entered.

Next, the parameter block location is entered. This may be any area in free

memory, if multiple arguments are being used in the subroutine, the HL value

corresponds to the parameter block location. The values to be put into the pa-

rameter block are then input in the form N,V. (N is 0, 1 , or 2.) If N is 1 , the

following value V will be 8 bits long. If N is 2, the following value Vwill be 16

bits long. An input of 0,0 terminates the input.

Next, TALSEX asks for a memory block location. If the subroutine uses a mem-
ory block, this value is input, otherwise ENTER is pressed. Values are then

entered into the memory block as required. The memory block may be any-

where in free memory. A 0,0 input terminates the operation. A second memory
block location may then be input, and values stored in this block.

Now, TALSEX asks for a location at which the assembly-language subroutine

should be located. TALSEX assumes that the subroutine is currently in memory
at 7F00H (from a LOAD operation in DOS). When this value isjnput, TALSEX
moves the subroutine from the 7F00H area to the specified memory area to test

relocatability.

24

The subroutine is tinen called with HL containing the specified value, and the

parameter block and two memory blocks containing the specified data.

On return, the input and output values for HL, the parameter block, and the
memory blocks are displayed and printed.

1000
1005
1010
1B1!5

1017
1020
1030
1040
1050
1055
1060
1070
1080
1085
1090
1100
1200
1220
1230
1235
1240
1250
1260
1270
12B0
1285
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1395
1400
1410
1412
1415
1417
1418
1420
1430
1440
1460
1480
1485
1490
1500

1510
1520
10000
10005

NEXT I

PRINT A*; : L.PRINT A

LPRINT A*;"? "

;

$; " 7

FIGURE 2-4 TALSEX listing.

CLB: PRINT "TRS-80 ASSEMBLY LANGUAGE SUBROUTINES EXERCISER'
DIM 10(49)
PRINT: PRINT: LPRINT: LPRINT
HL=70000: PB~70000s Ml~70000: M2=70000 : ZI~0
FOR 1=0 TO 49: I0(I)=-l

:

A$="NAME OF SUBROUTINE":
INPUT A*: LPRINT A*
A$="HL VALUE": PRINT A$?
A$="": INPUT A*: LPRINT A$
IF A$="" GOTO 1070
HL=VAL<A$): IF HL>32767 THEN HL=HL~65536
A*=" PARAMETER BLOCK LOCATION
A*="": INPUT A$: LPRINT A$
IF A*="" GOTO 1220
PB=VAL<A*): IF PB>32767 THEN PB=PB-65536
A*=" PARAMETER BLOCK VALUES?
2A=HLi GOSUB 10000
A*=" MEMORY BLOCK 1 LOCATION
A$="": INPUT A$: LPRINT A$
IF A$="" GOTO 1320
M1=VAL(A*): IF Ml>32767 THEN M1=M1~65536

PRINT A*?: LPRINT A$;
"

?

PRINT A$: LPRINT A*

PRINT A$;: LPRINT A*;"?

PRINT A*: LPRINT A$

PRINT A$!: LPRINT A*;"?

PRINT A*: LPRINT A*

A$="MEMORY BLOCK 1 VALUES?":
ZA=Ml: GOSUB 10000
A$="MEMORY BLOCK 2 LOCATION"
A$="": INPUT A!t: LPRINT A*
IF A*="" GOTO 1320
M2-VAL<A*): IF M2>32767 THEN M2=M2-65536
A$="MEMORY BLOCK 2 VALUES?":
ZA=M2: GOSUB 10000
A*="MOVE SUBROUTINE TO": PRINT A*: LPRINT A$; '">

INPUT A*: LPRINT A*
SL=VALCA*): IF SL>32767 THEN SL=SL-65536
FOR 1=32512 TO 32767
POKE (SL+ 1 -325 12), PEEK < I

)

NEXT I

DEFUSR0=SL
H1=USR0<HL)
IF SL<0 THEN SL=SL+65536
A*=" SUBROUTINE EXECUTED AT
A*= " I NPUT

:

OUT PUT

:

2I==0

IF HL=70000 GOTO 1520
IF HL<0 THEN HL=HL+65536
IF HK0 THEN Hl=Hl+65536
A$="HL=": PRINT A$;HLiA$;Hl
IF PB=70000 GOTO 1480
A$="PARAM" ! ZA=PB
GOSUB 12000
IF Ml=70000 GOTO 1520
A*="MEMB1": ZA=M1
GOSUB 12000
IF M2=70000 GOTO 1520
A$=="MEMe2": ZA:==M2

GOSUB 12000
GOTO 1010
'SUBROUTINE TO INPUT, LIST, PRINT
'ENTER WITH ZA=MEMORY BLOCK START

PRINT A$;SL: LPRINT A$!SL
PRINT A*: LPRINT A*

LPRINT A*?HL,A*;H1

AND STORE VALUES

25

10008 ZN=ZA
10010 PRINT"-i-" ;2N-ZA; :LPRINT " + "; 2N~ZA? : INPUT lLi2\fi LPRINT ZL ? ZV
10020 IF ZL=0 GOTO 10060
10030 POKE ZNjZV"-INT(ZV/256)*256: I0<

Z

I

)

-ZV-INT < ZV/256) *256
10040 IF ZL.=2 THEN POKE ZN+l » INT< ZV/256) : I0(ZI+1) =INT(ZV/256)
10050 ZN=-'ZN+ZL; ZI=:=ZI+ZL
10055 GOTO 10010
10060 I0(ZI)=^-l: ZI=2I + 1

10070 RETURN
12000 'SUBROUTINE TO OUTPUT VALUES FROM PARAMETER BLOCK
12010 'OR MEMORY BLOCK
12020 'ENTER WITH A*=TITLEi ZA=BLOCK START» ZI=IO{) INDEX
12030 IH^^
12040 ZB=IO(ZI): IF ZB=-1 GOTO 12090
12045 IF 2N<10 THEN ZN*=STR*(ZN)+" " ELSE ZN*=STR*(ZN)
12050 PRINT A$;"+" ?ZN*;ZejA*;"+" !ZN*;PEEK(ZA+ZN)
12060 LPRINT A*; "+" ; ZN$; ZB» A*; "+" ; 2N*; PEEK(ZA+ZN)
12070 ZN=ZN+l: ZI=ZI+1: GOTO 12040
12090 2I=ZI+i: RETURN

What to Do if You Have Trouble

Source Programs on Disk

Every effort has been made to thoroughly check out and debug the subroutines

in this book. If you find errors, follow this procedure:

1. If you are not using the subroutines exactly as listed, please thoroughly

check out your modifications. We simply can't be responsible for your changes—

there's too much chance for error. We will be responsible, however, for use of the

subroutine exactly as listed in the book.

2. Verify that the subroutine checksums to the proper value as shown in the

description. To do this, use the CHKSUM subroutine in the book, and check-

sum the subroutine in question from start to end address. The checksum must

compare to that given in the book. If it does not, you have entered the data

incorrectly.

3. Verify that the calling sequence and parameter values are proper. List the

parameters directly before the call and see that they are within the limits im-

posed by the subroutine. If they are not, the subroutine may indeed not work

properly or may cause the system to crash. We can't be responsible for these

cases.

4. If you have done all of the above and feel there is still an error in the sub-

routine, then fill out the following reporting form and send it to the author at:

P.O. Box 3568

Mission Viejo, CA 92692

Your time and trouble are appreciated and the problem will be corrected for the

next edition of this book.

A set of diskettes containing all source programs is available from the author.

For information, please send a self-addressed, stamped envelope to the above
address.

26

TRS-80 Assembly-Language Subroutines

Error Reporting Form

1. Subroutine name:

2. I am using the identical code as shown in the book: Yes No

3. I have checksummed the data: Yes No

4. Location of subroutine in memory:

5. I am using the subroutine embedded in BASIC: Yes No

6. I am using the subroutine as a stand-alone program (not embedded in

BASIC): Yes No

7. System: Model I Model II Model III

8. Operating system;

9. Assembler (if applicable):

10. Input parameters:

11. Output parameters:

27

12. Complete description of error (please attach BASIC listing, assembly list-

ing, or any other data you find pertinent):

13. Name:

14. Address:

Thanks for your time and trouble!

Mail to: William Barden Jr., P.O. Box 3568, Mission Viejo, CA 92692

28

TRS-80 ASSEMBLY
LANGUAGE
SUBROUTINES

29

ABXBIN: ASCII BINARY TO BINARY CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

ABXBIN converts a string of ASCII characters representing ones and zeroes to a

16-bit binary number. Each character in the string is assumed to be either an
ASCI! one (30H) or an ASCII zero (31 H). The string may be from zero to 16 bytes

long, but is terminated with a byte of all zeroes.

Input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of through 65,535.

31

INPUT OUTPUT

POINTER TO MEMI+O
1

4>

^ + ^

RESULT, 0-65535

MEM 1+0

+ 1

+2

+3

- ASCII
STRING
OF"0"
AND'T*

+4
'

+5
'

+6
-

r
LAST

p

MEM1-H3
-

+ 1

+2

> +3
- UNCHANGED --

+4
-

+5
.

+6
J- 4,

T
LAST UNCHANGED

Aigonlhm

A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is

first tested for a null, which marks the end of the string. If a null is found, the

conversion is over.

If the character is not a null, it is assumed to be either an ASCII zero (30H) or

one {31 H). A value of 30H is subtracted from the character to yield a binary

value of 00000000 or 00000001. This value is then added to the result in IX.

Effectively, this merges the current or 1 bit into the least significant bit posi-

tion of the IX register. As the IX register Is added to itself to cause a "shift left"

one bit position at the start of each iteration of the loop, successive and 1 bits

move toward the left of the result. The value in IX at the end of the string

represents the converted binary value.

Note that the shift is done after the test for null; this ensures that the last binary

or 1 remains in the least significant bit of IX.

If the ASCII string was 30H, 31 H, 31 H, 30H, 31 H,OOH, the result in IX would be

0000000000001101.

Sample Calling Sequence

NAME OF SUBROUTINE? ABXBIN
HL VALUE? 40000
PARAMETER BLOCK LOCATION?
MEMORY BLOCK I LOCATION? 40000
MEMORY BLOCK 1 VALUES?
4

-t-

+

+

49
49
49
48
49
49

TERMINATOR

111011 IN ASCII

32

-t 7
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 3B000
input: OUTPUT:
HL= 40000 HL= 59 RESULT
MEMB1+ 49 MEMB1+ 49

~

MEMB1+ i 49 MEMB1+ i 49
MEMB1+ 2 49 MEMB1+ 2 49
MEMB1+ 3 48 MEMBI+ 3 48 -UNCHANGED
MEMB1+ 4 49 MEMB1+ 4 49
MEMB1+ 5 49 MEMBI+ 5 49
MEMB1+ 6 MEMB1+ 6 ..

NAME OF SUBROUTINE?

Notes

1. If the string of ASCII characters is longer than 16 bytes, ABXBIN will return

a result that represents the last 16 characters of the string.

2. If any character in the string is not a 30H or 31 H, ABXBIN will return an

invalid result; no check is made of the validity of the ASCII characters.

Program Listing

7F00

7F00
7F01
7F02
7F04
7F07
7F0B
7F0D
7F0E
7F0F
7FU
/F13
7F15
7F16
7Fie
7F19
7F1B
7F1D
7FiE
7F20
7F21
7F22
7F25
0000
00000

F5
D5
DDES
CD7F0A
DD2 10000
1600
7E
B7
2B0A
DD29
D630
5F
DD19

18F2
DDE5
El
DDEl
Dl
Ft
C39A0A
C9

TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
004^1^0

ERRORS

ORG 7F00H ?0522

* ASCII BINARY TO BINARY CONVERSION, CONVERTS A STRING *
* OF ASCII CHARACTERS REPRESENTING ZEROES AND ONES TO *
* BINARY. *
* INPUT: HL=> STRING OF CHARACTERS, TERMINATED BY *
* NULL CHARACTER. *

* OUTPUT:HL=BINARY NUMBER FROM ~ 65535 *
#**«*#*«****

ABXBIN

ABX010

ABX020

PUSH
PUSH
PUSH
CALL
LD
LD
LD
OR
JR
ADD
SUB

ADD
INC
JR
PUSH
POP
POP
POP
POP
JP
RET
END

AF
DE
IX
0A7FH
1X50
D>0
A) (HL>
A
Z,ABX020
IX, IX
30H
EiA
IX, DE
HL
ABX010
IX
HL
IX

DE
AF
0A9AH

;SAVE REGISTERS

;***GET STRING LOC'N**#
; CLEAR RESULT REGISTER
?FOR LOOP

;GET NEXT ASCII CHAR
;TEST FOR NULL (END)
;G0 IF END
; SHI FT LEFT ONE
! CONVERT ASCII TO OR 1

;now in E
;MERGE WITH PREVIOUS
? POINT TO NEXT CHARACTER
•,LOOP MIL END

; TRANSFER RESULT
; RESULT NOW IN HL
; RESTORE REGISTERS

;***RETURN ARGUMENT***
? NON-BASIC RETURN

33

ABXeiN DECIMAL VALUES

245) 213) 221) 229) 205) i27» 10» 221» 33i (

0) 22) 0) 126) 183) 40) 10) 221) 41) 214.
48) 95) 221, 25) 35j 24i 242, 221) 229) 225'
221) 225, 209) 241) 195) 154, 10) 201

CHKSUM= 62

ADEBCD: ASCII DECIMAL TO BCD CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

ADEBCD converts a string of ASCII characters representing ones and zeroes to

a string of bed digits. Each character in the ASCII string Is assumed to be either

a valid ASCII character in the range of (30H) through 9 (39H). The ASCII string

may be from zero to any number of bytes long, but is terminated with a byte of

all zeroes. The result string of bed digits consists of two bed digits per byte, with

a terminator of a "nibble" of ones.

input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the ASCII string in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes of the parameter block contain the address of the

result string in the same format.

On output, the parameter block and ASCII string are unchanged. The result

string contains a bed digit in one nibble (4 bits) for each byte in the ASCII string

and a final nibble of ones.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

+2

+3

POINTER TO
ASCII STRING
(MEM 1+0)

POINTER TO
RESULT STRING

(MEM2+0) ^

OUTPUT

H L
1

UNCHANGED

M+0

+ 1

- UNCHANGED -

+2

+3
- UNCHANGED -

34

MEM 1+0 MEM 1+0

+ 1 + 1

- - ASCII - - - -

+2 STRING +2
- ~ - \ - UNCHANGED - -

+3
. . —7> "^

+4 +4
- - - - -

+5 +5
- - - - . .

+6 +6
i ;

LAST

; ;
,

LAST —

MEM2+0
]

MEM2+0
- - - - . „

+ 1 + 1

- - RESERVED - i- BCD 1-

+2 FOR +2 RESULT
- RESULT

STRING
^ K STRING -

+3 > +3
- /

+4 +4
- - - - _ _ „

+5 +5
- - - 1. - _ ,_

+6 +6
. - , ,

LAST

1

(or1111 0000 xxxx 1111)

Algorithm

The ADEBCD subroutine performs one conversion for each ASCII digit. The

ASCII string address and result string addresses are first picked up from the

parameter block and put into DE and HL, respectively.

The next ASCII character is then picked up from the ASCII string. A test is made
for all zeroes. If the character is all zeroes a jump is made to ADE020.

A value of 30H is subtracted from the ASCII character to convert it to a bed

value ofO through 9. An RLD is then done to rotate the least significant four bits

of A into the result nibble. The ASCII address in DE is then incremented by one,

and the next ASCII character is picked up, converted, and stored. The ASCII

string pointer is again incremented to point to the next byte. The result pointer

in HL is then incremented to point to the next bed byte. A loop is then made
back to ADEOIO.

The final action is to store all ones at the next bed nibble position by either an

RRD or RLD, depending upon the current bed digit position.

The RRD instruction shifts the least significant four bits of the A register and the

memory location pointed to by HL in a four-bit bed shift to the right. The RLD
shifts left four bits in similar fashion.

If the ASCII string was 34H, 35H, 36H, 37H, 35H, OOH, the result in the bed

string would be 45H, 67H, 5EH.

35

Sample Calling Sequence

NAME OF SUBROUTINE? ADEBCD
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

POINTS TO ASCII STRING
POINTS TO RESULTSTRING

LOCATION?
VALUES?

47777

+02 47777+22 488B8
+ 400
MEMORY BLOCK 1

MEMORY BLOCK 1

+ 1 49"
+ 1 1 57
+ 2 1 50 h 192 IN ASCII
-^ 3 1

+ 400 TERMINATOR
MEMORY BLOCK 2 LOCATION? 48S8S
MEMORY BLOCK 2 VALUES?
+ 010
+ 110 -CLEAR RESULT FOR EXAMPLE
4 2 _

MOVE SUBROUTINE TO? 45555
SUBROUTINE EXECUTED AT 45555
INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMBi+
MEMB2+
MEMB2+

161
186
248
190
49
57
50

OUTPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB2+
MEMB2+

161"

186
248
190
49
57
50

25
47

-UNCHANGED

} 192FH = BCD 192

NAME OF SUBROUTINE?

Notes

1. An invalid result will occur if the ASCII string contains invalid ASCII deci-

mal digits.

2. The terminator of all ones in the result string will be in the left-hand nibble

of the result string byte (with garbage in the right-hand byte) for an even num-
ber of bed digits, and in the right-hand nibble of the result string byte (preceded
by the last bed digit) for an odd number of bed digits.

Program Listing

7F00 00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220

ORG 7F00H ;0522

* ASCII DECIMAL TO BCD CONVERSION. CONVERTS A STRING *
OF ASCII CHARACTERS REPRESENTING DECIMAL DIGITS TO
TO BINARY-CODED-DECIMAL.

"

INPUT: HL=> PARAMETER BLOCK I

PARAM+0,+l=LOCATION OF STRING OF CHA^S.
TERMINATED BY NULL CHARACTER :'

PARAM+2,+3=L0CATI0N OF RESULT STRINg'
OUTPUT: RESULT STRING HOLDS STRING OF BCD Di1gITS»

TERMINATED BY A NIBBLE OF ONES.
************##*##*»#»»#^t**^f^<.^(.^j^t^j^^^^f^j^^^j^^^^^^^^^^^^^^^^^^^

36

7F00 F5 00230 ADEBCD PUSH AF
7F0i D5 00240 PUSH DE
7F02 E5 00250 PUSH HL
7F03 DDE5 00260 PUSH IX

7F05 CD7F0A 00270 CALL 0A7FH
7F08 E5 00280 PUSH HL
7F09 DDEl 00290 POP IX

7F0B DD5E00 00300 LD El <IX+0)
7F0E DD5601 00310 LD Dt (IX+1

)

7F11 DD6E02 00320 LD Li CIX-t-2)

7F14 DD6603 00330 LD H, (IX+3)
7Fi7 lA 00340 ADE010 LD A) (DE)

7F1S 87 00350 OR A
7F19 2005 00360 JR NZ.ADE020
7FiB 3D 00370 DEC A
7F1C ED67 00380 RRD
7F1E 1816 00390 JR ADE040
7F20 D630 00400 ADE020 SUB 30H
7F22 ED6F 00410 RLD
7F24 13 00420 INC DE
7F25 lA 00430 LD A . (DE

)

7F26 B7 00440 OR A
7F27 2005 00450 JR NZ»ADE030
7F29 3D 00460 DEC A
7F2A ED6F 00470 RLD
7F2C 1008 00480 JR ADE040
7F2E D630 00490 ADE030 SUB 30H
7F30 ED6F 00500 RLD
7F32 13 00510 INC DE
7F33 23 00520 INC HL
7F34 18E1 00530 JR ADE010
7F36 DDEl 00540 ADE040 POP IX

7F3B El 00550 POP HL
7F39 Dl 00560 POP DE
7F3A Fl 00570 POP AF
7F3B C9 00580 RET
0000 00590 END
00000 TOTAL ERRORS

;SAVE REGISTERS

;***GET STRING LOC'N***
; TRANSFER TO IX

;PUT SOURCE PNTR IN DE

;PUT DEST PNTR IN HL

;GET NEXT CHARACTER
;TEST for NULL (END)
;G0 if NOT END
;ZERO TO ~1

SSTORE TERMINATOR
!G0 TO RETURN
; CONVERT TO 0-9
iSTORE IN BUFFER
? POINT TO NEXT CHARACTER
?GET NEXT CHARACTER
;TEST FOR NULL (END)
;G0 if NOT END
!ZERO TO -1
;STORE TERMINATOR
;G0 TO RETURN
; CONVERT TO 0-9
;STORE IN BUFFER
;POINT TO NEXT CHARACTER
; LOC'N FOR NXT 2 BCD DGTS
;L00P 'TIL END

; RESTORE REGISTERS

; RETURN TO CALLING PROG

ADEBCD DECIMAL VALUES

245» 213* 2291 ;l» 229: :-:05> 127i 10! :29\

225 » 221 » 94) 0i 221'

221. 102, 3, 26, 183.

24i 22, 214, 48, 237
5i 61, 237, 1115 24t
19, 35 T 24, 22=

86, 1, 221 » il0j 2'»

32. 55 61, 2375 103,
111, 19, 26, 183, 32,

8, 214, 48, 237, HI,
;2i, 225, 225, 209, 241, 201

CHKSUM=

ADXBIN: ASCII DECIMAL TO BINARY CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

ADXBIN converts a string of ASCII characters representing decimal digits to a

16-bit binary number. Each character in the string is assumed to be ASCII

37

through ASCII 9 (30H through 39H). The string may be from zero to 5 bytes

long, but is terminated with a byte of ail zeroes. The value represented by the

string may be as large as 65,535. This conversion is an "unsigned" conversion

producing a result of through 65,535.

Input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of through 65,535.

INPUT OUTPUT

POINTER TO MEM 1+0

MEM1+^

+ 1

LAST

STRING OF
ASCII

HEXADECIMAL
CHARACTERS __

I

RESULT, 0-65535
1

-y LAST T

UNCHANGED

UNCHANGED

Algorithm

A result of 0000000000000000 is first cleared in the IX register.

Each character Is read from the string, moving from left to right. The character is

first tested for a null, which marks the end of the string. If a null is found, the

conversion is over.

If the character is not a null, it is assumed to be a valid ASCII decimal digit of

30H through 39H. A value of 30H is subtracted from the character to yield a

binary value of 00000000 through 00001001. This value Is then added to the

result in IX.

Prior to the add, the partial result in the IX register is multiplied by ten. This

moved the partial result over one decimal digit position to the left. The value in

IX at the end of the string represents the converted binary value.

Note that the multiplication is done after the test for null; this ensures that the

last value of through 9 remains in the least significant decimal digit position

of IX.

The multiply is done by a "shift and add" technique of three adds to shift three

bits (multiply by eight) plus one add of the "times two" shift for a "times ten"

result.

If the ASCII string is 34H, 35H, 30H, 31 H, 31 H, OOH, the result in IX would be
loiomiiioiooii.

38

Sample Calling Sequence

NAME OF SUBROUTINE? ADXBIN
HL VALUE? 40000
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 40000
MEMORY BLOCK 1 VALUES?
+ 1 49'
+ 1 1 50
+ 2 1 5i -12345 IN ASCII

+ 3 1 52+41 53_
+ 510 TERMINATOR
•f 6
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT! OUTPUT

:

HL= 40000 HL= 12345 RESULT
MEMB1+ 49 MEMB1+ 49"

MEMB1+ 1 50 MEMB1+ 1 50
MEMB1+ 2 51 MEMB1+ 2 51

- UNCHANGED
MEMB1+ 3 52 MEMB1+ 3 52
MEMB1+ 4 53 MEMB1+ 4 53
MEMB1+ 5 MEMBI+ 5 -

NAME OF SUBROUTINE?

Notes

1. If the string of ASCII characters is longer than 5 bytes, or if the value repre-

sented is greater than 65,535, ADXBIN will return an invalid result.

2. If one or more characters in the string are not valid ASCII decimal digits of

30H through 39H, ADXBIN will return an invalid result; no check is made of

the validity of the ASCII characters.

Program Listing

7F00

7F00
7F01
7F02
7F04
7F07
7F0B
7F0C
7F0D
7F0F
7Fn

F5
D5
DDES
CD7F0A

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230

ORG 7F00H ;0522
it**
* ASCII DECIMAL TO BINARY CONVERSION. CONVERTS A STRING*

* OF ASCII CHARACTERS REPRESENTING DECIMAL DIGITS TO *

* BINARY *

* INPUT! HL=> STRING OF CHARACTERSi TERMINATED BY *

* NULL CHARACTER. *

* OUTPUT:HL=BINARY NUMBER FROM - 65535 *

^j^nnt.»##**»#*******#****»*****#«**«**********************

ADXBIN

DD210000 00240
7E 00250 ADX010
B7 00260
2S15 00270
DD29 00280
DDES 00290

PUSH
PUSH
PUSH

LD
LD
OR
JR
ADD
PUSH

AF
DE
IX
0A7FH
IX,
A, (HL)
A
Z7ADX020
IX, IX

IX

SSAVE REGISTERS

;***GET STRING LOC'N***
? CLEAR RESULT REGISTER

;GET NEXT CHARACTER
;TEST FOR NULL (END)
;G0 IF END
; RESULT TIMES TWO
;SAVE RESULT

39

7F13 DD29 00300 ADD IX, IX J RESULT TIMES FOUR
7F15 DD29 00310 ADD IX»IX ; RESULT TIMES EIGHT
7FI7 Dl 00320 POP DE ;get result times two
7F18 DD19 00330 ADD IX) DE ? RESULT times TEN
7F1A D630 00340 SUB 30H ; CONVERT TO - 9
7F1C 5F 00350 LD EiA ;NOW IN E
7FID 1600 00360 LD D*0 ?NOW IN DE
7F1F DD19 00370 ADD IXtDE ;merge with previous
7F21 23 00380 INC HL ; POINT TO NEXT CHARAC"
7F22 1887 00390 JR ADX010 ;L00P 'TIL END
7F24 DDE5 00400 ADX020 PUSH IX ; TRANSFER RESULT
7F26 El 00410 POP HL ; RESULT NOW IN HL
7F27 DDEl 00420 POP IX ; RESTORE REGISTERS
7F29 Dl 00430 POP DE
7F2A Fl 00440 POP AF
7F2B C39A0A 00450 JP 0A9AH ;***RETURN ARGUMENT***
7F2E C9 00460 RET ; NON-BASIC RETURN
00013 00470 END
00000 TOTAL ERRORS

ADXeiN DECIMAL VALUES

245» 213, 221, 229, 205, 127, 10, 221, 33, 0,
0, 126, 183, 40, 21, 221, 41, 221, 229, 221)
41, 221, 41, 209, 221, 25, 214, 48, 95, 22,
0, 221, 25, 35, 24, 231, 221, 229, 225, 221,
225, 209, 241, 195, 154, 10, 201

CHKSUM= 211

AHXBIN: ASCII HEXADECIMAL TO BINARY CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

AHXBIN converts a string of ASCII characters representing hexadecimal digits

to a 16-bit binary number. Each character in the string is assumed to be either in

the range of ASCII through 7 {30H through 37H) or ASCII A through F (41 H
through 46H). The string may be from zero to 4 bytes long, but is terminated

with a byte of all zeroes.

input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

INPUT OUTPUT

H L

POINTER TO MEM 1+0
1

LAST

MEM1+0 STRING
- OF --

+ 1 ASCII
- DECIMAL --

+2 CHARACTERS
-

1

-^

^
H L

+
RESULT, 0-65535

y

MEM 1+0
.

+ 1

+2
„ UNCHANGED

LAST UNCHANGED

40

On output, HL contains the binary number of through 65,535.

Algorithm

A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is

first tested for a null, which marks the end of the string. If a null is found, the

conversion is over.

If the character is not a null, it is assumed to be in the proper range for hexadec-

imal digits. A value of 30H is subtracted from the character to yield a value of

through 9 or 17 through 22. This value is then tested for the second set of

values of 1 7 through 22 by subtracting 10. If the original value was through 9,

the resultof this subtract will be negative, and the original value of through 9

is used. If the result was positive, the value is now 7 through 12, and is changed

to the proper hex value by adding 3, to produce 10 through 15. This value is

then added to the result in IX. Effectively, this merges the four bits of the current

value into the four least significant bit positions of the IX register.

As the IX register is added to itself four times to cause a "shift left" four bit

positions at the start of each iteration of the loop, successive hex digits move
toward the left of the result. The value in IX at the end of the string represents

the converted binary value.

Note that the shifts are done after the test for null; this ensures that the last octal

digit remains in the least significant four bits of IX.

If the ASCII string was 41 H, 45H, 31 H, and OOH, the result in IX would be

0000101011100001, or hex 0AE1

.

Sample Calling Sequence

NAME OF SUBROUTINE? AHXBIN
HL VALUE? 50000
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 50000
MEMORY BLOCK 1 VALUES?
+ 1 70
+ 1 1 49
+ 2 1 65

-FIA9 IN ASCII

+ 3 1 57
+ 410 TERMINATOR
+ 500
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 40000
SUBROUTINE EXECUTED AT 40000
INPUT: OUTPUT

:

HL=^ 50000 HL= 61B65 RESULT= FIA9H

MEMB1+ 70 MEMB1+ 70~

MEMB1+ 1 49
MEMei+ 2 65

MEMei+ 1

MEMBI+ 2
49
65 -UNCHANGED

MEMBI+ 3 57 MEMB1+ 3 57
MEMB1+ 4 e) MEMBi+ 4 ^

NAME OF SUBROUTINE?

41

Notes

1. If the string of ASCII characters is longer than 4 bytes, AHXBIN will return a

result that represents the last 4 characters of the string.

2. If any character in the string is not in the proper range, AHXBIN will return

an invalid result; no check is made of the validity of the ASCII characters.

Program Listing

7F00

7F00 F5
7FB1 D5
7F0 DDE5

00100
0BU0
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
002307F04 CD7F0A

7F07 DD210000 00240
002507F0B 1600

7F0D 7E
7F0E B7
7F0F 2819
7Fn DD29
7F13 DD29
7F15 DD29
7F17 DD29
7F19 D630
7Fie 5F
7F1C D60A
7F1E CB7F
7F20 2003
7F22 C603
7F24 5F
7F25 DD19

WE fgE3
7F2A DDES
7F2C El
7F2D DDEl
7F2F Dl
7F30 Fl
7F31 C39A0A
7F34 C9
0000

00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400

00000 TOTAL ERRORS

ORG 7F00H 10522

* ASCII HEXADECIMAL TO BINARY CONVERSION. CONVERTS A *
* STRING OF ASCII CHARACTERS REPRESENTING HEXADECIMAL *
* DIGITS TO BINARY. *
* INPUT: HL=> STRING OF CHARACTERSt TERMINATED BY *
* NULL CHARACTER.
* 0UTPUT:HL=BINARY NUMBER FROM - 65535 *

AHXBIN

AHX010

f2t

00430
00440
00450
00460
00470
00480
00490
00500

AHX015

AHX020

PUSH
PUSH
PUSH
CALL
LD
LD
LD
OR
JR
ADD
ADD
ADD
ADD
SUB
LD
SUB
BIT
JR
ADD
LD
ADD

W
PUSH
POP
POP
POP
POP
JP
RET
END

AF
DE
IX
0A7FH
IX»0
Df0
At (HL>
A
Z»AHX020
IX, IX
IX, IX
IXt IX
IX, IX
30H
E, A
0AH
7,

A

NZ,AHX015
A»3
E>A
IX^DE
HL
AHX010
IX

HL
rx
DE
AF
0A9AH

?SAVE REGISTERS

;***GET STRING LOC'N***
; CLEAR RESULT REGISTER
;F0R LOOP

;GET next CHARACTER
;TEST FOR NULL <END)
;G0 IF END
!SHIFT LEFT 4 BITS

; CONVERT TO 0-9 OR 11-16
;now IN E
; SUBTRACT FOR A - F
;TEST RESULT
; GO IF - 9
; CONVERT TO A - F
;NOW IN E
;MERGE WITH PREVIOUS
5P0INT TO NEXT CHARACTER
;L00P 'TIL END

; TRANSFER RESULT

; RESTORE REGISTERS

!***RETURN ARGUMENT***
; NON-BASIC RETURN

AHXBIN DECIMAL VALUES

245j 213, 221i
B, 22, 0, 126;
41, 221, 41, :

203, i27» 32,
24, 227, 221,
154, 10, 201

0>229, 205, 127, 10, 221, 33.
183, 40, 25, 221, 41, 221,

:21, 41, 214, 48, 95, 214, 10,
3, 198, 3, 95, 221, 25, 35,
229, 225, 221, 225, 209, 241, 195-

CHKSUM= 197

42

AOXBIN: ASCII OCTAL TO BINARY CONVERSION

System Configuration

Model 1, Model 111, Model II Stand Alone.

Description

AOXBIN converts a string of ASCII characters representing octal digits to a

16-bit binary number. Each character in the string is assumed to be in the range

of ASCII through 7 (30H through 37H). The string may be from zero to 6 bytes

long, but is terminated with a byte of all zeroes.

Input/Output Parameters

On input, the HL register pair contains a pointer to the string of characters.

On output, HL contains the binary number of through 65,535.

INPUT

H

POINTER TO MEM 1+0

MEM 1+0

+ 1

+2

+3

+4

LAST

^

OUTPUT

H L

+
RESULT, 0-65535

STRING
Of

ASCII
OCTAL

CHARACTERS »

MEM 1+0
- - --

+ 1

+2 UNCHANGED

> +3
- -

+4
-
: i

LAST UNCHANGED

Algorithm

A result of 0000000000000000 is first cleared in the IX register.

Each character is read from the string, moving from left to right. The character is

first tested for a null, which marks the end of the string. If a null is found, the

conversion is over.

If the character is not a null, it is assumed to be In the proper range for octal

digits. A value of 30H is subtracted from the character to yield a value of

through 7. This value is then added to the result in IX. Effectively, this merges
the three bits of the current value into the three least significant bit positions of

the IX register.

As the IX register is added to itself three times to cause a "shift left" three bit

positions at the start of each iteration of the loop, successive octal digits move
toward the left of the result. The value in IX at the end of the string represents

the converted binary value.

43

Note that the shifts are done after the test for null; this ensures that the last octal

digit remains in the least significant three bits of IX.

if the ASCII string was 33H, 37H, 35H, and OOH, the result in IX would be
000000001 1 1 1 1 1 01 , or octal 375

.

Sample Calling Sequence

NAME OF SUBROUTINE? AOXBIN
ML VALUE? 40000
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION? 40000
MEMORY BLOCK 1 VALUES?
+ 1 49'

1

-123457 IN ASCII

+ 1 1 50
+ 2 1 51
+ 3 1 52
+ 4 1 53
+ 5 1 55_
+ 610 TERMINATOR
+ 700
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT:
HL= 40000
MEMB1+
MEMB1+ I

MEMB1+ 2
MEMB1+ 3
MEMB1+ 4
MEMB1+ 5
MEMB1+ 6

49
50
51
52
53
55

OUTPUT!
HL= 42799
MEMB1+
MEMB1+ 1

MEMB1+ 2
MEMB1+ 3
MEMB1+ 4
MEMBI+ 5
MEMB1+ 6

RESULT
49"

50
51
52 h UNCHANGED
53

J

NAME OF SUBROUTINE?

Notes

1. If the string of ASCII characters is longer than 6 bytes, or if the octal value

represented is greater than 177777, AOXBIN will return an invalid result.

2. If any character in the string is not in the proper range, AOXBIN will return

an invalid result; no check Is made of the validity of the ASCII characters.

Program Listing

7F00

7F00 F5
7F01 D5
7F02 DDE5
7F04 CD7F0A

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230

ORG 7r00H ;05;

* ASCII OCTAL TO BINARY CONVERSION. CONVERTS A STRING *
* OF ASCII CHARACTERS REPRESENTING OCTAL DIGITS TO BI- *
* NARY. *
* INPUT: HL^> STRING OF CHARACTERS^ TERMINATED BY *
* NULL CHARACTER. *
* OUTPUT!HL=BINARY NUMBER FROM - 65535 *

AOXBIN PUSH
PUSH
PUSH
CALL

AF
DE
IX
0A7FH

;SAVE REGISTERS

;***GET STRING LOC'N***

44

7F07 DD2 10000 00240 LD IX»0
7F(aB 1600 00250 LD D}0
7FBD 7E 00260 AOX010 LD A, (HL)
7F0E B7 00270 OR A

7F0F 280E 00280 JR Z)AOX020
7F11 DD29 00290 ADD IXi IX
7F13 DD29 00300 ADD IX» IX

7F15 DD29 00310 ADD IX. IX

7Fi7 D630 00320 SUB 30H
7F19 5F 00330 LD EtA
7F1A DD19 00340 AOX015 ADD IX»DE
7F1C 23 00350 INC HL
7F1D 18EE 00360 JR AOX010
7F1F DDES 00370 AOX020 PUSH IX

7F21 El 00380 POP HL
7F22 DDE! 00390 POP IX

7F24 Dl 00400 POP DE
7F25 Fl 00410 POP AF
7F26 C39A0A 00420 JP 0A9AH
7F29 C9 00430 RET
0000 00440 END
00000 TOTAL. ERRORS

; CLEAR RESULT REGISTER
?FOR LOOP

;GET NEXT CHARACTER
;test for null (end)
;go if end
;SHIFT LEFT 3 BITS

; CONVERT TO 0~7
;NOW IN E
JtlERGE WITH PREVIOUS
! POINT TO NEXT CHARACTER
SLOOP *TIL END

; TRANSFER RESULT

; RESTORE REGISTERS

;***RETURN ARGUMENT***
;NON~BASIC RETURN

AOXBIN DECIMAL VALUES

245» 213j 22i» 229i 205 » 127?
01 22? 0» 126? 183. 401 14» 2:

41) 221) 41) 214) 48) 95) 221
238) 221) 229) 225) 221) 225)
101 201

10) 221) 33) 01

;1) 41) 221)
25) 35) 24)

209) 241) 195) 154.

CHKSUM= 74

BCADDN: MULTIPLE-PRECISION BCD ADD

System Configuration

Model 1, Model III, Model il Stand Alone.

Description

BCADDN adds a "source" string of bed digits to a "destination" string of bed

digits and puts the result of the add into the destination string. Each of the two

strings is assumed to be the same length. The length must be an even number of

bed digits, but may be any number from 2 through 254.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the destination string in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes of the parameter block contain the address of the

source string in the same format The next byte of the parameter block-contains

the number of bed digits in the two operands. This must be an even number (an

integral number of bytes).

45

On output, the parameter block and source string are unchanged. The destina-

tion string contains the result of the bed add.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

. POINTER TO
MEM1+0

4-2

+3
. POINTER TO

MEM2-i-0

+4 EVEN it OF
BCD DIGITS

^

OUTPUT

UNCHANGED

PARAM+0

+ 1

+2

+3

+4

-- UNCHANGED --

UNCHANGED

-- UNCHANGED --

MEM 1+0

+ 1

+2

+3

+4

+5

+6

BCD
OPERAND

1

»

MEM 1+0

+ 1

+2

+3

+4

+5

+6

RESULT
(op1+op2)

MEM 2+0

+ 1

- - BCD
+2 OPERAND

- - 2
+3

+4
- t-

+5

+6
" "

MEM2+0

+ 1

+2

=> -: UNCHANGED

+4

+5

+6

Algorithm

The BCADDN subroutine performs one add for each two bed digits. The desti-

nation string address and source string address are first picked up from the

parameter block and put into DE and HL, respectively. The number of bytes in

the add is then picked up and put into the BC register pair. This number is

divided by two to obtain the total number of bytes involved. This number
minus one is then added to the source and destination pointers so that they

point to the least significant bytes of the source and destination strings. The
number of bytes is then put into the B register for loop control.

The next two bed destination digits are then picked up from the destination

string (DE register pointer). An ADC is made of the two source string digits {HL
register pointer). The result is adjusted for a bed add by a DAA instruction, and
the result stored in the destination string.

46

The source and destination string pointers are then decremented by one to

point to the next most significant two bed digits of each operand. The B register

count is then decremented by a DJNZ, and a loop back to BCAOIO is made for

the next add.

The carry is cleared before the first bed add, but successive adds add in the

carry from the preceding bed add.

If the destination operand was OOH, 45H, 67H, 11 H and the source operand

wasOOH, 75H, 77H, 33H, then the number of bed digits must be 8. The result in

the destination operand would be 01 H, 21 H, 44H, 44H. Note that the result

may be one bed digit longer than the original number of bed digits.

Sample Calling Sequence

NAME OF SUBROUTINE? BCADDN
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?+02 45000+22 50000
+ 416 6 BCD DIGITS

+ 500
MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?
+ 1 IS
+ 1 1 52 - 123456 IN BCD
+2 1 86 _
+ 300
MEMORY BLOCK 2 LOCATION? 50000
MEMORY BLOCH: 2 VALUES?
+ 1 119"
+ 115 - 770547 IN BCD
+ 2 1 71 _
+ 300
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT:
HL" 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB2+
MEMB2+
MEMB2+

200
175
80
195
6
18

86
119
5
71

OUTPUT

:

HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB2+
MEMB2+
MEMB2+

200
175
80
195
6
137"

64
3
119"

5
71

- UNCHANGED

-894003 RESULT IN BCD

- UNCHANGED

NAME OF SUBROUTINE?

Notes

1. An invalid result will occur if the source or destination strings do not eon-

tain valid bed digits.

2. The destination string is a fixed length. Leading zero bed digits nrmst pre-

cede the operands to handle the result, which may be one bed digit larger than

either of the operands.

47

3, This is an "unsigned" bed add. Both operands are assumed to be positive

bed numbers.

Program Listing

7F00

7Fm F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDES
7F06 CD7F0A
7F09 E5
7F0A DDEl
7F0C DD5E00
7F0F DD5601
7F12 DDAE02
7F15 DD6603
7F18 DD4E04
7F1B C839
7F1D 0600
7F1F 0B
7F20 09
7F21 EB
7F22 09
7F23 EB
7F24 41
7F25 04
7F26 87
7F27 lA
7F28 BE
7F29 27
7F2A 12
7F2B 2B
7F2C IB
7F2D 10FS
7F2F DDEl
7F31 El
7F32 Dl
7F33 CI
7F34 Fl
7F35 C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
001 80
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570

ERRORS

ORG 7F00H 5 0522

* MULTIPLE-PRECISION BCD ADD. ADDS TWO MULTIPLE-PRE- *
* CISION BCD OPERANDS* ANY LENGTH #
* INPUT: HL=> PARAMETER BLOCK #
* PARAM+0»+l=ADDRESS OF OPERAND 1 *
* PARAM+2i+3-ADDRESS OF OPERAND 2 *
* PARAM+4=EVEN # OF BCD DIGITS* 0-254 #
* OUTPUT: OPERAND i LOCATION HOLDS RESULT #

BCADDN

BCA010

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
SRL
LD

ADD
EX
ADD
EX
LD
INC
OR
LD
ADC
DAA
LD
DEC
DEC
DJNZ
POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX
0A7FH
HL
IX

Et (IX+0)
Dl (IX+1>
L, (IX+2)
H* (IX+3)
C» (IX+4)
C
8*0
BC
HLtBC
DEiHL
HL*BC
DEjHL
B.C
B
A
Aj <DE)
A* (HL)

(DE) T A
HL
DE
BCA010
IX
HL
DE

AF

;5AVE REGISTERS

;***GET PB LOC'N***
! TRANSFER TO IX

!6ET OP 1 LOC'N

;GET OP 2 LOC'N

!GET # OF BYTES
JN/2
SNOW IN BC
;#-!
; POINT TO LAST 0P2
SSWAP DE AND HL
? POINT TO LAST OPl
;SWAP BACK
!#-l BACK TO B
JORIGINAL NUMBER
!CLEAR CARRY FOR FIRST ADD

;get operand i byte
;add operand 2
;DECIMAL adjust
J STORE RESULT
; point TO NEXT 0P2
; POINT TO NEXT OPl
SLOOP FOR N BYTES

) RESTORE REGISTERS

; RETURN TO CALLING PROG

BCADDN DECIMAL VALUES

245. 197> 213* 229. 221, 229. 205. 127, 10
221, 225, 221, 94, 0, 221, 86, 1, 221, 110
2. 221, 102, 3, 221, 78, 4, 203, 57, 6,
0, U, 9, 235, 9, 235, 65i 4, 183, 26»
142. 39, 18, 43, 27, 16. 248. 221. 225
209. 193, 241» 201

225'

CHKSUM= 115

48

BCDXAD: BCD TO ASCri DECIMAL CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

BCDXAD converts a string of bed digits to a string of ASCII characters. Each
"nibble" of four bits in the bed string is assumed to be a valid bed character of

binary value through 9. The bed string may be from zero to any number of

bytes long, but is terminated v^'ith a nibble of all ones. The result string of ASCII

digits will represent ASCI I decimal digits of 30H through 39H, vt'ith a terminator

of a byte of zeroes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the bed string in stand-

ard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes of the parameter block contain the address of the

result string in the same format.

On output, the parameter block is unchanged. The bed string is destroyed. The
result string contains an ASCII decimal digit for each bed digit in the bed string

and a final byte of zeroes.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

POINTER TO
- BCD STRING --

(MEM 1+0}

+2

+3

POINTER TO
- RESULT STRING --

(MEM2+0)

^

PARAM+0

+ 1

+2

+3^

-' UNCHANGED --

OUTPUT

UNCHANGED

-- UNCHANGED —

MEM 1+0

+ 1

+2

+3

+4

+5

+6

LAST

BCD
STRING

1111 0000 (or xxxxl 111) LAST

49

MEM2+0

+ 1

+2

+3

- RESERVED
FOR

RESULT
STRING

+4

+5

+6
" '

»

SA2+Q

+ 1

- RESULT
+2 STRING

+3

+4

+5

+6
' "

T "*

LAST

Algorithm

The BCDXAD subroutine performs one conversion for each bed digit. The bed
string address and result string address are first picked up from the parameter
block and put into HL and DE, respectively.

The next bed digit is then picked up from the bed string by an RLD instruction.
A test is made for all ones. If the digit is all ones, a jump is made to BCD020.

A value of 30H is added to the bed digit to convert it to an ASCII digit of 30H
through 39H. This digit is then stored in the result string. The ASCII result string

address in DE is then incremented by one, and the next bed digit is picked up,
tested, converted, and stored. The ASCII string pointer is again incremented to
point to the next byte. The bed pointer in HL is then incremented to point to the
next two bed digits. A loop is then made back to BCD010.

The final action at BCD020 is to store a null (zeroes) at the next ASCII character
position.

The RLD instruction shifts the least significant four bits of the A register and the
memory location pointed to by HL in a four-bit bed shift to the left.

If the bed string was 45H, 67H, 5FH, the result in the ASCII string would be
34H, 35H, 36H, 37H, 35H, OOH.

Sample Calling Sequence

NAME OF SUBROUTINE? BCDXAD
HL VALUE? 41000
PARAMETER BLOCK LOCATION? 41000
PARAMETER BLOCK VALUES?
+ 2 44000 POINTS TO BCD STRING
+ 22 45000 POINTSTORESULTSTRING
+ 400
MEMORY BLOCK 1 LOCATION? 44000
MEMORY BLOCK 1 VALUES?
+ 1 1451
+ 1 1 47 J~

912 IN BCD PLUS TERMINATOR OF ALL ONES
+ 200
MEMORY BLOCK 2 LOCATION? 45000
MEMORY BLOCK 2 VALUES?
+

+ 1

+ 2
+ 3
+ 4

255
255
255
255

-INITIALIZE RESULT FOR EXAMPLE

50

MOVE SUBROUTINE TO? 47000
SUBROUTINE EXECUTED AT 47000
INPUT: OUTPUT:
HL= 41000 HL= 41000
PARAM+ 224 PARAM+ 224
PARAM+ 1 171 PARAh+ 1 171
PARAM+ ^ 200 PARAM+ 2 200
PARAM+ 3 175 PARAM+ 3 175
MEMB1-+- 145 MEriBl+
MEMB1+ 1 47 MEMB1+ 1

MEMB2+ 255 MEriB2+ 57
~

)1EnB2+ 1 255 MEMB2+ 1 49 -912 IN ASCII

MEMB2+ 2 255 MEMB2+ 2 50 _

mf;:mb2+ 3 255 MEMB2+ 3 TERMINATOR

NAHE OF SUBROUTINE?

Notes

1. An invalid result will occur if the bed string contains invalid bed digits.

2. The bed string will be destroyed in the processing.

Program Listing

7F00

7F00
7F01
7F02
7F03
7F05
7F08
7F09
7F0B
7F0E
7Fn
7F14
7Fi7
7F18
7F1A
7F1C
7F1E
7F20
7F21
7F22
7F23
7F2S
7F27
7F29
7F2B
7F2C
7F2D
7F2E

F5

E5
DDE5
CD7F0A

DDEl
DD5E02
DD5603
DD6E00
DD6601
AF
ED6F
FE0F
2812
C630
12
13
AF
ED6F
FE0F
2807
C630
12
13
23
iaE7

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480

ORG 7F00H ?0522
#»*#*»*************•»*****•»********#*#**#****#*******#*
* BCD TO ASCII DECIMAL CONVERSION. CONVERTS A STRING *
* OF BCD DIGITS TO A STRING OF ASCII CHARACTERS. *
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0,+l=LOCATION OF STRING OF BCD DGTSi *
* TERMINATED BY A NIBBLE OF ALL ONES. *
* PARAM+2i+3=L0CATI0N OF RESULT STRING *
* 0UTPUT:RESULT STRING HOLDS STRING OF ASCII CHARS* *

TERMINATED BY A NULL. *
*#***#***#****»»****»**********»*##*«*************#»*«**

BCDXAD

BCD010

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
XOR
RLD
CP
JR
ADD
LD
INC
XOR
RLD
CP
JR
ADD
LD
INC
INC
JR

AF

HL-

IX
0A7FH
HL
IX
E» (IX+2)
Di {IX+3)
L» (IX+0)
Hi (IX + 1)

A

0FH
Z*BCD020
Ai30H
(DE))

A

DE
A

0FH
Z)BCD020
At30H
(DE) » A

HL
BCD010

;SAVE REGISTERS

;***GET STRING LOC'N***
^TRANSFER TO IX

!PUT DEST PNTR IN DE

?PUT SOURCE PNTR IN HL

; CLEAR A
;GET BCD DIGIT
?TEST FOR ONES (END)
;G0 IF END
; CONVERT TO 0-9 ASCII
; STORE ASCII CHAR
? POINT TO NEXT CHARACTER
! CLEAR A
?GET BCD DIGIT
5TEST FOR ONES (END)
!G0 IF END
; CONVERT TO 0-9
;STORE ASCII CHAR
;POlNlT TO NEXT CHARACTER
SLOC'N FOR NXT 2 BCD DGTS
;LOOP 'TIL END

51

7F30 AF 0B490 BCD02B XOR A
7F31 12 00500 LD (DE)
7F32 DDE

I

00510 POP IX
7F34 El 00520 POP HL
7F35 01 00530 POP DE
7F36 Fl 00540 POP AF
7F37 C9 00550 RET
E9Q00 00560 END
00000 TOTAL ERRORS

;null
;store null as terminator
; restore registers

; RETURN TO CALLING PROG

BCDXAD DECIMAL VALUES

245* Zl3i 2295 221* 229» 205, 127, 10, 229,
225, 221, 94, 2, 221, 86, 3, 221, 110, 0,
221* 102, It 175 5 237, 111, 254, 15, 40, IBi
198, 48, 18, 19, 175, 237, lU, 254, 15, 40'
7» 198, 48, 18, 19» 35^ 24, 231, 175^ 18,
221, 225, 225, 209, 241, 201

•;21

CHKSUM= 72

BCSUBT: MULTIPLE-PRECISION BCD SUBTRACT

System Configuration

Model I, Model III, Model II Stand Alone.

Description

BCSUBT subtracts a "source" string of bed digits from a "destination" string of

bed digits and puts the result of the subtract into the destination string. Each of

the two strings is assumed to be the same length. The length must be an even
number of bed digits, but may be any number from 2 through 254.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the destination string in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes of the parameter block contain the address of the

source string in the same format. The next byte of the parameter block contains
the number of bed digits in the two operands. This must be an even number {an
integral number of bytes).

INPUT OUTPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

POINTER TO
MEMH-0

+2

+3

POINTER TO
MEM2-i-0

+4 EVEN # OF
BCD DIGITS

H L
1

V
UNCHANGED

1

>

PARAM+0

+ 1

+2

+3

+4

1

- UNCHANGED - -

- UNCHANGED -

>
/

UNCHANGED

52

MEM 1+0
-

+ 1

+2 BCD
OPERAND

+3 T

+4

+5

+6
- '

MEM2+0
-

+ 1

+2

+3

BCD
OPERAND

2

+4

+5

+6

p

p

MEM 1+0

+ 1

+2

+3

+4

+5

+6

MEM2+0

+ 1

+2

+3

+4

+5

+6

RESULT
(op1-op2)

UNCHANGED

On output, the parameter block and source string are unchanged. The destina-

tion string contains the result of the bed subtract.

Algorithm

The BCSUBT subroutine performs one subtract for each two bed digits. The
destination string address and source string address are first picked up from

the parameter block and put Into DE and HL, respectively. The number of bytes

In the subtract is then picked up and put Into the BC register pair. This number
Is divided by two to obtain the total number of bytes Involved. This number
minus one is then added to the source and destination pointers so that they

point to the least significant bytes of the source and destination strings. The
number of bytes is then put Into the B register for loop control.

The next two bed destination digits are then picked up from the destination

string (DE register pointer). An ADC is made of the two source string digits (HL

register pointer). The result Is adjusted for a bed subtract by a DAA instruction,

and the result stored In the destination string.

The source and destination string pointers are then decremented by one to

point to the next most significant two bed digits of each operand. The B register

count is then decremented by a DJNZ, and a loop back to BCSOlO is made for

the next subtract.

The carry is cleared before the first bed subtract, but successive subtracts sub-

tract In the carry from the preceding bed subtract.

If the destination operand was OOH, 45H, 67H, 11 H and the source operand

was OOH, 75H, 77H, 33H, then the number of bed digits must be 8. The result in

the destination operand would be 99H, 69H, 89H, 78H.

53

Sample Calling Sequence

NAME OF SUBROUTINE? BCSUBT
HL VALUE? 50000
PARAMETER BLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?+02 52000
+ 2 2 54000
"*' ^ ^ ^ 4 BCD DIGITS
+ 500
MEMORY BLOCK I LOCATION? 52000
MEMORY BLOCK 1 VALUES?
+ 1

ItlJ-'4. J I
n-, r9570IN BCD

^ 2
MEMORY BLOCK 2 LOCATION? 54000
MEMORY BLOCK 2 VALUES?
4 1 147"

+ 1 1 131
4 2 '

MOVE SUBROUTINE TO? 45000
SUBROUTINE EXECUTED AT 45000

-9383 IN BCD

INPUT:
HL= 50000
PARAM+
PARAM+ 1

mm I
PARAM+ 4

MEMB1+
MEMB1+ 1

MEMB2+
MEMB2+ 1

32

ini-

4
149
112
147
131

OUTPUT:
HL= 50000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3
PARAM+ 4
MEMB1+
MEMB1+ 1

MEMB2+
MEMB2+ 1

32 ^
203
240
210

1

135_
147
131

-UNCHANGED

-187 RESULT IN BCD

-UNCHANGED

NAME OF SUBROUTINE?

Notes

1. An invalid result will occur if the source or destination strings do not con-

tain valid bed digits.

2. This is an "unsigned" subtract Both operands are assumed to be positive

bed numbers.

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDES

00100
00110
00120
00130
00140
00150
00160
00170
001B0
00190
00200
00210
00220
00230
00240
00250

ORG 7F00H ;0522

* MULTIPLE-PRECISION BCD SUBTRACT. SUBTRACTS TWO MUL- *
* PLE-PRECISION BCD OPERANDS* ANY LENGTH.
» INPUT: HL=> PARAMETER BLOCK
* PARAM+0i+l=ADDRESS OF OPERAND
* PARAM+2) +3=ADDRESS OF OPERAND
* PARAM+4=EVEN # OF BCD DIGITSj

*
#

1 *

2 *
0-254 *

* OUTPUT: OPERAND 1 LOCATION HOLDS RESULT *

BCSUBT PUSH
PUSH
PUSH
PUSH
PUSH

AF
BC

HL
IX

:SAVE REGISTERS

54

7F06 CD7F0A 00260 CALL 0A7FH ***GET PB LOC'N***
7F09 E5 00270 PUSH HL J TRANSFER TO IX
7F0A DDEl 00280 POP IX
7F0C DD5E00 00290 LD El (IX+0> ;GET OP 1 LOC'N
7F0F DD5601 00300 LD Dl (IX + 1)
7FI2 DD6E02 00310 L0 L» (IX+2> !GET OP 2 LOC'N
7F15 DD6603 00320 LD Hi (IX+3)
7F1S DD4E04 00330 LD C» (IX+4> J GET # OF BYTES
7F1B CB39 00340 SRL C ;n/2
7FID 0600 00350 LD Bf0 SNOW IN BC
7F1F 08 00360 DEC BC ;#-l
7F20 09 00370 ADD HLiBC ; POINT TO LAST 0P2
7F21 EB 00380 EX DE)HL SSWAP DE AND HL
7F22 09 00390 ADD HL»BC ; POINT TO LAST OPl
7F23 EB 00400 EX DEiHL ;SWAP BACK
7F24 41 00410 LD B,C ;#-! BACK TO B
7F25 04 00420 INC B ; ORIGINAL NUMBER
7F26 B7 00430 OR A SCLEAR CARRY FOR FIRST ADD
7F27 lA 00440 BCS010 LD Ai (DE) ;GET OPERAND 1 BYTE
7F2S 9E 00450 SBC Aj (HL) 5 SUB OPERAND 2
7F29 27 00460 DAA SDECIMAL ADJUST
7F2A 12 00470 LD (DE) ,

A

; STORE RESULT
7F2B 2B 00480 DEC HL ; POINT TO NEXT 0P2
7F2C IB 00490 DEC DE ; POINT TO NEXT OPl
7F2D 10F8 00500 DJNZ BCS010 !LOOP FOR N BYTES
7F2F DDEl 00510 POP IX ; RESTORE REGISTERS
7F31 El 00520 POP HL
7F32 Dl 00530 POP DE
7F33 CI 00540 POP BC
7F34 Fl 00550 POP AF
7F35 C9 00560 RET ; RETURN TO CALLING PROG
0000 00570 END
00000 TOTAL ERRORS

BCSUBT DECIMAL VALUES

245^ 197» 213* 229? 221^ 229* 205, i27» i0»
221» 225, 221) 94> 0, 221, 86, 1, 221, IIB,
2, 221, 102, 3, 221, 78, 4, 203, 57, 6,
0, ii, 9, 235, 9, 235, 65, 4, 103, 26,
158, 39, 18, 43, 27, 16, 248, 221 , 225, 225'
209, 193, 24i, 201

''.y.9'.

CHKSUM= 131

BXBINY: BINARY TO ASCII BINARY CONVERSION

System Configuration

Model, I, Model III, Model II Stand Alone.

Description

BXBINY converts a 16-bit binary number to a string of ASCII binary digits. Each

character in the string will be either an ASCII one (30H) or an ASCII zero (31 H).

The result string will be 16 bytes long, and is ternninated with a byte of all

zeroes. The user must specify a buffer area of 17 bytes to hold the result string.

55

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for

BXBINY. The first two bytes of the parameter block contain the 16-bit binary

value to be converted, in standard Z-80 16-bit representation, least significant

byte followed by most significant byte. The next two bytes of the parameter

block contain the buffer address for the 17-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASCII ones and

zeroes, terminated by a null. The parameter block contents remain unchanged.

INPUT OUTPUT

POINTER TO PARAM+0

PARAM-l-0

+ 1

+2

+3

16-BIT VALUE
TO BE

CONVERTED

BUFFER
ADDRESS
(MEM 1+0)

PARAM+0

+ 1

+2

+3

-- UNCHANGED --

P

UNCHANGED

-- UNCHANGED --

MEM 1+0

+ 1

+2

+3

+4

+5

+6
-

RESERVED
FOR

RESULT

+7

+8

+9

+ 10

+ 11

+ 12

+ 13

+ 14

+ 15

+ 16

»

p

MEM 1+0

+ 1

+2
16

> +3 ASCII
CHARAC- ,.

+4 TERS

+5

+6

+7
-

,

+8

+9

+ 10
- - --

+ 11

+ 12
- p-

> +13
- 1-

+ 14
- -

+ 15

+ 16

Algorithm

BXBINY goes through 16 iterations to convert each of the bits in the input value

to an ASCII 30H or 31 H (zero or one). The value to be converted is put into

register pair HL from the parameter block. For each iteration, HL is shifted left

56

one bit position. The carry is set if the bit shifted out is a one, or reset if the bit

shifted out is a zero.

The carry is tested and either a 30H {0) or 31 H (1) is stored in the next buffer

position. A pointer to the buffer is picked up from the parameter block and
maintained in the DE register pair; it is incremented by one as each result byte

is stored. The buffer is filled from low-order memory address to high-order

memory address, corresponding to the processing of the bits from HL.

If the binary value to be converted was 0000000000001101, the buffer would
contain 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 30H, 31 H,

31H, 30H, 31H, OOH on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXBINY
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 43680 VALUE TO BE CONVERTED
+ 22 50000•+400
MEMORY BLOCK 1 LOCATION? 50000
MEMORY BLOCK 1 VALUES?
-+ 2
+ 220
+ A 2
+ (^ ?
•* 8 2
+

^
4

6
8
10
12
14
16
17

255

INITIALIZE BUFFER FOR EXAMPLE

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUTi
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+ 8
MEMB1+ 9
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMBi+

160
170
80
195

10
11

12

14
15
16 255

OUTPUTS
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMBi+
MEMB1+
MEMB1+
MEMB1+ 8
MEMB1+ 9
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEM8i+
MEMB1+
MEMB1+

160
170
80
195.

49
"

48
49
48
49
48
49
48
49
48
49
48

" UNCHANGED

10
n
12 48
13 48
14 48
15 48
16

- RESULT OF 1010101010100000 IN ASCII

TERMINATOR

NAME OF SUBROUTINE?

57

Notes

1. Leading ASCII zeroes may be present in the result.

2. No invalid result may occur.

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDE5
7F06 CD7F0A
7K09 E5
7F0A DDEl
7F0C DD6E00
7F0F DD6601
7F12 DD5E02
7F15 DD5603
7F18 0610
7F1A 3E30
7F1C 29
7F1D 3001
7F1F 3C
7F20 12
7F21 13

7F25 12
7F26 DDEl
7F28 El
7F29 Dl
7F2A CI
7F2B Fl
7F2C C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400

mtis
00430
00440
00450
00460
00470
00480
00490
00500

ERRORS

ORG 7F00H 5 0522

* BINARY TO ASCII BINARY CONVERSION. CONVERTS A 16-BIT *
* BINARY VALUE TO A STRING OF ASCII ONES AND ZEROES
* TERMINATED BY A NULL.
* INPUT! HL=> PARAMETER BLOCK
* PARAM+0j+l=16-BIT VALUE
* PARAM+2»+3=BUFFER ADDRESS
* OUTPUTiBUFFER FILLED WITH 16 ASCII ONES AND ZER-
* OES, TERMINATED BY NULL
************* ****it****«# #^Ht#«^^#^j^Hj^t^^^j^fjH^^^j^j^^^j^^^^^,^^^^

BXBINY PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD

BXB010 LD
ADD
JR
INC

BXB020 LD
INC

LD
POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX
0A7FH
HL
IX
L, (IX+0)
H) (IX+1)
E, (IX+2)
D, <IX+3)
B«16
Ai30H
HL.HL
NC,BXB020
A
(DE) 1 A
DE
BXB010
A
(DE))

A

IX
HL
DE
BC
AF

iSAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

;PUT VALUE INTO HL

;PUT BUFFER ADD IN DE

J 16 ITERATIONS
; ASCI I ZERO
ISHIFT VALUE LEFT 1 BIT
;G0 IF ZERO BIT
! ASCI I ONE NOW IN A
; STORE ONE OR ZERO
; POINT TO NEXT SLOT
SLOOP 'TIL END

;ZERO
; STORE NULL
; RESTORE REGISTERS

! RETURN TO CALLING PROG

BXBINY DECIMAL VALUES

24^, 197» 213» 229. 221. 229. 205. 127. 10. 229,
221» 225. 221, 110, 0, 221, 102, 1, 221, 94,
2, 221. 86, 3, 6, 16. 62. 48. 41, 48.
1, 60, 18, 19, 16, 246, 175, 18. 221. 22=).
225, 209, 193, 241. 201

CHKSUM= 34

58

BXDECL: BINARY TO ASCII DECIMAL CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

BXDECL converts a 16-bit binary number to a string of ASCII decimal digits.

Each character in the string will be in the range of ASCII through 9 {30H
through 39H). The result string will be 5 bytes long, and is terminated with a

byte of all zeroes. The user must specify a buffer area of 6 bytes to hold the
result string. The conversion is an "unsigned" conversion of the 16-bit value.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for

BXDECL The first two bytes of the parameter block contain the 16-bit binary
value to be converted, in standard Z-80 16-bit representation, least significant

byte followed by most significant byte. The next two bytes of the parameter
block contain the buffer address for the 6-byte buffer that will hold the result.

On output, the buffer has been filled with the resulting string of ASCII charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT

1 1

1

POINTER TO PARAM+0
1

1

M+0

+ 1

16-BIT VALUE
TO BE

CONVERTED
-

+2

+3

BUFFER
ADDRESS
(MEM 1+0)

-

OUTPUT

H L
1

^ UNCHANGED

PARA

\

M+0

+ 1

+2

+3

'

- UNCHANGED - -

- UNCHANGED -

>
/

MEM 1+0

+ 1

+2

+3

+4

+5

RESERVED
FOR

RESULT

»

MEM 1+0
5

+1

+2

AS
- CHAR/

>CM
kCTERS --

> +3

+4

+S

Algorithm

BXDECL goes through 5 iterations to convert the input values. The value to be

converted is put into register pair HL from the parameter block. For each Itera-

59

tion, a power of ten is subtracted from the contents of HL, starting with the

largest power of ten that can be held in the T6-bit input value, 10000. Subse-

quent powers subtracted are 1000, 100, 10, and 1.

The first operation subtracts 10,000 as many times as possible from the original

value. For each subtract, a count is incremented. If the original value were
34,567, for example, the first operation would subtract 10,000 from 34,567 four

times. On the fourth time, the result would "go negative" indicating that no
additional subtracts of the power could be done.

The count minus one is then added to 30H to yield the proper ASCII digit of 30H
through 39H. This ASCII digit is then stored in the buffer. This operation is

repeated for the five powers of ten involved.

BXDECL uses a subroutine called SUBPWR. 5UBPWR is called to perform the

subtracts. SUBPWR is entered with BC containing the negated power of ten to

be subtracted and the current "residue" of the value to be converted in HL. A
count of -1 is initially put into A. This count is incremented for each subtract.

As each subtract is done, a test is made of the result, if it is negative, an add is

done to restore the last result in HL. A value of 30H is then added to the value of

A and the result is stored in the buffer. The pointer to the buffer is then incre-

mented by one.

SUBPWR returns to the code in BXDECL by testing the current power of ten. It

returns to one of five points at BXD010 through BXD050. This structure is nec-

essary to avoid use of CALL instructions, which are not relocatable.

The buffer is filled from low-order memory address to high-order memory ad-

dress, corresponding to the processing of the powers of ten.

If the binary value to be converted was 1010111111010011, the buffer would
contain 34H, 35H, 30H, 31 H, 31 H, OOH on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXDECL
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 12345 VALUE TO BE CONVERTED+22 50000+400
MEMORY BLOCK 1 LOCATION? 50000
MEMORY BLOCJ< 1 VALUES?
+ 020
^ ? ? ? r INITIALIZE BUFFER FOR EXAMPLE
+ 410
+ 5 1 255_
+ 600
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 45000
SUBROUTINE EXECUTED AT 45000
input: output:
HL= 40000 HL- 40000
PARAM+ 57 PARAM+ 57

"

PARAM+ 1 48 PARAM+ 1 48
PARAM+ 2 80 PARAM+ 2 80 ^ "ESULTOF 12345 IN ASCII

PARAM+ 3 195 PARAM+ 3 195

60

MEMBi+ MEMB1+ 49 n
MEMB1+ 1 MEMB1+ 1 50
MEMB1+ 2 MEMB1+ 2 51 -UNCHANGED
MEMBI+ 3 MEMBI+ 3 52
MEMB1+ 4 MEriBl+ 4 53
MEMB1+ 5 255 MEMB1+ 5

NAME OF SUBROUTINE?

Notes

1. Leading ASCII zeroes may be present In the result.

2. No invalid result may occur.

Program Listing

7F00

7F00
7F01
7F02
7F03
7F04
7F06
7F09
7F0A
7F0C
7F0F
7F12
7F15
7F18
7F1B
7F1D
7F20
7F22
7F25
7F27
7F2A
7F2C
7F2F
7F31
7F32
7F33
7F35
7F36
7F37
7F3S
7F39
7F3A
7F3C
7F3D
7F3E
7F40

F5
€5
D5
E5
DDES
CD7F0A
E5
DDEl
DDAE00
DD6601
DD5E02
DD5603
01F0D8
ISID
OUBFC
1818
019CFF
1813
01 FAFF
180E
01FFFF
1809
AF
12
DDEl
El
Dl
CI
Fl
C9
3EFF
3C
09
38FC
B7

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560

ORG 7F00H !B522

* BINARY TO ASCII DECIMAL CONVERSION. CONVERTS A 16-BIT*
* BINARY VALUE TO A STRING OF ASCII DECIMAL DIGITS TER-*
* MINATED BY A NULL, *
* INPUT: HL=.> PARAMETER BLOCK *
* PARAM+0. +1=^16 BIT VALUE *
* PARAM+2»+3=BUFFER ADDRESS #
* OUTPUT:BUFFER FILLED WITH 5 ASCII DIGITS* TERM- »
* INATED BY NULL #

BXDECL

BXD010

BXD020

BXD030

BXD040

BXD050

SUBPWR
SUB010

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
JR

JR
LD
JR
LD
JR
LD
JR
XOR

POP
POP
POP
POP
POP
RET
LD
INC
ADD
JR
OR

AF
BC

HL
IX
0A7FH
HL
IX
L» <IX+0)
H» (IX+1)
El (IX+2)
D» (IX+3)
BC, -10000
SUBPWR
BC»-1000
SUBPWR
BC»-100
SUBPWR
BC»-10
SUBPWR
BC-l
SUBPWR
A
(DE) 1 A
IX
HL
DE
BC
AF

Ai0FFH
A
HL,BC
C,SUB010
A

!SAVE REGISTERS

!***GET PB LOC'N***
; TRANSFER TO IX

!PUT VALUE INTO HL

!PUT BUFFER ADD IN DE

10 TO THE FOURTH
FIND FIRST DIGIT
10 TO THE THIRD
FIND SECOND DIGIT
10 TO THE SECOND
FIND THIRD DIGIT
10 TO THE FIRST
FIND FOURTH DIGIT
10 TO THE ZEROTH
FIND LAST DIGIT
ZERO
STORE NULL
RESTORE REGISTERS

; RETURN TO CALLING PROG
;-l TO A
;bump digit count

'

; subtract pwr of ten
?g0 if not negative
; clear carry

61

7F41 ED42 00570 SBC HL»BC ! RESTORE LAST RESULT
7F43 C630 00580 ADD A»30H ; CONVERT TO ASCII
7F45 12 00590 LD (DE) T A ; STORE IN BUFFER
7F46 13 00600 INC DE ; POINT TO NEXT SLOT
7F47 79 00610 LD AiC !GET LSB OF PWR
7F48 FEF0 00620 CP 0F0H STEST FOR -10000
7F4A 28D1 00630 JR Z»eXD010 ;G0 IF -10000
7F4C FE18 00640 CP 18H ;TEST FOR -1000
7F4E 2SD2 00650 JR Z,BXD020 ;G0 IF -1000
7F50 fe:9C 00660 CP 9CH ;TEST FOR -100
7F52 2SD3 00670 JR Z»BXD030 ;G0 IF -100
7F54 FEF6 00680 CP 0F6M ;TEST FOR -10
7F56 28D4 00690 JR Z»BXD040 ;G0 IF -10
7F58 i8D7 00700 JR BXD050 ;MUBT BE -1

0000 00710 END
00000 TOTAL ERRORS

BXDECL DECIMAL VALUES

245) 197, 213, 229, 221* 229* 205, 127, 10, 229;
221, 225, 221* 110, 0, 221, 102* 1, 221* 94*
2, 221, 86* 3* 1* 240* 216* 24* 29, 1,

24* 252* 24* 24* 1* 156, 255, 24* 19, 1*

246, 255, 24, 14, 1* 255* 255* 24, 9, 175,
18* 221* 225* 225* 209* 193, 241* 201* 62* 255*
60, 9, 56, 252, 183, 237, 66, 198* 48* 18*
19, 121 , 254* 240* 40* 209* 254, 24, 40* 210,
254, 156, 40, 211, 254, 246, 40* 212, 24, 215

CHKBUM= 190

BXHEXD: BINARY TO ASCII HEXADECIMAL CONVERSION

System Configuration

Model I, Model III, Model II Stand Alone.

Description

BXHEXD converts a 16-bit binary nunnber to a string of ASCII hexadecimal

digits. Each character in the string will be in the rangeof ASCII through 9 (30H

through 37H) or ASCII A through F (41 H through 46H). The result string will be

4 bytes long, and is terminated with a byte of all zeroes. The usermust specify a

buffer area of 5 bytes to hold the result string.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for

BXHEXD. The first two bytes of the parameter block contain the 16-bit binary

value to be converted, in standard Z-80 16-bit representation, least significant

byte followed by most significant byte. The next two bytes of the parameter

block contain the buffer address for the 5-byte buffer that will hold the result.

62

On output, the buffer has been filled with the resulting string of ASCII charac-

ters, terminated by a null. The parameter block contents remain unchanged.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

16-BIT VALUE
TO BE

CONVERTED

+2

+3

BUFFER
ADDRESS
(MEM 1+0)

PARAM+0

+ 1

+2

+3»

-- UNCHANGED --

OUTPUT

UNCHANGED

-- UNCHANGED --

MEM 1+0

+ 1

+2

+3

+4

RESERVED
FOR

RESULT

Algorithm

BXHEXD goes through 4 iterations to convert each of the bits in the input value

to an ASCII 30H through 39H (zero through nine) or 41 H through 46H (A through

F). The value to be converted is put into register pair HL from the parameter

block. For each iteration, HL is shifted four bit positions with the four bits from

the shift going into the four least significant bits of the A register.

A test is then made of the value in A. If it is in the range through 9, a "bias"

value of 30H is set aside. If it is in the range of 10 through 15, a bias value of

37H is saved. The bias value is then added to the contents of A, converting the

three bits to an ASCII octal digit of 30H through 39H or 41 H through 46H. The

ASCII character Is then stored in the user buffer. A pointer to the buffer is picked

up from the parameter block and maintained in the DE register pair; it is incre-

mented by one as each result byte is stored. The buffer is filled from low-order

memory address to high-order memory address, corresponding to the process-

ing of the bits from HL,

If the binary value to be converted was 1111000000111101, the buffer would

contain 45H, 30H, 33H, 44H, OOH on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXHEXD
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 4660 VALUE TO BE CONVERTED

63

+22 50000
+ 400
MEMORY BLOCK 1

MEMORY BLOCK 1

+ 020
+ 220
+ 4 1 255
+ 500
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777

LOCATION? 50000
VALUES?

- INITIALIZE BUFFER FOR EXAMPLE

INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+

52
IS
80
195

255

OUTPUT i

HL- 40000
PARAM+
PARAM+ I

PARAM+ 2
PARAM+ 3
MEMB1+
MEMB1+ 1

MEMB1+ 2
MEMB1+ 3
MEMB1+ 4

52
IB
80

49
50
51

TERMINATOR

-UNCHANGED

~ RESULT OF 1234 IN ASCII

NAME OF SUBROUTINE?

Notes

1. Leading ASCII zeroes may be present in the result.

2. No invalid result may occur.

Program Listing

7F00 00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

7F00 F5 00220
7F01 C5 00230
7F02 D5 00240
7F03 E5 00250
7F04 DDE5 00260
7F06 CD7F0A 00270
7F09 E5 00280
7F0A DDEl 00290
7F0C DDAE00 00300
7F0F DDA601 00310
7F12 DD5E02 00320
7F15 DD5603 00330
71 18 0604 00340
7F1A AF 00350
VF 1

B

29 00360
7F1C 17 00370
Vf ID 29 00380
7F.IE 17 00390
7F1F 29 00400

ORG 7F00H ;0522

;« BINARY TO ARrTT MPYAncrr tmai /^<-.M(ii!rcif>T/M. j~.^^..,^^^^ .:« BINARY TO ASCII HEXADECIMAL CONVERSION. CONVERTS A
;* 16-BIT BINARY VALUE TO A STRING OF ASCII HEX DIGITS
;* TERMINATED BY A NULL.
:* INPUT: HL=> PARAMETER BLOCK
;* PARAM+0»+l=16"BIT VALUE
'* PARAM+2»+3=BUFFER ADDRESS
1* OUTPUTrBUFFER FILLED WITH FOUR ASCII HEX DIGITS,
>* TERMINATED BY NULL
;******#*^^*#***^^**^nn^^nn^^(.^^^f^J^^^f^^^^^.^^^^^^^^^^^^^^^^^^^^^^^

BXHEXD

BXH010

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
XOR
ADD
RLA
ADD
RLA
ADD

AF
BC
DE
HL
IX
0A7FH
HL
IX
L) (IX+0)
H» (IX+1)
E» (IX+2)
D» <IX+3>
B»4
A
HL , HL

HL I HL

HL.HL

5SAVE REGISTERS

;#**GET PB LOC'N***

;PUT VALUE INTO HL

;PUT BUFFER ADD IN DE

; ITERATION COUNT
;ZERO A
;SHIFT OUT BIT
;SHIFT INTO A

LEFT

64

7F2(8 17 00410 RLA
7F21 29 00420 ADD HL » HL
7F22 17 00430 RLA
7F23 F5 00440 PUSH AF
7F24 QE3Q 00450 LD C,30H
7F26 D60A 004^0 SUB 10

7F2a CB7F 00470 BIT 7,

A

7F2A 2002 00480 JR HI . BXH020
7F2C 0E37 00490 LD C,37H
7F2E Fl 00500 BXH020 POP AF
7F2F 81 00510 ADD AjC
7F30 12 00520 LD < DE) » A

7F31 13 00530 INC DE
7F32 10E6 00540 DJNZ BXH010
7F34 AF 00550 XOR A
7F35 12 00560 LD (DE > 1 A
7F36 DDEl 00570 POP IX

7F38 El 00580 POP HL
7F39 Dl 00590 POP DE
7F3A CI 00600 POP BC
7F3B Fl 00610 POP AF
7F3C C9 00620 RET
Qoaizi 00630 END
00(300 TOTAL ERRORS

;SAVE 4 BITS
; ASCI I ZERO
',TEST FOR 0-9
;test sign
;G0 IF 0-9
; ADJUSTMENT FOR A - F
? RESTORE ORIGINAL BITS
;ADD in ASCII BIAS
; STORE CHARACTER
; POINT TO NEXT SLOT
SLOOP 'TIL 4

;ZERO
; STORE NULL
? RESTORE REGISTERS

; RETURN TO CALLING PROG

BXHEXD DECIMAL VALUES

245

»

197, 2i3» 229, 221, 229 , 205 , 127 , 10,
221

»

225, 221, U0, 0, 221, 102, 1, 27 1, 94
2i 2 21, 86, 3, 6, 4, 175i 41 , 23, 41,
23

»

41, 23, 41 , 23, 245, 14, 48, 214, 10,
203. 127, 32, 2, 14! 55, 241 , 1 29 , 18, 19,
16. 230, 175, 18, 221, 225, 225, 209, 193,
201

CHKSUM= 231

>29!

241

BXOCTL: BINARY TO ASCII OCTAL CONVERSION

System Configuration

Model I, Model Ml, Model II Stand Alone.

Description

BXOCTL converts a 16-bit binary number to a string of ASCII octal digits. Each

character in the string will be in the range of ASCII through 7 (30H through

37H). The result string will be 6 bytes long, and is terminated with a byte of all

zeroes. The user must specify a buffer area of 7 bytes to hold the result string.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block for

BXOCTL. The first two bytes of the parameter block contain the 16-bit binary

value to be converted, in standard Z-80 16-bit representation, least significant

byte followed by most significant byte. The next two bytes of the parameter

block contain the buffer address for the 7-byte buffer that will hold the result

65

On output, the buffer has been filled w/lth the resulting string of ASCII charac-
ters, terminated by a null. The parameter block contents remain unchanged.

INPUT OUTPUT

POINTER TO PARAM+0

PARAM+0

+ 1

1 6-BIT
VALUE

+2

+3

POINTER
- TO BUFFER --

(MEM 1+0)

^

-- UNCHANGED --

UNCHANGED

-- UNCHANGED --

MEM 1+0

+ 1

+2

+3
-

RESERVED
FOR

RESULT

+4

+5

+6

+7

p

MEM 1+0

+ 1

+2

RESULT
IN

ASCII

> +3
.

+4

+5

+6

+7

Algorithm

BXOCTL goes through 6 iterations to convert each of the bits in the input value

to an ASCII 30H through 37H (zero through seven). The value to be converted is

put into register pair HL from the parameter block. For each iteration except the

first, HL is shifted three bit positions with the three bits from the shift going into

the three least significant bits of the A register. (The first iteration performs only

one shift to handle the leading octal digit of or 1.)

A value of 30H is then added to the contents of A. This converts the three bits to

an ASCII octal digit of 30H through 37H. The ASCII character is then stored in

the user buffer. A pointer to the buffer is picked up from the parameter block

and maintained in the DE register pair; it is incremented by one as each result

byte is stored. The buffer is filled from low-order memory address to high-order

memory address, corresponding to the processing of the bits from HL.

If the binary value to be converted was 1000000000001101, the buffer would
contain 31 H, 30H, 30H, 30H, 31 H, 35H, OOH on return.

Sample Calling Sequence

NAME OF SUBROUTINE? BXOCTL
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000

66

PARAMETER BLOCK VALUES?
+ 02 12345 VALUE TO BE CONVERTED = 03(W71 OCTAL
+2 2 45000
+ 400
MEMORY BLOCK 1 LOCATION? 45008
MEMORY BLOCK 1 VALUES?
+ 1 255
+ 1 1 255
+ 2 1 255
+ 3 1 255 - INITIALIZE BUFFER FOR EXAMPLE
+ 4 1 255
+ 5 1 255
+ 6 1 255
+ 7

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777
INPUT: OUTPUT:
HL= 40000 HL= 40000
PARAM+ 57 PARAM+ 57
PARAM+ 1 48 PARAri+ 1 48
PARAM+ 2 200 PARAM+ 200
PARAM+ 3 175 PARAM+ 3 175
MEMB1+ 255 MEMB1+ 48
MEMB1+ 1 255 MEMB1+ 1 51
MEMB1+ ^ 255 MEMB1+ ^ 48
MEMB1+ 3 255 MEMBi+ 3 48 -RESULT = 03W71 IN ASCII

MEMBi+ 4 255 MEMBi+ 4 55
MEMBi+ 5 255 MEMB1+ 5 49 _
MEMB1+ 6 255 NEMB1+ 6 TERMINATOR

NAME OF SUBROUTINE?

Notes

1. Leading ASCil zeroes may be present in the result.

2. No invalid result may occur.

3. The most significant ASCII character will alu'ays be either a zero (30H) or

a one (31 H) since 16 bits is not an integer multiple of 3 bits.

Program Listing

7F00

7F00 F5
7F01 C5
7FB2 D5
7F03 E5
7F04 DDES
7F06 CD7F0A
7F09 E5
7F0A DDEl

00100
00U0
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290

ORG 7F00H ;0522
********#*****«*****#***#*»***»*«*«#«#####«»«*«*»*#**
* BINARY TO ASCII OCTAL CONVERSION. CONVERTS A 16-BIT «
* BINARY VALUE TO A STRING OF ASCII OCTAL DIGITS TERM- *
* INATED BY A NULL.
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0»+l=16-BIT VALUE *
* PARAM+2i+3=BUFFER ADDRESS *
* OUTPUTSBUFFER FILLED WITH SIX ASCII OCTAL DIG- *
* ITS TERMINATED BY NULL *
»*********####*******#*#**#####*******»**********#*««*

BXOCTL PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

AF
BC
DE
HL
IX
0A7FH
HL
IX

SSAVE REGISTERS

;***GET PB LOC'N***

67

7F0C DD6E00
7F0F DD6601
7Fi2 DD5E02
7F15 003603
7F18 0606
7F1A AF
7F1B 1805
7F10 AF
7F1E 29
7F1F 17
7F20 29
7F21 17
7F22 29
7F23 17
7F24 0E30
7F26 81
7F27 12
7F28 13
7F29 10F2
7F2B AF
7F2C 12
7F2D DDE!
7F2F El
7F30 Dl
7F31 CI
7F32 Fl
7F33 C9
0000
00000 TOTAL

00300 LD Li<IX+0)
00310 LD H,(IX+l)
00320 LD Ej<IX+2)
00330 LD Di (IX+3)
00340 LD B.6
00350 XOR A
00360 JR BXO020
00370 BXO010 XOR A
00380 ADD HL , HL
00390 RLA
00400 ADD HLiHL
00410 RLA
00420 BXO020 ADD HL»HL
00430 RLA
00440 LD C»30H
00450 ADD A)C
00460 LD (DE) 1

A

00470 INC DE
00480 DJNZ BXO010
00490 XOR A
00500 LD (DE>iA
00510 POP IX
00520 POP HL
00530 POP DE
00540 POP BC
00550 POP AF
00560 RET
00570 END

ERRORS

!PUT VALUE INTO HL

;PUT BUFFER ADD IN DE

i ITERATION COUNT
iZERO A
;FOR FIRST DIGIT

;2ER0 A
iSHIFT OUT BIT LEFT
jshift into a

S ASCI I ZERO
;ADD in ASCII BIAS
; STORE CHARACTER
! POINT TO NEXT SLOT
SLOOP 'TIL 6

!2ER0
; STORE NULL
! RESTORE REGISTERS

;RETURN TO CALLING PROG

BXOCTL DECIMAL VALUES

245 5 197'p :

221 » 225 » :

2» 221 » 86'

41) 23, 41
19, 16, 24:
241, 201

10,

94;

;13, 229, 221, 229, 205, 127,
:2.t, 110, 0, 221, 102, 1, 221
3, 6, 6, 175, 24, fJ5 i75»
23, 41, 23, 14, 48, 129, 18,

') 175, 18? 221, 225t 225, 209* 193<

CHKSUM= 10

CHKSUM: CHECKSUM MEMORY

System Configuration

Model I, Model III, Model II Stand Alone.

Description

CHKSUM checksums a block of memory for verification of data. The checksum
performed is a simple additive 8-bit checksum.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block define the starting address for the block of

memory to be checksummed in standard Z-80 address format, least significant

68

byte followed by most significant byte. The next two bytes of the parameter

block contain the number of bytes in the block to be checksummed.

On output, HL contains the checksum of the block of memory.

INPUT

H L

OUTPUT

1
1

1

POINTER TO PARAM+0
1

)

M+0

+ 1

POINTER TO
h START OF
BLOCK {MEM 1+0)

-

+2

+3
OF BYTES
IN BLOCK

-

»

CHECKSUM

M+0

+ 1

- UNCHANGED - -

+2

+3
- UNCHANGED - -

MEM 1+0

+ 1

+2
BYTES
TO BE

. CHECKSUMMED .

+3

+4

+5
- '

+6

MEM 1+0
- j-

+ 1

+2
_

> +3 UNCHANGED

+4
"

+5

+6

/4/gor/thm

The CHKSUM subroutine first picks up the number of bytes in the block and

puts it into the HL register pair. Next, the starting address is put into the IX

register. The A register is cleared for the checksum.

The loop atCHKOlO adds in each byte from the memoy block. The count in HL

is decremented by a subtract of one in BQ and the pointer in IX is adjusted to

point to the next memory byte.

Sd.r(\p\e Calling Sequence

NAME OF SUBROUTINE? CHKSUM
HL VALUE? 4300(3
PARAMETER BLOCK LOCATION? 43000
PARAMETER BLOCK VALUES?
•+•0 2 45000 START OF BLOCK
4- 2 2 8 8 BYTES IN BLOCK

4 4

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?
+ t

+ 1 .4C

+ 2 4
+ 3
+ 4

B
16

- SAMPLE DATA

+ ^ 32
4- 6 64
4- 7 :2B
+ B

69

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 46000
SUBROUTINE EXECUTED AT 46000
input: OUTPUT
HL= 43000 HL= 255 CHECKSUM = 1 +2 + 4.

PARAM+ 200 PARAM+ 200~
PARAM+ 1 175 PARAM+ 1 175
PARAM+ 2 8 PARAM+ 2 8
PARAM+ 3 PARAM+ 3
MEMB1+ 1 MEMB1+ 1

MEMB 1 +

MEMB1+
1

4
MEMB1+
MEMB1+

1

2
2
4

- UNCHANGED

MEMB1+ 3 8 MEMB1+ 3 8
MEMB1+ 4 16 MEMB1+ 4 16
MEMB1+ 5 32 MEMB1+ 5 32
MEMB1+ 6 64 MEMBI+ 6 64
MEMB1+ 7 128 MEMB1+ 7 128

. + 128

NAME OF SUBROUTINE?

Notes

1. TheCHKSUM subroutine is used to compute the checksum for all subrou-
tines in this book.

Program Listir^g

7F00 00100
00110
00120
00130
00140
00150
00160
00170
00180

7F00 F5 00190
7F01 C5 00200
7F02 D5 00210
7F03 DDE5 00220
7F05 CD7FBA 00230
7F0B E5 00240
7F09 DDEl 00250
7F0B DD6E02 00260
7F0E DD6603 00270
7F11 DD5E00 00280
7F14 DD5601 00290
7F17 D5 00300
7F18 DDEl 00310
7F1A 010100 00320
7F1D AF 00330
7F1E DD8600 00340
7F21 DD23 00350
7F23 B7 00360
7F24 ED42 00370
7F26 20F6 00380
7F28 6F 00390
7F29 2600 00400
7F2B DDEl 00410
7F2D Dl 00420
7F2E CI 00430
7F2F Fl 00440

ORG 7F00H !0522

;* CHECKSUM MEMORY. CHECKSUMS A BLOCK OF MEMORY. *
;* INPUT: HL=>PARAMETER BLOCK *
^* PARAM+0i+l=STARTING ADDRESS OF BLOCK
'* param+2)+3=# of bytes in block *
;* output:hl===additive checksum #

CHKSUM

CHK010

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
LD
LD
PUSH
POP
LD
XOR
ADD
INC
OR
SBC
JR
LD
LD
POP
POP
POP
POP

AF
BC
DE
IX

0A7FH
HL
IX
L, <IX+2)
H» (IX+3)
E, (IX+0>
D, (IX + 1>
DE
IX
BC. 1

A
Ai (IX+0)
IX
A
HL.BC
NZiCHK010
Lf A
Hi0
IX
DE
BC
AF

;SAVE REGISTERS

?***GET PB LOC'N***
! TRANSFER HL TO IX

;GET # OF BYTES

!GET STARTING ADDRESS

; TRANSFER TO IX

; DECREMENT VALUE
i CLEAR CHECKSUM

; CHECKSUM
;BUMP ADDRESS PNTR
J CLEAR CARRY
; DECREMENT COUNT
;G0 IF NOT DONE

;M0VE CHECKSUM TO HL

! RESTORE REGISTERS

70

7F30 C39AaA 00450
7F33 C9 00460
B000 00470
00000 TOTAL ERRORS

JP
RET
END

0A9AH ;***RETURN STATUS***
iNON-BASIC RETURN

CLEARS: CLEAR SCREEN

CHKSUM DECIMAL VALUES

245) 197) 213) 221» 229) 205) 127) 10i 229) 221
225j 221) 110) 2. 221) 102) 3) 221» 94) 0)

221) S6) 1) 213) 221f 225) 1) It 0) 175)
221) 134) 0) 221) 35) 183) 237) 66) 32) 246)
111) 38) 0) 221) 225) 209) 193) 241) 195) 154)
10) 201

CHKSUM= 245

System Configuration

Model I, Model 111.

Description

CLEARS clears the video screen or outputs a given character to fill the screen,

For a clear screen, the character Is normally a blank {20H), or a graphics "all

off" character (080H).

Input/Output Parameters

On input, the HL register pair contains the character to be used in the fill, (The

L register contains the 8-bit character while the H register contains zero,) On

output, the screen has been cleared or filled.

INPUT

H L

FILL CHAR ^

OUTPUT

UNCHANGED

Algorithm

The CLEARS subroutine is similar to a "fill memory" subroutine except that the

memory to fill is defined as 3C00H through 3FFFH.

The start of video display memory, 3C00H, is put into HL and the character for

the fill is transferred to B. The loop at CLE010 fills a byte at a time. For each fill,

the video display memory pointer is incremented by one and the contents of

the H register are tested. If H holds 40H, the last screen location has been filled.

71

Sample Calling Sequence

NAME OF SUBROUTINE? CLEARS
HL VALUE? 65 CLEAR CHARACTER OF "A"
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT: OUTPUT!
HL- 65 HL- 65 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. The CLEARS subroutine clears the screen in approximately 21 miilisec-

onds.

Program Listing

7F0B

7FB0 F5
7F0X C5
7F02 E5
7F03 CD7F0A
7F06 45
7F07 21003C
7F0A 70
7F0B 23
7F0C 7C
7F0D FE40
7F0F 20F9
7F11 El
7F12 Ci
7F13 Fi
7F14 C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330

ERRORS

ORG 7F00H ;0520

* CLEAR SCREEN. CLEARS THE SCREEN OR FILLS THE SCREEN *
* WITH ANY GIVEN CHARACTER.

^^

* input: HL=CHARACTER FOR CLEAR, NORMALLY 20H OR 80H »

CLEARS

CLE010

PUSH
PUSH
PUSH
CALL
LD
LD
LD
INC
LD
CP
JR
POP
POP
POP
RET
END

AF
EC
HL
0A7FH
B,L
HL»3C00H
(HL) » B
HL
AiH
40H
NZ,CLE010
HL
BC
AF

;SAVE REGISTERS

;**«GET CLEAR CHAR***
; transfer to b
; start of screen address

;fill screen byte
?BUMP screen pointer
;6ET MS BYTE OF POINTER
STEST FOR END+1
; CONTINUE IF NOT END

? RESTORE REGISTERS

; RETURN TO CALLING PROGRAM

CSCLNE: CLEAR SCREEN LINES

CLEARS DECIMAL VALUES

245, 197, 229, 205, 127, 10, 69, 33, 0, 60,
112, 35, 124, 254, 64, 32, 249, 225, 193, 241,
201

CHKSUM= 89

System Configuration

Model I, Model III.

72

Description

CSCLNE clears from one to 16 screen lines with blank (20H) characters. The

lines cleared may be any set of contiguous lines on the screen, starting with any

given line.

Input/Output Parameters

On input, the H register contains the start line number, fromO through 15, and

the L register contains the end line number, from through 15. On output, the

designated screen lines have been cleared and HL Is unchanged.

INPUT

H L

START LINE
0-15

END LINE
0-1

B

^

OUTPUT

H

UNCHANGED

Algorithm

The CSCLNE subroutine first finds the total number of lines involved in the

clear. The start line number is subtracted from the end line number, and this

value is incremented by one. Next, this line count is multiplied by 64 to find the

total number of video display memory bytes to be cleared (CSCOIO).

The starting video memory location is then found by multiplying the starting

line number by 64 (CSC020) and adding this value to the screen start location of

3C00H.

The loop at CSC030 stores a blank character in the screen locations involved.

HL contains the pointer to screen memory, which is incremented each time

through the loop, and DE contains the number of screen bytes to be filled. The

count in DE is tested for zero by the "load and OR" operation.

Sample Calling Sequence

NAME OF SUBROUTINE? CSCLNE
HL VALUE? 1800 START LINE = 7, END LINE = 8

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 55000
SUBROUTINE EXECUTED AT 55000
INPUT: OUTPUT:
HL= 1B00 HL= 1800 UNCHANGED

NAME OF SUBROUTINE?

Notes

1. Use the CLEARS subroutine to clear the entire screen.

2. No check is made on the validity of the line numbers in HL. If the wrong

values are used, the system may crash.

3. The end line number must be greater or equal to the start line number.

4. Use an 80H in location 7F23H for a "graphics" clear.

73

Program Listing

7F00

7F00
7F01
7F02
7F03
7F04
7F07
7F0B
7F09
7F0A
7FaB
7F0C
7F0E
7F10
7F11
7F13
7F14
7F15
7F16
7F17
7F19
7Fie
7F1C
7F1E
7F21
7F22
7F24
7F25
7F26
7F27
7F28
7F2A
7F2B
7F2C
7F2D
7F2E
0000
00000

F5
C5
D5
E5
CD7F0A
E5
7D
94
3C
6F
2600
0606
29
10FD
E5
Dl
El
6C
2600
0606
29
10FD
01003C
09
3620
23
IB
7A
B3
20F8
El
Dl
CI
Fl
C9

TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530

ERRORS

ORG 7F00H ;0522

;* CLEAR SCREEN LINE. CLEARS THE SCREEN FROM A GIVEN *
;* START LINE THROUGH A GIVEN END LINE. *.* input: HL=START LINE(H)» END LINE(L) 0-15 *
;* output: SCREEN LINES CLEARED WITH BLANKS *

CSCLNE PUSH
PUSH
PUSH
PUSH
CALL
PUSH
LD
SUB
INC
LD
LD
LD

CSC010 ADD
DJNZ
PUSH
POP
POP
LD
LD
LD

CSC020 ADD
DJNZ
LD
ADD

CSC030 LD
INC
DEC
LD
OR
JR
POP
POP
POP
POP
RET
END

AF

DE
HL
0A7FH
HL
A»L
H
A
Lt A
H*0
B*6
HLiHL
CSC010
HL
DE
HL
LiH
Hi0
B»6
HLjHL
CSC020
BC.3C00H
HL»BC
(HL)

,
'

'

HL
DE
AiD
E
NZ,CSC030
HL
DE
BC
AF

SSAVE REGISTERS

;#*#GET LINE NOS***
;SAVE
SEND LINE NUMBER
; END-START
; TOTAL NUMBER OF LINES
; TOTAL TO L
SNOW IN HL
; ITERATION COUNT

J# LINES * 64=# CHARS
SLOOP 'TIL DONE

? TRANSFER # CHARACTERS
SNOW IN DE
SORieiNAL LINE #S
; START LINE #
!NOW IN HL
J ITERATION COUNT

5FIND DISPLACEMENT
SLOOP 'TIL DONE

S START OF SCREEN
5FIND START MEMORY LOC'N

S STORE BLANK
SBUMP SCREEN POINTER
5 DECREMENT COUNT
STEST COUNT

SGO IF DE NE ZERO
S RESTORE REGISTERS

S RETURN TO CALLING PROG

CSCLNE DECIMAL VALUES

245? 197* 213i 2:^9) 205) 127) 10) 229) 125i
60) ill) 38) 0» 6) 6) 41) 16» 253) 229)
209) 225) 108) 38) 0) 6) 6» 41* 16) 253)
It 0) 60, 9, 54, 32) 35) 27, 122;
32, 246, 225, 209, 193, 241, 201

148i

179.

CSTRNG: STRING COMPARE

CHKSUM^ 138

System Configuration

Model I, Model III, Model II Stand Alone.

74

Description

CSTRNG compares two strings and tests for equality, string 1 < string 2 and
string 1 > string 2. By ''string/' we mean two blocks of memory that may or

may not be of equal length containing byte-oriented data. This includes not

only the BASIC definition of character strings, but other types of data as well,

such as two strings of binary data. The comparison is an "unsigned" compari-
son where bytes in the range 080H through OFFH are considered larger than

zero.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block holds the number of bytes in string 1. The next two
bytes contain the address of string 1 in standard Z-80 address format, least

significant byte followed by most significant byte. The next byte in the parame-

ter block holds the number of bytes in string 2. The next two bytes are the

address of string 2 in Z-80 address format. The next byte of the parameter block

{PARAM+ 6) is reserved for the result of the comparison.

On output, PARAM+6 holds a zero if the strings are equal, a minus number if

string! < string2, or a positive number if string 1 > string2. For two strings of

unequal length where the longer string holds the shorter string as a "substring,"

the result in PARAM+6 is negative if string 1 is shorter, or positive if string 2 is

shorter.

INPUT OUTPUT

POINTER TO PARAM+0
1

4> UNCHANGED

PARAM-l-0 # BYTES STRING 11

+ 1

+2

ADDRESS
- OF STRING 1 --

(MEM 1+0)

+3 # BYTES STRING 2

+4

+5

ADDRESS
- OF STRING 2 --

(MEM 2+0}

+6 RESERVED
FOR RESULT

PARAM+0

+ 1

+2

+3

+4

+5

+6

^

-- UNCHANGED --

UNCHANGED

UNCHANGED

-- UNCHANGED --

RESULT: 0==SAME,
1 = 1>2.-1= 1<2

MEM 1+0

+ 1

+2

+3

+4

+5

+6

STRING
1

»

MEM 1+0

+ 1

+2

+3

+4

+5

+6

UNCHANGED

75

MEM2+0

+ 1

+2 STRING
2

MEM2+0

+1

+2

UNCHANGED+3

. _

> +3

+4

+5

+6

+4

+5

+6

Algorithm

The CSTRNG subroutine first compares the lengths of string 1 and string 2. It

puts the snnallest length value into the B register (CST010) and the comparison
result of string 1 length—string 2 length in the C register.

Next, the address of string 2 is put into the lY register and the address of string 1

into the HL register.

The code at CST020 is the connparison loop. A subtract of each consecutive
byte of the strings is done. Two conditions result from the subtract. If the sub-
tracts are zero for the total number of bytes of the shorter string, the size com-
parison in C is put into the result. If this size comparison was zero, the strings

are of equal length and are identical. If the size comparison was not zero, the
comparison value reflects the "substring" condition detailed above.

If any subtract is not zero, the strings are unequal, and a jump to CST040 puts
the sense of the comparison in the result.

Sample Calling Sequence

NAME OF SUBROUTINE? CSTRNG
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

3 BYTES IN STRING 1

STRING 1 ADDRESS
5 BYTES IN STRING 2

STRING 2 ADDRESS

3
45000
5

46000

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK I VALUES?
+ 011
+- 1 1 255 -STRING 1

+ 2 1 3 _
+-3
MEMORY BLOCK 2 LOCATION? 46000
MEMORY BLOCK 2 VALUES?
+ 011

1 X 254
-STRING 2

MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUT: OUTPUT:
HL= 40000 HL= 40000

76

PARAM+ (Z) 3 PARAM+ 3

PARAM+ 1 200 PARAM+ 1 200
PARAri+
PARAM+

2
3

175
5

PARAM+
PARAM+

2
3

175
5

-UNCHANGED

PARAM+ 4 176 PARAM-H 4 176
PARAri+ -J 179 PARAM+ 5 179_
PARAM+ 6 PARAM+ 6 1 RESULT: STRING
MEMB i + i MEMB1+ 1

-

MEMB1+ 1 255 MEMB1+ 1 255
MEMB 1

+

2 3 HEMB1+ 2 3
MEMB2+
MEMB2+ I

1

254
MENB2+
MENB2+ 1

1

254 -UNCHANGED

MEMB2+ jr„ 3 MEMB2-I" 2 3
MEMB2+ 3 4 MEMB2+ 3 4
MEMB2+ 4 5 MEMB2-+- 4 5

NAME OF SUBROUTINE?

Notes

1, The maximum number of bytes in either string may be 256, represented by

in the # of bytes parameter.

2. Output is a signed number at PARAM+6.

Program Listing

7F00

7F0B
7F01
7F02
7F03
7F05
7F07
7F0A
7F0B
7F0D
7F10
7Fi2
7F15
7F18
7F1A
7F1C
7F1F
7F21
7F23
7F25
7F28
7F2B
7F2C
7F2E

F5
C5
E5
DDES
FDE5
CD7F0A
E5
DDEl
DD4600
0E00
DD7E00
DDBE03
280B
3807
DD4603
0E0i
1802
0EFF
DD6E04
DD6605
E5
FDEl
DD6E01

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450

ORG 7F00H ;0520

* STRING COMPARE. COMPARES TWO STRINGS.
* INPUT: HL=> PARAMETER BLOCK
* PARAM+0=# BYTES OF STRING 1

* PARAM+l»+2-ADDRESS OF STRING 1

^ PARAM+3==# BYTES OF STRING 2
* PARAM+4»+5=ADDRESS OF STRING 2
* PARAM+6=RESERVED FOR RESULT
* OUTPUT !PARAM+6-0 IF STRINGS ESUALi - IF
* STRINGKSTRING2. + IF STRINGl >STRING2
#*#*•*#***»***»**

CSTRNG

CST005
CST010

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
CP
JR
JR
LD
LD
JR
LD
LD

PUSH
POP
LD

AF
BC
HL
IX
lY
0A7FH
HL
IX
B» (IX+0)
C»0
A) (IX+0)
<IX+3)
ZjCST010
C»CST005
Bi (IX+3>
Cil
CST010
C»-l
L» (IX+4>
H) (IX+5)
HL
lY
L. (IX+1)

;SAVE REGISTERS

5**-#GET PB ADDRESS***
; TRANSFER TO IX

;# OF 1

?STRING1=STRING 2 FLAG
!GET # BYTES OF STRING 1

;# OF 1"# OF 2
;G0 IF STRINGS EQUAL LEN
;G0 if # 0F i<# OF 2
;GET SMALLER #
;STRING 1>STRING 2

jSTRING KSTRING 2 CASE
;GET ADDRESS OF STRING 2

;transfer to IY

;GET ADDRESS OF STRING 1

77

7F31 006602 00460 LD H. {IX+2)
7F34 7E 00470 CST020 LD A. <HL)
7F35 FD9600 00480 SUB <IY+0)
7F38 2008 00490 JR NZ»CST040
7F3A 23 00500 INC HL
7F3B FD23 00510 INC lY
7F3D 10F5 00520 DJNZ CST020
7F3F 79 00530 LO A»C
7F40 1806 00540 JR CST05a
7F42 3E01 00550 CST040 LD A»l
7F44 3002 00560 JR NC>CST050
7F46 3EFF 00570 LO A»-l
7F48 007706 00580 CST050 LD (IX+6),A
7F4B FOEl 00590 POP lY
7F4D DDEl 00600 POP IX
7F4F El 00610 POP HL
7F5(a CI 00620 POP BC
7F51 Fl 00630 POP AF
7F52 C9 00640 RET
0000 00650 ENO

iGET STRING 1 BYTE
; COMPARE
;G0 IF NOT EQUAL
)BUMP STRING 1 POINTER
;eUMP STRING 2 POINTER
5 LOOP IF EQUAL

;GET SIZE COMPARISON

;STRING 1>STRING 2
;G0 IF OK
;STRING KSTRING 2
S STORE IN RESULT
; RESTORE REGISTERS

; RETURN TO CALLING PROGRAM

CSTRNG DECIMAL VALUES

245> 197, 229, 221, 229, 253, 229, 205'
229, 221, 225, 221, 70, 0, 14, 0, 221,
0, 221, 190, 3, 40, 11, 56, 7, 221, 7B:
3, 14, 1, 24, 2, 14, 255, 221, 110, 4,

127'

126,

221, 102, 5» 229,
102, 2, 126, 253,
35 5 16, 245, 121

t

62, 255, 221, 119i
193, 241, 201

101

253* 225, 221, 110» 1* 221,
150, 0, 32, 8, 35, 253,
24 T 6t 62 T It 48, 2,
6, 253, 225, 221, 225, 225,

CHKSUM= 55

DELBLK: DELETE BLOCK

System Configuration

Model 1, Model III, Model 11 Stand Alone.

Description

DELBLK deletes a block in the middle of a larger block of memory. The block is

deleted by moving up all bytes after the deletion block as shown below. This

subroutine could be used for deleting a block of text, for example, and moving
the remaining text into the deleted block. Both the "larger block" and "dele-

tion block" may be any size up to the limits of memory.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the larger block in

standard Z-80 address format, least significant byte followed by most significant
byte. The next two bytes are the address of the deletion block in Z-80 address

78

format. The next two bytes of the parameter block (PARAM+4,+ 5) contain the

number of bytes in the larger block; the next two bytes contain the number of

bytes in the deletion block. Both are in standard Z-80 format.

On output, the contents of the parameter block remain unchanged. The dele-

tion block has been deleted by a move of the remaining bytes of the larger

block Into the deletion area.

INPUT OUTPUT

H

POINTER TO PARAM+0

PARAM4H3

+ 1

START ADDRESS
- OF LARGER --

BLOCK (MEM1+0)

+2

+3

START ADDRESS
OF DELETE --

BLOCK

+4

+5

OF BYTES
IN LARGER
BLOCK

+6

+7

OF BYTES
IN DELETE
BLOCK

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

P

-- UNCHANGED --

-- UNCHANGED --

UNCHANGED
1

-- UNCHANGED --

-- UNCHANGED --

MEM 1+0

+ 1

+2

+3

START
ADDRESS-

OF
DELETE
BLOCK

LAST-1

LAST

/

LARGER
BLOCK

DELETE X^ BLOCK / y

»

MEM 1+0

+ 1

+2

+3

^
LAST-1

UST

LARGER
BLOCK
WITH
DELETE
BLOCK
DELETED

A\%on\hm

The DELBLK subroutine performs the deletion by doing a block move of the

remaining bytes of the larger block into the deletion area. At the LDIR, HL

contains the address of the location directly after the deletion block,^ DE con-

tains the address of the deletion block, and BC contains the number of bytes

remaining in the larger block after the deletion block.

79

The destination location (DE) is simply the deletion block address. This is saved
for the LDIR in the stack. The source location (HL) is found by adding the

deletion block address and the size of the deletion block. This is then pushed
into the stack for LDIR use. The number to move is found by subtracting the

source location (HL) from the last location of the larger block plus one.

Sample Calling Sequence

NAME OF SUBROUTINE? DELBLK
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

4^j000
45003
:L0

3

START OF LARGER BLOCK
START OF DELETION BLOCK
10 BYTES IN LARGER BLOCK
3 BYTES IN DELETION BLOCK

MEMORY BLOCK 1 LOCATION? 45000
MEMORY BLOCK 1 VALUES?

1

3
4
5

6
7
S
9
10

DELETION BLOCK -LARGER BLOCK

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777
INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM-f-

PARAM+
PARAM+
PARAM+
MEMBi+
MEME1+ 1

MEMB1+
MEMB 1

+

MEriBl +
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMBi+

200
175
203
175
10

3

1

2
3
4
5
6
7
8
9

OUTPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+
PARAM+
PARAM+
PARAM-i"

PARAM+
PARAM+
MEMB1+
MEMB1+
MEMBi+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+ B
MEMB1+ 9

200
175
203
175
10

3

1

2
6
7
8
9 .

7
e
9

-NEW BLOCK

-GARBAGE BYTES

NAME OF SUBROUTINE?

Notes

1. The maximum number of bytes in either block may be 65,535.

2. There will be a number of "garbage" bytes at the end of the larger block

after the move.

80

Program Listing

7F00

7F0B C5
7F01 D5
7F02 E5
7F03 DDES
7F05 CD7F0A
7F08 E5
7F09 DDEl
7F0B DD6E02
7F0E DD6603
7F11 E5
7F12 DD4E06
7F15 DD4607
7F18 09
7F19 E5
7F1A DD6E00
7F1D DD6601
7F20 DD4E04
7F23 DD4605
7F26 09
7F27 Dl
7F28 B7
7F29 ED52
7F2B E5
7F2C CI
7F2D El
7F2E EB
7F2F EDB0
7F31 DDEl
7F33 El
7F34 Dl
7F35 CI
7F36 C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540

ERRORS

ORG 7F00H !0522
#************#****#***##****«#########^^f^t^t^nnt^^^t^f
* DELETE BLOCK. DELETES BLOCK IN MIDDLE OF LARGER BLOCK*

INPUT: HL=> PARAMETER BLOCK #
PARAM+0,+l=START ADDRESS OF LARGER BLOCK *
PARAM+2,+3=START ADDRESS OF DELETE BLOCK *
PARAM+4.+5=# OF BYTES IN LARGER BLOCK *
PARAM+6»+7=# OF BYTES IN DELETE BLOCK *

OUTPUT: DELETE BLOCK DELETED BY MOVING UP REMAIN- #
DER OF LARGER BLOCK #

DELBLK PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
PUSH
LD
LD
ADD
PUSH
LD
LD
LD
LD
ADD
POP
OR
SBC
PUSH
POP
POP
EX
LDIR
POP
POP
POP
POP
RET
END

BC

HL
IX
0A7FH
HLh

IX
L» <IX+2)
H» (IX+3>
HL
Cj (IX+6)
Bi (IX-*-7)

HLjBC
HL
L, (IX+0)
Hi (IX+1)
C) (IX+4)
B» <IX+5)
HL.BC
DE
A
HLjDE
HL
BC
HL
DEjHL

IX
HL

BC

;SAVE REGISTERS

;***6ET PB ADDRESS***
? TRANSFER TO IX

5 PUT DELETE BLK ADD IN HL

JDESTINATION FOR LDIR
;PUT SIZE OF DEL BLK IN BC

;FIND SOURCE LOC'N
;SAVE FOR LDIR
SPUT START INTO HL

;GET size of large BLOCK

;LAST LOC'N + ONE
;GET source LOCATION
; CLEAR CARRY
SFIND # TO MOVE
; TRANSFER TO BC

!GET DESTINATION
;SWAP DE AND HL

;M0VE 'EM
; RESTORE REGISTERS

? RETURN TO CALLING PROG

DRBOXS: DRAW BOX

DELBLK DECIMAL VALUES

197i 213) 229, 221) 229) 205) 127) 10, 229) 221
225) 221, 110, 2, 221, 102, 3, 229, 221, 78,
6) 221) 70) 7, 9) 229) 221 > 110) 0) 221

)

102, 1) 221, 78) 4) 221, 70, 5, 9, 209,
183) 237) 82) 229, 193) 225, 235, 237, 176) 221
225) 225, 209, 193, 201

CHKSUM= 186

System Configuration

Model I, Model III.

81

Description

DRBOXS draws a rectangle on the video display. The rectangle may start at any

screen position and may be any size as long as it does not overrun the screen

boundaries. The rectangle is drawn on a character position basis.

Input/Output Parameters

On Input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the upper left-hand corner character posi-

tion (x) from to 63. The next byte of the parameter block contains the upper

left-hand corner line position (y) from to 15. The next byte of the parameter

block contains the width of the rectangle in character positions, 2 to 63. The

next byte of the parameter block contains the height of the rectangle in charac-

ter positions, 2 to 16.

On output, the contents of the parameter block remain unchanged. The box

has been drawn on the screen.

INPUT

H

POINTER TO PARAM+0

OUTPUT

H

UNCHANGED

PARAM-l-0 UPPER LFT X

+ 1 UPPER LFT Y

+2 WIDTH IN CP

+3 HEIGHT IN CP

PARAM-l-0

+ 1

+2

+3P

UNCHANGED

UNCHANGED

UNCHANGED

UNCHANGED

Algorithm

The DRBOXS subroutine contains two smaller subroutines called DRBWH and

DRBWV. DRBWH draws a horizontal line, while DRBWV draws a vertical line.

Both are not in the standard subroutine form because CALLs to the subroutine

would not be relocatable.

DRBWH is entered from DRBOXS with HL containing the memory location

that represents the leftmost character position for the horizontal line to be

drawn, with B containing the width in character positions, and with C contain-

ing a flag for the return point.

DRBWV is entered from DRBOXS with HL containing the memory location

that represents the topmost character position for the vertical line to be drawn,

with B containing the height in character positions, and with C containing a

flag for the return point.

In DRBOXS proper, there are four steps to draw the box. A call is made to

DRBWH to draw the top line, a call is made to DRBWV to draw the right-hand

line, a call is made to DRBWV to draw the left-hand line, and finally, a call is

made to DRBWH to draw the bottom line.

First, the starting line position (y) is picked up and multiplied by 64 (DRBOIO).

The result Is added to the character position (x) and to the start of the screen

82

location {3C00H). This result is the memory location representing the corner

point. It is saved in the stack.

A call is then made to DRBWH to draw the top line. The return is made to

DRB020.

HL now points to one location greater than the end of the line. HL is decre-

mented and a call is made to DRBWV to draw the right-hand side. The return is

made to DRB030.

The original corner location is now picked up from the stack, and a call is made
to DRBWV to draw the left-hand line. The return is made to DRB040.

HL now points to one line greater than the bottom of the line. HL is decre-

mented, and a call is made to DRBWH to draw the bottom line. The return is

made to DRB050.

Sample Calling Sequence

-UPPER LEFTX,Y = 32,8

NAME OF SUBROUTINE? DRBOXS
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 1 ;32

-t I 1 s .

+ 2 1 12 WIDTH = 12

+ 314 HEIGHT = 4
"f 4

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38888
SUBROUTINE EXECUTED AT 38888

OUTPUT:
HL== 40000

INPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

3ji'

8
12
4

PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

32
8
12
4

-UNCHANGED

Notes

1. If the parameters cause the rectangle to exceed screen limits, the system
may be "bombed."

2. The top and bottom lines are wider than the side lines in the rectangle.

Program Listing

7F0B 00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

ORG 7F00H ;0522

* DRAW BOX. DRAWS BOX OF GIVEN WIDTH AND HEIGHT AT *
* SPECIFIED LOCATION. *
* INPUT: HL==> PARAMETER BLOCK *
* PARAM+0=UPPER LEFT CORNER CHAR PCS (X) *
* PARAM+1=UPPER LEFT CORNER LINE # (Y> *

* PARAM+2=WIDTH IN CHARACTER POSITIONS *
* PARAM+3=HEIGHT IN CHARACTER POSITIONS *
* OUTPUT: BOX DRAWN ON SCREEN ' »

83

7F00 C5
7r01 D5
7F02 E5
7F83 00E5
7F05 CD7F0A
7F08 E5
7F09 DDEl
7F0B DD6E01
7F0E 2600
7F10 0606
7F12 29
7F13 10FD
7F15 DD4E00
7F18 0680
7FIA 09
7F1B 01003C
7F1E 09
7F1F E5
7F20 DD4602
7F23 0E00
7F25 181C
7F27 2B
7F28 004603
7F2B 1821
7F2D El
7F2E DD4603
7F31 0EB1
7F33 1819
7F35 B7
7F36 £052
7F38 DD4602
7F3B 1806
7F3D DDEl
7F3F El
7F40 Dl
7F41 CI
7F42 C9
7F43 36BF
7F45 23
7F46 10FB
7F48 CB41
7F4A 2808
7F4C 18EF
7F4E 114000
7F51 36BF

19
10FB

7F56 CB41
7F5B 26D3
7F5A 18D9
0000
00000 TOTAL

7F53
7F54

00220
00230
00240
00238
88260
00270
00280
88298
00300
00310
00320
08338
00340
00350
00360
88378
00380
88398
80400
00410
00420
88438
80448
88450
00460
88470
08488
00490
00500
00518
00520
00530
00540
08558
00568
88578
00588
08598
00600
00610
08628
88630
00640
00650
00660
00670
00680
00690
00700
00710
00720

ERRORS

DRBOXS

DRB0I0

ORB820

DRB030

DRB040

DRB050

ORBWH

DRBWV
DRBWVl

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
ADD
DJNZ
LD
LD
AOO
LD
ADD
PUSH
LD
LD
JR
DEC
LD
JR
POP

LD
JR
OR
SBC
LD
JR
POP
POP
POP
POP
RET
LD
INC
OJNZ
BIT
JR
JR
LD
LD
ADD
DJNZ
BIT
JR
JR
END

BC
DE
HL
IX
0A7FH
HL
IX
L, (IX+ 1)
H»0
Bi6
HLjHL
DRB010
Ci (IX+8)
Bv8
HL*BC
BCi 3C00H
HLfBC
HL
B, (IX+2>
Ct0
DREWH
HL
B, (IX+3)
DRBWV
HL
B) (IX+3)
C» J

DRBWV
A
HLjDE
Bj (IX+2)
DRBWH
IX
HL

BC

(HL>i0BFH
HL
ORBWH
01 C
ZfORB020
DRB85B
DE»40H
(HL) I0BFH
HLiDE
DRBWV

1

0tC
Z»DRB030
DRB040

ISAVE REGISTERS

?**#GET PB LOC'N***
! TRANSFER TO IX

;GET Y IN LINES
J NOW IN HL
ITERATION COUNT

;FIN0 LINE DISPLACEMENT
SLINE # * 64

;GET char POSITION
JNOW IN BC
iFIND DISPL FROM START
; START OF SCREEN
;FIND ACTUAL MEMORY LOC'N
5BAVE LOC'N
;eET WIDTH IN CHAR POSNS
SFLAG FOR RETURN
JDRAW TOP LINE
? POINT TO END OF LINE
;GET HEIGHT IN CHAR POSNS
;DRAW RIGHT SIDE
?GET UPPER LEFT CORNER LOC
;GET HEIGHT IN CHAR POSNS
;FLAG for RETURN
!DRAW LEFT SIDE
; CLEAR CARRY
? POINT TO END OF LINE
?GET WIDTH IN CHAR POSNS
;DRAW BOTTOM LINE
! RESTORE REGISTERS

; RETURN TO CALLING PROG
?SET CHAR POBN TO ALL ON
;H0RIZ INCREMENT
;L00P 'TIL LINE DONE

jtest flag
;rtn point 1

)rtn point 2
increment for vertical ln

;SET CHAR POSN TO ALL ON
;POINT TO NEXT POSITION
?LOOP 'TIL LINE DONE

?TEST FLAG
;RTN POINT 1

?RTN POINT 2

DRBOXS DECIMAL VALUES

197? 213? 229i 221* 229» 205 » 127t 10< 229? :

225? 221 1 1.101 1) 38 J 0) ht 6) 41. 16)
253* 221* 78t 0» 6i 0» 9? Xt 0> 60»
9» 229? 221 » 701 2* 14i 0i 24i 28) 43)
221) 70) 3) 24) 33) 225) 221) 70) 3) 14)
1) 24) 25) 183i 237) 82» 221) 70) 2) 24)
6) 221) 225) 225) 209) 193) 201) 54) 191) 35'

16) 251) 203) 65) 40) 219? 24? 239? 17j 64?
0) 54) 191) 25) 16) 251) 203) 65? 40) 211?
24

;l?

CHKSUM= 128

84

DRHLNE: DRAW HORIZONTAL LINE

Configuration

Model I, Model III.

Description

DRHLNE draws a horizontal line on the screen. The line nnay be any length and
nnay start on any character position of any screen line.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the starting x character position of the

line, from to 63. The leftmost character position of the line must be specified.

The next byte of the parameter block contains the starting line number y of the

line, from to 15. The next byte of the parameter block contains the number of

character positions in the line length. This will be a maximum of 64 for a line

that starts at the left edge of the screen.

On output, the parameter block contents are unchanged. The horizontal line

has been drawn.

INPUT

H L
+

POINTER TO PARAM+0 ^

PARAM+0 X, 0-63

+ 1 Y, 0-15

+2 LENGTH

PARAM+0

+1

+2

P

OUTPUT

UNCHANGED

UNCHANGED

UNCHANGED

UNCHANGED

Algorithm

The DRHLNE subroutine performs the move by computing the starting address

of the line in video display memory and by controlling the operation with the

count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is

multiplied by 64 to find the number of bytes (displacement) from the start of

video display memory. This value is added to 3C00H to find the actual video

memory address for the line start. This value is added to the character position

of the start from the parameter block to find the starting position in video

display memory.

A byte of OBFH is stored for each character position in the line. The current

video display memory position in HL is then incremented to find the next

location of the line. A count of the number of character positions involved is

then decremented and a jump is made to DRH020 if the count is not zero.

85

Sample Calling Sequence

NAME OF SUBROUTINE? DRHLNE
HL VALUE? 50000
PARAMETER BLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?
+0 1 1
H- 1 i

i5_^X,Y = 0, 15

+ 2 1 64 LENGTH =64
+ 300
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 45000
SUBROUTINE EXECUTED AT 45000
INPUT:
HL= 50000
PARAM-t-

PARAM+ 1 15
PARAM+ 2 64

OUTPUT;
HL= 5B000
PARAM+
PARAM+ 1

PARAM+ 2
15 h UNCHANGED
64

NAME OF SUBROUTINE?

Notes

1. The program may "bomb" the system if the length of travel goes beyond
video display memory boundaries.

2. The program may "bomb" the system if the x and y coordinates are im-

properly specified.

3. Change location 7F22H to draw a narrower line.

Program Listing

7F00

7F00
7F01
7F02
7F04
7F07
7F08
7F0A
7F0D
7F0F
7FU
7FI2
7F14
7FI7
7F19
7F1A
7F1D
7F1E
7F21
7F23

C5

DDE5
CD7F0A

DDEl
DD6E01
2600
0606
29
10FD
DD4E00
0600
09
01003C
09
DD4602
36BF
23

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390

ORG 7F00H ;0522
#***************#***##**##*##*#***»########^t#^(.^t,^^^(,
* DRAW HORIZONTAL LINE. DRAWS A HORIZONTAL LINE FROM *
* GIVEN LINE (Y)i CHARACTER POSITION (X). *
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0=CHAR POSITION (X)» - 63 *
* PARAM+1=LINE NUMBER (Y>i 0-15 *
* PARAM+2=LENGiTH OF LINE IN CHAR POSITIONS #
* OUTPUT: LINE DRAWN *

DRHLNE

DRH010

DRH020

PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD

ADD
DJNZ

LD
ADD
LD
ADD
LD
LD
INC

BC
HL
IX
0A7FH
HL
IX
Li (IX+1

)

HfB
Bi6
HL»HL
DRH010
C» (IX-1'0)

Bt
HL,BC
BC»3C00H
HL t BC
B. (IX+2)
< HL) J 0BFH
HL

;SAVE REGISTERS

;**#GET PB LOC'N***
; TRANSFER TO IX

;GET LINE NUMBER
;NOW IN HL
; ITERATION COUNT

!MULTIPLY LINE # * 64
jLOOP TILL DONE

;GET CHAR POS'N (X)
;now in BC
; DISPLACEMENT FROM START
; START OF SCREEN
?FIND actual start LOC'N
;GET NUMBER OF CHAR POS'NS

;ALL on for CHAR POSITION
JBUMP POINTER

86

7F24 10FB
7F26 DDE

I

7F28 El
7F29 CI
7F2A C9
0000

00400
00410
00420
00430
00448
00450

00000 TOTAL ERRORS

DJNZ DRH020
POP IX
POP HL
POP BC
RET
END

;L00P 'TIL DONE
; RESTORE REGISTERS

; RETURN TO CALLING PROG

DRHLNE DECIMAL VALUES

197» 229, 221, 229, 205, 127, 10;
221* 110J 1, 38 J 0, 6, 6, 41t 16:
221? 78 5 0T 6 J 0, 9, 1, 0, 60 » 9i
221, 70, 2, 54, 191, 35, 16, 251,
225, 193, 201

229!
253!

221

221, 225'

CHKSUM= 10

DRVLNE: DRAW VERTICAL LINE

Configuration

Model i, Model III.

Description

DRVLNE draws a vertical line on the screen. The line may be any length and
may start on any character position of any screen line.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the starting x character position of the

line, from to 63. The topmost character position of the line must be specified.

The next byte of the parameter block contains the starting line numbery of the

line, from to 15. The next byte of the parameter block contains the number of

character positions in the line length. This will be a maximum of 16 for a line

that starts at the top of the screen.

On output, the parameter block contents are unchanged. The vertical line has

been drawn.

INPUT

POINTER TO PARAM+0 ^

PARAM+0 X, 0-63

+ 1 Y, 0-15

+2 LENGTH

PARAM+0

+ 1

+2

»

OUTPUT

H

UNCHANGED

UNCHANGED

UNCHANGED

UNCHANGED

87

Algorithm

The DRVLNE subroutine performs the move by computing the starting address

of the line in video display memory and by controlling the operation with the

count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is

multiplied by 64 to find the number of bytes (displacement) from the start of

video display memory. This value is added to a character position of the start

from the parameter block to find the displacement from the start of video dis-

play memory. This value is added to 3C0OH to find the actual video memory
address for the line start.

A byte of OBFH is stored for each character position in the line. The current

video display memory position in HL is then incremented by 40H to find the

next location of the I ine. A count of the number of character positions involved

is then decremented and a jump is made to DRV020 if the count is not zero.

Sample CaUing Sequence

NAME OF SUBROUTINE? DRVLNE
HL VALUE? 50000
PARAMETER BLOCK LOCATION? 30000
PARAMETER BLOCK VALUES?
+ 1 S^119
+ 215 LENGTH = 5

+ 300
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 40100
SUBROUTINE EXECUTED AT 40100
INPUT: OUTPUT:
HL= 50000 HL= 50000
PARAM+ 8 PARAM+ 8'
PARAM+ 1 9 PARAM+ 1 9 h UNCHANGEDPARAM+ 2 5 PARAM+ 2 5

"^ '^^^"'"'^^'^^

NAME OF SUBROUTINE?

Notes

1. The program may ''bomb" the system if the length of travel goes beyond
video display memory boundaries.

2. The program may "bomb" the system if the x and y coordinates are im-

properly specified.

Program Listing

7f-00 00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200

ORG 7F00H 5 0522
*#***#***#»*#*»#***##****#*****##**###«*#«#*#*##**##*
* DRAW VERTICAL LINE. DRAWS A VERTICAL LINE FROM *
* GIVEN LINE (Y), CHARACTER POSITION (X>, »
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0=CHAR POSITION < X) » - 63 *
* PARAM+1=LINE NUMBER (Y). 0-15 *
* PARAM+2=LEN6TH OF LINE IN CHAR POSITIONS *
* 0UTPUT:LINE DRAWN *

88

7F00 C5 00210 DRVLNE PUSH BC
7F01 D5 00220 PUSH DE
7F(32 E5 00230 PUSH HL
7F03 DDE5 00240 PUSH IX
7F05 CD7F0A 00250 CALL 0A7FH
7F08 E5 00260 PUSH HL
7F09 DDE I 00270 POP IX
7F0B DD6E01 00280 LD Lf <IX+ 1>
7FBE 2600 00290 LD Hf0
7F10 0606 00300 LD B»6
7FI2 29 00310 DRV010 ADD HLiHL
7F13 10FD 00320 DJNZ DRV010
7F15 DD4EQQ 00330 LD C» (IX+0)
7F18 0600 00340 LD Bf0
7F1A 09 00350 ADD HL.BC
7F1B ai003C 00360 LD BCi 3C00H
7F1E 09 00370 ADD HL.BC
7F1F DD4602 00380 LD B, (IX+2)
7F22 1 1 4000 00390 LD DEi40H
7F25 36BF 00400 DRV020 LD < HL) » 0BFH
7F27 19 00410 ADD HL.DE
7F28 lapB 00420 DJNZ DRV020
7F2A DDEl 00430 POP IX
7F2C El 00440 POP HL
7F2D Dl 00450 POP DE
7F2E CI 00460 POP BC
7F2F C9 00470 RET
0000 00480 END
00000 TOTAL ERRORS

;SAVE REGISTERS

;««*6ET PB LOC'N***
; TRANSFER TO IX

;GET LINE NUMBER
;now in HL
ITERATION COUNT

^MULTIPLY LINE # * 64
;LOOP TILL DONE

;GET CHAR POS'N (X)
ilNOW IN BC
; DISPLACEMENT FROM START
; START OF SCREEN
;FIND ACTUAL START LOC'N
;GET NUMBER OF CHAR POSNS
;LINE DISPLACEMENT

?ALL ON FOR CHAR POSITION
;FIND next POSITION
;L00P 'TIL DONE

; RESTORE REGISTERS

; RETURN TO CALLING PROG

DRVLNE DECIMAL VALUES

197» 213) 229, 221, 229, 205, 127, 10;

225, 221» 110, 1. 38» 0, 6, 6, 41, 16,

253t 221, 78» 0j 6, 0» 9? 1, 0, 60t
9» 221, 70» 2, 17, 64, 0, 54, 191, 25'

16, 251, 221, 225, 225, 209, 193, 201

DSEGHT: DIVIDE 16 BY 8

CHKSUM= 247

System Configuration

Model I, Model III, Model II Stand Alone.

Description

DSEGHT divides a 16-bit binary number by an 8-blt binary number. The divide

is an "unsigned" divide, v^here both numbers are considered to be absolute

numbers without sign. Both the quotient and remainder are returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the 16-bit dividend. The next byte of

the parameter block contains an 8-bit divisor. The next two bytes of the param-

eter block are reserved for the 1 6-blt quotient. The next byte is reserved for the

8-bit remainder.

89

On output, PARA+3, +4 hold the 16-bitquotient and PARA+5 holds the 8-bit

remainder. The contents of the rest of the paranneter block remain unchanged.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

1 6-BIT
DIVIDEND

+2 8-BIT DIVISOR

+3

+4

RESERVED
FOR

QUOTIENT

+5 RES. FOR REMAIN.

^

PARAM+0

+ 1

+2

+3

+4

+5

P

-- UNCHANGED --

OUTPUT

H L

UNCHANGED
1

UNCHANGED

1 6-BIT
QUOTIENT

8-BlT REMAINDER

Algorithm

The DSEGHT subroutine performs the divide by a "restoring" type of bit-by-bit

binary divide. The dividend is put into the HL register pair. The divisor is put
into the C register. The A register is cleared. For each of 16 iterations in the

divide, the HL register pair is shifted left one bit position into the A register. A
subtract of the divisor {Q from the "residue" in A is then done. If the result is

positive, a one bit is put into the least significant bit of HL. If the result is

negative, a zero bit is put into the least significant bit of HL, and the previous
value in A is restored by an add.

Quotient bits fill up the HL register from the right as the residue is shifted out
into the A register toward the left. At the end of 16 iterations, the HL register

pair contains the 16 quotient bits and the A register contains an 8-bit remainder.

The code at DSE010 is the main loop in DSEGHT which shifts HL left by an
"ADD HL,HL" and "ADC A,A." The Isb of HL is preset with a quotient bit of

one, and the subtract of C from A is done. If the result is positive, a loop to

DSE010 is done for the next iteration. If the result is negative, C is added back to

A, and the Isb of HL is reset. The B register holds the iteration count

Sample Calling Sequence

NAME OF SUBROUTINE? DSEGHT
HL VALUE? 42200
PARAMETER BLOCK LOCATION? 42200
PARAMETER BLOCK VALUES?
+ 02 60000 DIVIDEND
+ 2 1 111 DIVISOR
+ 32
+ 5 1

+ 60
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 43000
SUBROUTINE EXECUTED AT 43000
input: OUTPUT

:

HL= 42200 HL= 42200

90

PARAM+ 96 PARAM+ 96
PARAM+ 1 234 PARAM+ 1 234 -UNCHANGED
PARAM+ 2 111 PARAM+ 2 Hi
PARAM+
PARAM+

3
4 IS

PARAri+
PARAM+

3
4

28 "1

r, -QUOTIENT = 540

PARAM+ 5 PARAM+ 5 60 REMAINDER = 60

NAME OF SUBROUTINE?

Notes

1. Maximum dividend is 65,535. Maximum divisor is 255. The maximum
quotient will be 65,535 and the maximum remainder will be 255.

2. Division by causes an invalid result of OFFFFH.

Program Listing

7K00

7F00 F5
7F01 C5
7F02 E5
7F03 DDE5
7F05 CD7F0A
7F08 £5
7F09 DDEl
7F0B 0610
7F0D DD4E02
7F10 DD6E00
7F13 DD6601
7F16 AF
7F17 29
7F18 8F
7F19 2C
7F1A 91

7F1E 2D
7F1F 10F6
7F21 DD7503
7F24 DD7404
7F27 DD7705
7F2A DDEl
7F2C El

7F2D CI
7F2E FJ
7F2F C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390

ORG 7F0BH -0522

* DIVIDE 16 BY S- DIVIDES A 16--BIT UNSIGNED NUMBER BY *
AN 8-BIT UNSIGNED NUMBER TO GIVE A QUOTIENT AND RE- *
MAINDER

input: HL=> PARAMETER BLOCK
PARAM+0i+l=:16-BIT DIVIDEND
PARAM+2=8~BIT DIVISOR
PARAM+3»+4=RESERVED FOR QUOTIENT
PARAM+5=RESERVED FOR REMAINDER

OUTPUT :PARAM+3, +4 HOLDS 16-BIT QUOTIENT
PARAM+5 HOLDS 8~BIT REMAINDER

*****•****#******##**^(.^(.#^n^##^^^^nt^^*^^*****#***##^(.*#

DSEGHT

DSE010

00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

ERRORS

DSE020

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
XOR
ADD
ADC
INC
SUB

^Bd
DEC
DJNZ
LD
LD
LD
POP
POP
POP
POP
RET
END

AF
BC
HL
IX
0A7FH
HL
IX
Bi 16
C» (IX+2)
L» (IX+0)
Hi (IX+1)
A
UL » HL
Af A
L
C

NCvDSE020
AtC
L
DSE010
<IX+3)»L
(IX+4),H
(IX-i-5>)A
IX
HL
BC
AF

?SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

I ITERATION COUNT
;L0AD DIVISOR
!PUT DIVIDEND IN HL

; CLEAR EXTENSION REG
;SHIFT HL LEFT 1 BIT
;SHIFT A LEFT W/CARRY
5SET Q BIT TO I

; SUBTRACT D'SOR FROM D'END

; RESET Q BIT
SLOOP FOR 16 ITERATIONS

? STORE QUOTIENT

JSTORE REMAINDER
; RESTORE REGISTERS

; RETURN TO CALLING PROG

91

DSEGHT DECIMAL VALUES

DSSIXT: DIVIDE 16 BY 16

245? 197i 229! .Xt 229» ^05. 127) 10i ;29i

225j 6) 16, 221) 78) 2* 221i 110) 0) 221)
102) 1) 175) 41) 143) 44) 145) 48) 2, 129)
45) 16) 246) 221) 117) 3) 221» 116» 4) 221
119) 5) 221) 225) 225) 193) 241) 201

CHKBUM= 83

System Configuration

Model I, Mode! Ill, Model II Stand Alone.

Description

DSSIXT divides a 16-bit binary number by a 16-blt binary number. The divide is

an "unsigned" divide, where both numbers are considered to be absolute

numbers without sign. Both the quotient and remainder are returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the 16-bit dividend. The next two
bytes of the parameter block contain a 1 6-bit d ivisor. The next two bytes of the

parameter block are reserved for the 16-bit quotient. The next two bytes are

reserved for the 16-bit remainder.

On output, PARA -I- 4, + 5 hold the 1 6-bit quotient and PARA-I- 6, + 7 holds the

8-bit remainder. The contents of the rest of the parameter block remain un-

changed.

INPUT

POINTER TO PARAM+0

PARAM-h0

+ 1

16-BIT
DIVIDEND

+2

+3

16-BIT
DIVISOR

+4

+5

RESERVED
FOR

QUOTIENT

+6

+7

RESERVED
FOR

REMAINDER

:>

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

^

-- UNCHANGED --

-- UNCHANGED --

OUTPUT

H

UNCHANGED

16-BIT
QUOTIENT

16-BIT
REMAINDER-

92

Algorithm

The DSEGHT subroutine performs the divide by a "restoring" type of bit-by-bit

binary divide. The dividend is put into the DE register pair. The divisor is put

into the BC register pair. The HL register is cleared. For each of 16 iterations in

the divide, the DE register pair is shifted left one bit position into the HL register

pair. A subtract of the divisor (BC) from the "residue" in HL is then done. If the

result is positive, a one bit is put Into the least significant bit of DE. If the result

is negative, a zero bit is put into the least significant bit of DE, and the previous

value in HL is restored by an add.

Quotient bits fill up the DE register from the right as the residue is shifted out

into the HL register pair toward the left. At the end of 16 iterations, the DE
register pair contains the 16 quotient bits and the HL register contains a 16-bit

remainder.

The code at DSS020 is the main loop in DSSIXT which shifts DE left by an

exchange of DE and HL, an "ADD HL,HL," and an exchange back. HL is

shifted by an "ADC HL,HL," mergingany carry from DE. The Isbof DE is preset

with a quotient bit of one, and the subtract of BC from HL is done. If the result is

positive, a loop is made back to DSS020 for the next iteration. If the result is

negative, BC is added back to HL, and the Isb of DE is reset. The A register

holds the iteration count,

Sample Calling Sequence

NAME OF SUBROUTINE? DSSIXT
HL VALUE? 45000
PARAMETER BLOCK LOCATION? 45000
PARAMETER BLOCK VALUES?
+ 02 ,10000 DIVIDEND
^ 2 2 999 DIVISOR
+ 420
^ 6 2
H S
Ml liORY BLOCK J LOCATION?
MOVE SUBROUTINE TO? 50000
SUBROUTINE EXECUTED AT 50000
INPUT: OUTPUT:
HL= 45000 HL= 45000
PARAM+ 16 PARAM+ 16
PARAM+ 1

PARAM+ 2
39
231

PARAM+ 1

PARAM+- 2
39
231 ^UNCHANGED

PARAM+ 3 3 PARAM+ 3 3 _

PARAM+ 4
PARAM+ 5

PARAM+ 4
PARAM+ 5

10

_
-QUOTIENT =10

PARAM+ 6
PARAM+ 7

PARAM+ 6
PARAM+ 7

10
~

-REMAINDER =0

NAME OF SUBROUTINE?

Notes

1. Maximum dividend is 65,535. Maximum divisor is 65,535. The maximum

quotient will be 65,535 and the maximum remainder will be 65,535..

2. Division by causes an invalid result of OFFFFH.

93

Program Listing

7F00

7FB0 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDE5
7F06 CD7F0A
7F09 E5
7F0A DDEl
7F0C DD5E00
7F0F DD5601
7F12 DD4E02
7F15 DD4603
7F18 210000
7F1B 3E10
7F1D EB
7F1E 29
7F1F EB
7F20 ED6A
7F22 13
7F23 B7
7F24 ED42
7F26 3002
7F28 IB
7F29 09
7F2A 3D
7F2e 20F0
7F2D DD7304
7F30 DD7205
7F33 DD7506
7F36 DD7407
7F39 DDEl
7F3B El
7F3C Dl
7F3D Ci
7F3E Fl
7F3F C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600

ERRORS

ORG 7F00H S0522

* DIVIDE 16 BY 16. DIVIDES A 16-BIT UNSIGNED NUMBER BY *
A 16-BIT UNSIGNED NUMBER TO GIVE A QUOTIENT AND RE- »
MAINDER.

INPUT: HL=> PARAMETER BLOCK
PARAM+0i+I=16-BIT DIVIDEND
PARAM+2»+3=16~BIT DIVISOR
PARAM+4»+5==RESERVED FOR QUOTIENT
PARAM+6j+7~RESERVED FOR REMAINDER

OUTPUT :PARAM+4» +5 HOLDS 16-BIT QUOTIENT
PARAM+6,+7 HOLDS 16-BIT REMAINDER

****************************iiilr********1HHHHHt*1HHtit1HHHt1^it*

dssixt push
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

LD

LD
DSS020 EX

ADD
EX
ADC
INC
OR
SBC
JR
DEC
ADD

DSS030 DEC
JR
LD
LD
LD
LD
POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX
0A7FH
HL
IX
Ej (IX+0)
D? (IX+1)
Ci (IX+2)
B» (IX+3)
HLi0
A»16
DEiHL
HL»HL
DEiHL
HL»HL
DE
A
HLtBC
NC»DSS030
DE
HLfBC
A
NZ » DSS020
(IX+4)iE
<IX+5),D
(IX+6)»L
(IX+7)>H
IX
HL
DE
BC
AF

ISAVE REGISTERS

;#**GET PB LOC'N***
; TRANSFER TO IX

;PUT DIVIDEND INTO DE

SPUT DIVISOR INTO BC

!ZERO HL
; ITERATION COUNT

;DE TO HL
; SHIFT LEFT
!DE BACK
;SHIFT LEFT PLUS CARRY
iSET Q BIT TO 1

; CLEAR CARRY
;SUB DIVISOR FROM DIVIDEND
5 GO IF SUBTRACT OK
i RESET BIT
; RESTORE
;DECREMENT ITERATION CNT
5L00P FOR 16 ITERATIONS

;STORE QUOTIENT

! STORE REMAINDER

? RESTORE REGISTERS

; RETURN TO CALLING PROG

DSSIXT DECIMAL VALUES

245) 1971 213i
221i 225i 221:
2i 221i 70» 3i

41. 235» 237,

229 J 22 1) 229 j 205 » 1 27 j 1 *

94. 01 221 1 86i 1 1 221 1 78i
33j 0j 0. 625 16» 235i
106» 19» 183» 237. 66. 48. 2i

?29i

27i 9i 61. 32. 240.
5» 221. 117) 6. 221
209i 193. 241. 201

221. 115. 4.
116. 7. 221

221 »

225"
U4.
225

CHKSUM= 149

94

EXCLOR: EXCLUSIVE OR

System Configuration

Model I, Model III, Model II Stand Alone.

Description

EXCLOR performs an exclusive OR on two 8-bit operands.

Input/Output Parameters

On input, the H register contains operand number one and the L register con-

tains operand number two. On output, L contains the 8-bit result.

INPUT

OPERAND 1 OPERAND 2 ^

OUTPUT

H L

RESULT

Algorithm

The EXCLOR subroutine performs the exclusive OR by the XOR instruction and

returns the result in the L register with H set to zero.

Sample Calling Sequence

NAME OF SUBROUTINE? EXCLOR
HL VALUE? 13141 H = 51 = (W110011; L = 85 = 01010101
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 41111
SUBROUTINE EXECUTED AT 41111
INPUTi OUTPUTS
HL«= 13141 HL= 102 RESULT: 00110011 XOR 01010101=01100110

NAME OF SUBROUTINE?

Notes

1. BASIC contains no exclusive OR command.

Program Listing

7F00

7F00 F5
7F01 CDTFaA

00100 ORG 7F0BH 5 0522
001 10 ;***#*******************#*****«***#******************#*#*
00120 ;* EXCLUSIVE OR. PERFORMS EXCLUSIVE OR OF TWO EIGHT-BIT #

00130 ;* OPERANDS. *
00140 !* INPUT: HL=OPERAND 1 <H)» OPERAND 2 (L) #
00150 ;* output: HL=OPERAND 1 XOR OPERAND 2 *
00160 ;************•***#*********************•**###**##*********
00170 i

00180 EXCLOR PUSH AF 5 SAVE REGISTERS
00190 CALL 0A7FH ;***GET OPERANDS***

95

7F04 7C 00200 LD A)H
7F05 AD 00210 XOR L
7F06 6F 00220 LD LjA
7F07 2600 00230 LD Hv0
7F09 Fl 00240 POP AF
7F0A C39A0A 00250 JP 0A9AH
7F0D C9 00260 RET
0000 00270 END
00000 TOTAL ERRORS

; OPERAND 1

; OPERAND 1 XOR OPERAND
; RESULT NOW IN L
;NOW IN HL
;restore register
?***return argument***
; NON-BASIC RETURN

EXCLOR DECIMAL VALUES

FILLME: FILL MEMORY

2^':i»

195,
205 1

154'
127!! 10» 124 1 173) 11 It 38? 0» 241)
10) 201

CHKSUM== a:

System Configuration

Model I, Model III, Model II Stand Alone.

Description

FILLME fills a block of memory with a given 8-bit value. Up to 65,535 bytes of

memory can be filled.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the fill value to be used. The next two
bytes of the parameter block define the starting address for the block of memory
to be filled in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the

number of bytes in the block to be filled.

On output, the block of memory has been filled; the parameter block remains
unchanged.

INPUT

H L
1

POINTER TO PARAM+0

PARA

1

M+0 FILL CHARACTER

+ 1

+2

POINTER
TO MEM 1+0 "

-

+3

+4
BYTES TO

FILL
-

OUTPUT

H L

UNCHANGED

PARAM+0 UNCHANGED

+ 1

+2
- UNCHANGED --

+4
- UNCHANGED --

96

MEM 1+0 MEM1+0

+ 1 + 1

+2 AREA +2
- TO BE

FILLED
\

+3 > +3
_ /

+4 +4
- - J -

+5 " +5

+6 +6

AREA
FILLED
WITH

FILL CHAR-
ACTER

Algorithm

The FILLME subroutine first picks up the number of bytes in the block and puts

it into the BC register pair. Next, the starting address is put into the HL register

pair. The A register is then loaded with the fill character.

The loop at FILOIO fills each byte in the memory block. The count in BC is

decremented and the pointer in HL is adjusted to point to the next memory

byte.

Sample Calling Sequence

NAME OF SUBROUTINE? FILLME
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40008
PARAMETER BLOCK VALUES?
+ 1 65 "A" FILL CHARACTER
+ 12 50000 AREA TO FILL

+ 32 5 #0F BYTES
^ 5

MEMORY BLOCK 1 LOCATION ? 50000
MEMORY BLOCK 1 VALUES?
+ 02
+ 22
+ 42 -INITIALIZE FILL AREA F

+ 62
+ 80
MEMORY BLOCK 2 LOCATION1?
MOVE SUBROUTIhIE TO? 3S000
SUBROUTINE E>tE CUTED AT 38000
INPUT: OUTPUT:
HL=: 40000 HL= 40000
PARAM+ Q 65 PARAM+ 65
PARAM+ 1 80 PARAM+ 1 80
PARAM+ 2 195 PARAM+ 2 195
PARAM+ 3 5 PARAM+ 3 5
PARAM+ 4 PARAM+ 4
MEMBi+ MEMB1+ 65"

MEMB1+ 1 MEMBi+ 1 65
MEMB1+ 2 MEMB1+ 2 65 -F

MEMB1+ 3 MEMB1+ 3 65
MEMB1+ 4 MEMB1+ 4 65
MEMB1+ 5 MEMB1+ 5
MEMB1+ 6 MEMB1+ 6
MEMB1+ 7 MEMB1+ 7

FIVE"A"S FILLED

NAME OF SUBROUTINE?

97

Notes

1. The FILLME subroutine can be used to "zero" memory or to initialize the

video display.
*

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDES
7F06 CD7F0A
7F09 E5
7F0A DDEl
7F0C DD4604
7F0F DD4E03
7FI2 DD6602
7F15 DD6E01
7F18 DD7E00
7F1B 77
7F1C 23
7F1D 0B
7F1E 57
7FIF 78
7F20 BI
7F21 7A
7F22 20F7
7F24 DDEl
7F26 EI
7F27 Dl
7F28 CI
7F29 Fl
7F2A C9
0000
00000 TOTAL

00100
00U0
00120
00130
00140
00150
00160
00170
00 180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490

ERRORS

ORG 7F00H S0520

FILL MEMORY. FILLS A BLOCK OF MEMORY WITH A GIVEN *
* VALUE.
* INPUT!

*

HL=> PARAMETER BLOCK
PARAM+0=FILL CHARACTER
PARAM+1»+2=FILL STARTING ADDRESS
PARAM+3»+4=# OF BYTES TO FILL* 1

0=^65536
TO 65535,

*
* OUTPUT:eLOCK FILLED WITH GIVEN CHARACTER *

FILLME

FIL010

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

LD
LD
LD
LD
INC
DEC
LD
LD
OR
LD
JR
POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX
0A7FH
HL
IX
B, (IX+4)
C* <IX+3)
H5 (IX+2)
L, (IX+1)
A» (IX+0)
(HL) ,

A

HL
BC
DiA
A,B
C
AtD
NZ)FIL010
IX
HL
DE
BC
AF

SSAVE REGISTERS

5***GET PB LOC'N***
? TRANSFER HL TO IX

;PUT # OF BYTES IN BC

!PUT START IN HL

JPUT FILL CHARACTER IN A
;FILL BYTE
;BUMP POINTER TO NEXT
! DECREMENT COUNT
;SAVE A
;TEST BC

; RESTORE A
;G0. IF DONE

; RESTORE REGISTERS

; RETURN TO CALLING PROG

FILLME DECIMAL VALUES

245 J 197 » 213 J 229» 221 » 229» 205 i 127* 10i 229-
221) 225) 221 1 70) 4j 221) 78) 3) 221) 102)
2) 221) 110) 1) 221) 126) 0) 119) 35) 11)
87) 120) 177» 122j 32) 247» 221* 225) 225) 209)
193) 241) 201

CHKSUM= 17

98

_

FKBTST: FAST KEYBOARD TEST

System Configuration

Model I, Model III.

Description

FKBTST is a "fast" keyboard test that tests for any key press and for five special

keyboard keys, CLEAR, UP ARROW, DOWN ARROW, LEFT ARROW, and

RIGHT ARROW. FKBTST returns a zero if no key is being pressed, a negative

value if one of the special keys is being pressed, or a positive value if another

key is being pressed. It can be used for games control or any other application

where fast keyboard scanning is required.

Input/Output Parameters

No input parameters are required. On output, HL is returned with a zero for no

keypress,-! for CLEAR, -2 for UP ARROW, -3 for DOWN ARROW, -4 for

LEFT ARROW, and -5 for RIGHT ARROW, or + 1 through +127for other key

combinations.

INPUT

NONE
1

^

OUTPUT

H

KEY CODE OR

Algoritlim

The row address for the special keys is 3840H. This row is first read by an "LD
A,(3840H)." The contents of A are then compared with the column bit configu-

ration for the special keys (2, 8, 16, 32, and 64), and if there is a match the

corresponding negative code is returned in HL. If there is no match, a "LD
HL,(387FH)" is done. This reads all column bits into L. H is then cleared. If

there was no key press, HL will now be set to zero.

Sample Calling Sequence

NAME OF SUBROUTINE? FKBTST
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 45000
SUBROUTINE EXECUTED AT 45000
input: OUTPUTS
HL= HL= 65533 -3 = DOWN ARROW

NAME OF SUBROUTINE?

Notes

1. Detection of a special key will take about 60 microseconds, average time.

99

2. FKBTST may be used to detect multiple key presses, such as "JKL" or
"123."

3. The SHIFT key is not tested.

Program Listing

71-00

7F00 F5
7F01 21FFFF
7F04 3A4038
7F07 FE02
7F09 2819
7F0B 2B
7F0C FE08
7F0E 2814
7FI0 2B
7F11 FE10
7F13 280F
7F15 2B
7F16 FE20
7F18 280

A

7F1A 2B
7F1B FE40
7F1D 2805
7F1F 2A7F38
7F22 2600
7F24 Fl
7F25 C39A0A
7F28 C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430

ERRORS

ORG 7F00H ;0522

;* FAST KEYBOARD TEST. TESTS FOR ANY KEYPRESS AND FOR *
!* FIVE SPECIAL KEYS. #
!* INPUT: NONE #
;* OUTPUT:HL=0 FOR NO KEY PRESSt-1 FOR CLEAR. -2 FOR *
'* UP ARROWi-3 FOR DOWN ARROW* -4 FOR LEFT »
5* ARROW, AND ~3 FOR RIGHT ARROW, 1-127 FOR #
5* OTHER KEY COMBINATIONS, *

7

FKBTST PUSH AF ?SAVE REGISTER
LD HLi~l ! CLEAR CODE
LD A, (3840H) ; READ ROW
CP 2 ; CLEAR?
JR Z»FKB010 ;G0 IF YES
DEC HL ?UP ARROW CODE
CP 8 ;UP ARROW?
JR ZiFKB010 ?G0 IF YES
I^EC HL !DOWN ARROW CODE
CP 16 ;D0WN ARROW?
JR Z.FKB010 ;G0 IF YES
DEC HL JLEFT ARROW CODE
CP 32 ;LEFT ARROW?
JR ZiFKB010 5G0 IF YES
DEC HL BRIGHT ARROW CODE
CP 64 ; RIGHT ARROW?
JR 2)FKB010 ;G0 IF YES
LD HL,(387FH> ? READ ALL COLUMNS
LD H,0 ; RESULT IN HL

FKB010 POP AF ? RESTORE REGISTER
JP 0A9AH !***RETURN ARGUMENT***
RET ; NON-BASIC RETURN
END

FKBTST DECIMAL VALUES

245» 33» 255i 2S5» 5S» 64i 56» 2^>4* 2? 40i
25) 43) 254) S) 40) 20) 43) 254) 16, 40)
iS, 43) 254) 32, 40, 10, 43t 254, 64, 40,
5, 42, 127, 56, 38, 0, 241, 195, 154, 10,
2t'i:|.

CHKSUM= 29

FSETGR: FAST GRAPHICS SET/RESET

System Configuration

Model I, Model III.

100

Description

FSETGR is a subroutine that sets or resets a given screen pixel. It is designed to

perform screen actions rapidly and uses a table lookup structure to avoid the

time-consuming processing present in other graphics subroutines. Any of the

6144 graphics pixels, arranged in 128 columns by 64 rows, may be set or reset.

Previous to using FSETGR, the screen area to be utilized must have been

cleared with graphics characters (80H).

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block are the starting address of the FSETGR subrou-

tine, in standard Z-80 address format, least significant byte followed by most

significant byte. The next byte of the parameter block is the x coordinate, to

127. The next byte of the parameter block is the y coordinate, to 47. The next

byte of the parameter block is a set/reset flag. This byte is if the pixel is to be

set, or if the pixel is to be reset.

On output, the pixel is set or reset, and the parameter block remains un-

changed.

INPUT OUTPUT

H
H

POINTER TO PARAM+0
1

^

PARAM+0

+ 1

START
- ADDRESS OF --

FSETGR

+2 X, 0-127

+3 Y, 0-47

+4 0=SET, 1=RESET
p

1
1

1UNCHANGED
1

1

M+0

+ 1

- UNCHANGED - -

+2 UNCHANGED

+3 UNCHANGED

+4 UNCHANGED

Algorithm

The FSETGR subroutine uses a table of 48 entries to implement fast graphics.

Each entry in the table corresponds to one of the 48 rows of graphics and gives

the actual memory address that contains the pixel and the mask to be used in

processing the pixel. The first twelve bits of an entry represent the memory
address when four zeroes are added to the twelve bits. The fifth entry of 3C44H,

for example, represents 3C40H, the start of the fifth graphics row in memory.

The last four bits represent the graphics mask to be used in processing, as we'll

explain.

FSETGR first gets the y value from the parameter block. This y value is multi-

plied by 2 and added to the base address of FSETGR and TABLEA displace-

ment; the result points to the TABLEA entry. The entry address is put into HL and

lY. Next, the four least significant bits of F-JL are reset to mask out the graphics

mask. HL now points to the start of the line containing the graphics byte.

Next, the x address is picked up from the parameter block. The x address is

divided by two and added to the HL register. The HL register now points to the

actual byte in memory containing the pixel to be processed.

101

Next, the A register is loaded with the least significant byte from the TABLEA
table. This contains the graphics nnask. The mask value is ANDed with 1 FH to

get only the mask. If X is even, the mask is left unchanged, as it represents the

left-hand bit; if X is odd, the mask is shifted left for the right-hand bit.

The byte containing the pixel is now loaded into B. If a set is to be done, the

mask In A is ORed with B and the result stored to set the pixel. If a reset is to

be done, the complement of the mask in A is ANDed with B and the result

stored to reset the pixel.

Sample Calling Sequence

NAME OF SUBROUTINE? FSETGR
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

START OF FSETGR

.24

SET

hX, Y = 64,

37000
64
24

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT: OUTPUTS
HL= 40000 HL== 40000
PARAM+ 136 PARAM+ 136
PARAM-t- i 144 PARAM+ 1 144
PARAM+ 2 64 PARAM+ 2 64 - UNCHANGED
PARAM+ 3 24 PARAM+ 3 24
PARAM+ 4 PARAM+ 4

NAME OF SUBROUTINE?

Notes

1. This subroutine can set/reset about 4000 points per second.

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDE3
7F06 FBE5
7F0B CD7F0A
7F0B E5

00100
00110
00120
00130
00140
00150
00160
00170
001B0
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280

ORG 7F00H ;0522

* FAST GRAPHICS SET/RESET. SETS/RESETS A 6IVFN PIXEL, #
* INPUT .-HL^^^' PARAMETER BLOCK *

PARAM+0,+l=START ADDRESS OF FSETGR *
PARAM+2=X» TO 127 *
PARAM+3==y, TO 47 *
PARAM+4=SET/ RESET FLAG. 0==SET> 1=RESET *

OUTPUT: PIXEL SET OR RESET *
******************* ****^(.*#*###^n(.#^^*,n^^f.^^^^^^^n^^^^^^f^^^^^^^^^^^^^^^

FSETGR PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH

AF
BC
DE
HL
IX
lY
0A7FH
HL

;SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

102

7F0C DDE! 00290 POF IX
7F0E 1600 00300 LD D»0
7F10 DD5E03 00310 L.D E» (IX+3)
7F13 CB23 00320 SLA E
7F15 DD6E00 00330 Li:> L, (IX+0)
7Fia DD660t 00340 LD Hi (IX+1

)

7F 1

B

19 00350 ADD HL » DE
7F1C 01'5700 00360 LD BC* TABLEA
7F 1

F

09 00370 ADD HL»BC
7F20 E5 003B0 PUSH HL
7F21 FDE

1

00390 POP lY
7F23 FD7E00 00400 LD A» (IY+0)
7F26 E6E0 00410 AND 0E0H
7F28 6F 00420 LD L»A
7F29 FD6601 00430 LD Hj UY+l >

7F2C DD5E02 00440 LD E» (IX+2)
7F2F 1600 00450 LD D!0
7F31 CB3B 00460 Sf?L E
7F33 19 00470 ADD HI. T DE
7F34 FD7E00 00480 LD At (IY+0)
7F37 E61F 00490 AND 1 FH
7F39 DDCB0246 00500 BIT 01 < IX+2>
7F3D 2802 00510 JR Z 5 FSE020
7F3F CB27 00520 SLA A
7F41 46 00530 FSE020 LD e r < HL)

7F42 DDCB0446 00540 BIT Sif (IX+4)
7F46 2804 00550 JR Z5FSE030
7F48 2F 00560 CPL
7F49 A0 00570 AND B
7F4A 1801 00580 JR FSE040
7F4C B0 00590 FSE030 OR B
7F4D 77 00600 FSE040 LD (HL),A
7F4E FDEl 00610 POP IV
7F50 DDEl 00620 POP IX
7F52 El 00630 POP HL
7F53 Dl 00640 POP DE
7F54 CI 00650 POP BC
7F55 Fl 00660 POP AF
7f 56 C9 00670 RET
0057
7t ?i7 013C

00680 TABLEA
00690 Wu *~ESETGR

3Ca&H+l
7F59 043 C 00700 DEFW 3C00H+4
7F5B 103C 00710 DEFW 3C00H+ 16
7F5D 413C 00720 DEFW 3C40H+1
7F5F 443C 00730 DEFW 3C40H+4
7F61 503C 00740 DEFW 3C40H+16
7F63 813C 00750 DEFW 3C80H+1
7F65 843C 00760 DEFW 3C80H+4
7F67 903 C 00770 DEFW 3C80H+16
7F69 C13C 00780 DEFW 3CC0K+1
7F6B C43C 00790 DEFW 3CC0H+4
7F6D D03C 00800 DEFW 3CC0H+16
7F6F 013D 00810 DEFW 3D00H+1
7F71 043D 00820 DEFW 3D00H+4
7F73 103D 00830 DEFW 3D00H+16
7F75 413D 00840 DEFW 3D40H+

1

7F77 4 43D 00850 DEFW 3D40H+4
7F79 503D 00860 DEFW 3D40H+16
7F7B B13D 00870 DEFW 3D80H+1
7F7D S43D 00880 DEFW 3Da0H+4
7F7F 903D 00890 DEFW 3D80H+16
7F81 C13D 00900 DEFW 3DC0H+1
7FB3 C43D 00910 DEFW 3DC0H+4
7F85 D(S'3D 00920 DEFW 3DC0H+16
7F87 01 3E 00930 DEFW 3E00H+1
7F89 043E 00940 DEFW 3E00H+4
7FSB i 03E 00950 DEFW 3E00H+ 1

6

7FaD 413E 00960 DEFW 3E40H+1

;ZERO D
?Y TO DE
;2*Y FOR TABLE LOOKUP
;GET BASE ADDRESS

;ADD 2*Y
;TABLE DISPLACEMENT
; POINT TO TABLE START
'TRANSFER TO lY

;GET LINE START
;t1ASK OUT MASK!
;LS byte NOW IN L

;(5ET X

;NOW IN DE
;NOW X/2
; POINT TO GRAPHICS BYTE
;get bit
;GET MASK VALUE
;TEST LSB of X FOR ODD/EVEN
;G0 IF LEFT
BRIGHT COLUMN
?GET GRAPHICS BYTE
?TEST SET/RESET
;go if SET
; INVERT MASK
; RESET BIT
; CONTINUE
• SET B I

T

;ST0RE GRAPHICS BYTE
; RESTORE REGISTERS

; RETURN TO CALLING PROG
;DISP of TABLE FROM START

103

7F"8F 443E:
7F91 503E
7F93 81 3E
7F95 843E
7F97 903E:
7F99 C13E
7r9B C43E
7F9D D03E
7F9F 013F
7FA1 043F
7FA3 103F
7FA5 413F
7FA7 443F
7FA9 503F
7FAB B13F
7FAD 843F
7FAF 903F
7Fei C13F
7FB3 C43F
7FB5 D03F
0000
00000 TOTAL

00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01 110
01120
01130
01140
01150
01160
01170

ERRORS

DEFW 3E40H+4
DEFW 3E40H+16
DEFW 3E80H+

1

DEFW 3ES0H+4
DEFW 3E80H+16
DEFW 3EC0H+1
DEFW 3EC0H+4
DEFW 3EC0H+i6
DEFW 3F00H+1
DEFW 3F00H+4
DEFW 3F00H+16
DEFW 3F40H+1
DEFW 3F40H+4
DEFW 3F40H+t6
DEFW 3F80H+

1

DEFW 3F80H+4
DEFW 3FS0H+16
DEFW 3FC0H+1
DEFW 3FC0H+4
DEFW 3FC0H+16
END

FSETGR DECIMAL VALUES

245, 197, 213, 229, 221, 229, 253,
10. 229, 221, 225, 22, 0, 221, 94,
35, 221, 110, 0, 221, 102, 1, 25,
0. 9, 229, 253, 225, 253, 126, 0,
111, 253, 102, 1, 221, 94
59, 25, 253, 126, 0, 230,
70, 40, 2, 203, 39, 70, 2;

3 1 , 22

1

a, 203,

229, 205,
3, 203,

1, 87,
230, 224,
0, 203,
203, 2,

4, 70,

127-

40, 4, 47, 160, 24, 1, 176, U9, 253, 225,
221, k'25, 225, 209, 193, 241, 201, 1, 60, 4,
60, 16, 60, 65, 60, 68, 60, 80, 60, 129,
60, 132, 60, 144, 60, 193, 60, 196, 60, 208,
60, 1, 61, 4, 61, 16, 61, 65, 6.1, 68,
61, 80, 61, 129, 61, 132, 61, 144, 61, 193,
61, 196, 61, 208, 61, 1, 62, 4, 62, 16,
62, 65, 62, 68, 62, 80, 62, 129, 62, 132,
62, 144, 62, 193, 62, 196, 62, 208, 62, 1,
63, 4, 63, 16, 63, 65, 63, 68, 63, 80,
63, 129, 63, 132, 63, 144, 63, 193, 63, 196,
63, 208, 63

INBLCK: INSERT BLOCK

CHKSUri= 69

System Configuration

Model I, Model III, Model II Stand Alone.

Description

INBLCK inserts a block in the middle of a larger block of memory. The block is

inserted by moving down all bytes after the insertion point, as shown below.
This subroutine could be used for inserting a block of text, for example, and
moving the remaining text below the Inserted block. Both the "larger block"
and "insert block" may be any size, up to the limits of memory.

104

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the larger block in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes are the address of the insertion block in Z-80 address

format. The next two bytes are the address of the insertion point in Z-80 address

format. The next two bytes of the parameter block contain the number of bytes

in the larger block; the next two bytes contain the number of bytes in the

deletion block. Both are in standard Z-80 format.

On output, the contents of the parameter block remain unchanged. The inser-

tion block has been inserted by a move of the insertion block into the insertion

point.

INPUT

H L

+
POINTER TO PARAM+0 ^

OUTPUT

H L

UNCHANGED

PARAM+0

+ 1

POINTER TO
- LARGE BLOCK -

START (ME1VI1+0)

-

+2

+3

POINTER TO
- INSERT BLOCK -

(MEM 2+0)

-

+4

+5

INSERT
- ADDRESS IN -

LARGE BLOCK
-

+6

+7

BYTES
IN

LARGE BLOCK
-

+8

+9

BYTES
IN

INSERT BLOCK
-

p

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

+8

+9

-- UNCHANGED --

-- UNCHANGED --

-- UNCHANGED --

-- UNCHANGED --

-- UNCHANGED --

MEM 1+0

+ 1

+2

+3

+4

+5

+6

MEM 2+0

+ 1

+2

+3

+4

+5

+6

"LARGE-
BLOCK

INSERT
BLOCK

MEM 1+0

»

»

-
"LARGE"

-

-- BLOCK
WITH

--

- INSERT
BLOCK

-

__ NSERTED

/y INSERTVV BLOCK /
.,

MEM2+0

+ 1

+2

+3

+4

+5

+6

UNCHANGED

105

Algorithm

The INBLCK subroutine performs the insertion by "opening up" space in the
larger block for the bytes of the insertion bbck and then moving the insertion

bfock into the space created.

Space is created by doing a block move dou^nward of the area in the larger

block from the insertion point to the end. This must be an LDDR to avoid
replication of data. The LDDR is followed by an LDIR to insert the insertion

block.

The LDDR must be set up with HL containing the address of the last byte of the
larger block, DE containing the address of the last byte of the larger block plus
the number of bytes in the insertion block, and BC containing the number of
bytes in the larger block from the insertion point on. The HL address is found by
adding the start of the larger block plus the number of bytes in the larger block
minus one. This is saved in the stack for the LDDR. The BC count is found by
subtracting the insert address from the end address and adding one. This is also
saved for the LDDR. The DE address is found by adding the number of bytes in
the insertion block to the end address. The move is then done by an LDDR.

The LDIR for the insert is then done after setting up DE with the address of the
insertfon point, HL with the address of the insertfon block, and BC with the
number of bytes of the insertion block.

Sample Calling Sequence

NAME OF SUBROUTINE? INBLCK
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 50000 LARGE BLOCK START
+ 22 55000 INSERT BLOCK START
+ 42 50002 INSERT POINT
+ 625 5 BYTES IN LARGE BLOCK
+ 823 3 BYTES IN INSERT BLOCK
+ 10
MEMORY BLOCK 1 LOCATION? 50000
MEMORY BLOCK 1 VALUES?
+ 010
+ 111+212 ^LARGE BLOCK
+ 313
+ 414
+ 515
+ 616
+ 717
+ 810
+ 900
MEMORY BLOCK 2 LOCATION? 55000
MEMORY BLOCK 2 VALUES?

1 2551
-INSERT BLOCK

- INITIALIZE LARGE BLOCK FOR EXAMPLE

+ 1 1 254 \-\

+ 2 1 253J
+ 300
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT: OUTPUT:
HL= 400B0 HL= 40000

106

PARAM+
PARAf1+ 1

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+ 8
PARAM+ 9
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
f1EMBl +
MEMB1+
MEMB1+
MEMB2+
MEriB2+ 1

NEMB2+ 2

80
195
216

195
5

3

1

3
4
5
6
7

255
254
253

PARAM+
PARAM+
PARAM+
PARAri+
PARAM+
PARAM+
PARAM+
PARAM+
PARAri+ 8
PARAM+ 9
MEMBU-
MEMB1+
MEMB1+
MEMB I

+

MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+ 8
MEMB2+
MEMB2+ 1

MEMB2+ 2

80
195
216
214
82
195
5

3

1

255
254
253
2
3
4

255
254
253

-UNCHANGED

.

ORIGINAL DATA

-INSERTED DATA

-ORIGINAL DATA

-8 BYTES
OF NEW BLOCK

-UNCHANGED INSERT BLOCK

NAME OF SUBROUTINE?

Notes

1. The maximum number of bytes in either block may be 65,535.

2. The term "larger block" is somewhat misleading. The larger block may be
smaller than the insertion block!

3. The insertion point must be within the larger block.

Program Listing

7F00

7F00
7F01
7F02
7F03
7F04
7F06
7F09
7F0A
7F0C
7F0F
7F12
7F15
7F18
7F19
7FiA

F5
C5
D5
E5
DDES
CD7F0A
E5
DDEl
DD6E00
DD6601
DD4E06
DD4607
09

E5

00100
00110
00120
00130
00 1 40
00150
00160
00170
00190
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370

ORG 7F00H ;0520

* INSERT BLOCK. INSERTS BLOCK IN MIDDLE OF LARGER BLOCK*
* INPUT: HL=>PARAMETER BLOCK *
* PARAM-^0)+i=START ADDRESS OF LARGER BLOCK *
» PARAM+2,+3=START ADDRESS OF INSERT BLOCK *
* PARAM+4» +5= INSERT ADDRESS IN LARGER BLOCK *
* PARAM+6»+7=# OF BYTES IN LARGER BLOCK *
* PARAM+8»+9=# OF E^YTES IN INSERT BLOCK *
* OUTPUT: INSERT BLOCK INSERTED IN LARGER BLOCK AND *
* FOLLOWING BYTES MOVED DOWN *

I NBL CK PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
ADD
DEC
PUSH

AF
BC
DE
HL
IX

0A7FH
HL
IX
L» UX+0)
H, (IX + 1)
C» (IX+6)
8, <IX+7>
HL » BC
HL
HL

;SAVE REGISTERS

;***GET PB ADDRESS***
; TRANSFER TO IX

; START OF LARGE BLOCK

;# OF BYTES IN LARGE BLK

;END OF LARGE BLK+f

!SAVE

107

7F1B DD4E04 00380 LD C, (IX+4)
7FIE DD4605 00390 LD B, (IX+5)
7F21 87 00400 OR A
7F22 ED42 00410 BBC HLiBC

m.i s? mm mf Bfe
7F26 E5 00440 PUSH HL
7F27 DD6E08 00450 LD L) <IX+8)
7F2A DD6609 00460 LD H, (IX+9)
7F2D 19 00470 ADD HL) DE
7F2E EB 00480 EX DE»HL
7f 2F CI 00490 POP EC
7F30 EDB8 00500 LDDR
7F32 DD5E04 00510 LD E» (IX+4)
7F35 DD5605 00520 LD D, (IX+5)
7F38 DD6E02 00530 LD L, nx+2)
7F3B DD6603 00540 LD H» (IX+3)
7F3E DD4E08 00550 LD C-, (IX+8)
7F41 DD4609 00560 LD Bj <IX+9)
7F44 EDB0 00570 LDIR
7F4A DDEl 00580 POP IX
7F4B EI 00590 POP HL
7F49 Dl 00600 POP DE
7F4A CI 00610 POP ec
7F4B Fl 00620 POP AF
7F4C C9 00630 RET
0000 00640 END
00000 TOTAL, ERRORS

; INSERT ADDRESS

! CLEAR CARRY
;FIND # TO MOVE

; SOURCE ADDRESS
;SAVE # TO MOVE
;# OF BYTES IN INSERT BLK

;F1ND DESTINATION
;PUT IN PROPER REGISTERS
i RESTORE #

;M0VE BYTES
UNSERT ADDRESS

; SOURCE ADDRESS

!# OF BYTES TO MOVE

JMOVE INSERT BLK TO INS PT
; RESTORE REGISTERS

JRETURN TO CALLING PROG

METEST: MEMORY TEST

INBLCK DECIMAL VALUES

245» 197i 213, 229» 221, 229, 205, 127, 10,
221, 225, 221, 110, 0, 221, 102, 1, 221, 78;
6, 221, 70, 7, 9, 43, 229, 221, 78, 4,
221, 70, 5, 183, 237, 66, 35, 209, 229, 221-
110, 8, 221, 102» 9, 25, 235, 193, 237, 184,
221, 94, 4, 221, 86, 5, 221, 110, 2, 221,
102, 3, 221, 78» 8, 221, 70, 9, 237, 176,
221, 225, 225, 209, 193, 241, 201

CHKSUM= 66

System Configuration

Model I, Model III, Model II Stand Alone.

Description

This subroutine tests a given block of memory by a "PUSH/POP" method. One
pass is made through the test with each byte of the block being tested twice,

except for the starting and ending addresses of the block, which are tested only
once. Pseudo-random data is used to test all locations.

The memory test is considered successful if pseudo-random data ran be writ-

ten Into every location and then retrieved successfully. If data is retrieved and it

is not identical to the pattern stored, the test immediately returns with an error

108

flag set, a record of the failing location, the proper test pattern, and the errone-

ous result.

METEST should be called repetitively to exercise and test memory; the more

Iterations performed, the greater the confidence that memory is working.

Input/Output Parameters

On input, the HL register pair points to a parameter block on entry to METEST.

The first two bytes of the parameter block contain the starting address of the

block to be tested. The next two bytes contain the ending address of the block.

The ending address must be at least one location greater than the starting ad-

dress.

The next four bytes are reserved for the test results.

The last two bytes contain a "seed" value for the memory test data. This seed

value must be nonzero.

On output, PARAM+4, +5 contain the address of the failing location or the

address of the failing location minus one if the test failed at any point. It con-

tains a zero if the test was a success. PARAM+6, +7 and PARAM+8, +9
contain additional failure parameters.

INPUT OUTPUT

H

POINTER TO PARAM-h0
\

PARAM+0

+ 1

+2

+3

+4

4-5

+6

+7

+8

+9

STARTING
ADDRESS
OF BLOCK

ENDING
ADDRESS
OF BLOCK

RESERVED
FOR SUCCESS

FLAG

RESERVED
FOR "IS"
RESULT

"SEED"
VALUE

^

P

1 1

1UNCHANGED
t

1

M+0

+ 1

- UNCHANGED - -

+2

+3
- UNCHANGED - -

+4

+5

0=SUCCESS-
- FUL, FAILING '

ADDRESS IF NOT
-

+6

+7

"IS" VALUE
ON FAILURE

-

+8

+9

"SHOULD BE"
VALUE ON
FAILURE

-

The byte of PARAM-l-6 is the byte at the location equal to the failing address;

the byte at PARAM+7 is the byte at a location one less than the failing address.

Here's an example: If the failing word location is 20H, 80H (location 8020H)

and PARAM-F6, -F 7 contain a 63H, 32H with PARAM+8, +9 containJng67H,

32H, then the falling location is bit 2 of 8021 H. If the failing word location is

8020H, PARAM-F6, +7 contains a 66H, 32H and PARAM+8, +9 contains

109

67H, 33H then the failing location is bitO of 8020H. It is possible, of course, for

both bytes to fail in the test.

A typical memory test first stores all zeroes into memory and then reads back

the locations expecting to find all zeroes. It then stores all ones and reads back

the data expecting all ones. At this point random data is usually stored and read

back. METEST bypasses the first two tests of zeroes and ones.

More comprehensive memory tests are geared to the physical implementation

of the type of memory. Various memory types have "worst case" test patterns.

The dynamic memory used in the TRS-80s typically fails when adjacent loca-

tions are accessed. This test is an attempt to rapidly access adjacent locations

by using stack instructions. Each PUSH or POP accesses two adjacent loca-

tions. Pseudo-random (repeatable) data is used for the test.

The pseudo-random data is generated from the last value in PARAM-l-8, -1-9.

This value is multiplied by an odd power of 5, 125. The result is used as a test

pattern for the two-byte PUSH and as the basis for the next generation of ran-

dom data. The starting "seed" value can be maintained in later tests or varied

to generate a new set of pseudo-random numbers.

Sample Calling Sequence

NAME OF SUBROUTINE? METEST
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 4:2000 START ADDRESS
+ 22 48000 END ADDRESS
4 A 2
+6 2
+ 82 1234 SEED VALUE
+ 10
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37800
SUBROUTINE-: EXECUTED AT 37800
INPUT: OUTPUT
HL= 40000 HL= 40000
PARAM+ 16 PARAM+ 16
PARAM+ 1 164 PARAM+ 1 164
PARAM+ ^ 128 PARAM+ 2 128
PARAM+ 3 187 PARAM+ 3 187
PARAM+ 4 PARAM+ 4
PARAM+ 5 PARAM+ 5
PARAM+ 6 PARAM+ 6 82
PARAM+ 7 PARAM+ 7 238
PARAM+ 8 210 FARAM+ 8 82
PARAM+ 9 4 PARAM+ 9 238

UNCHANGED

SUCCESS FLAG

-LAST "IS" VALUE

LAST "SHOULD BE" VALUE

NAME OF SUBROUTINE?

Notes

1. Make certain ending location is at least one more than starting location.

2. Odd seed values generate a string of odd test values, even- seed values
generate even test values.

110

Program Listing

7F0(3

7F00
7F01
7F02
7F03
7F04
7F06
7F0B
7F0B
7F0C
7F0E
7F0F
7F12
7F15
7F19
7F1B
7FIE
7F21
7F24
7F27
7F2A
7F2D
7F2E
7F31
7F34
7F35
7F36
7F39
7F3C
7F3D
7F3E
7F40
7F41
7F42
7F44
7F45
7F47
7F48
7F4A
7F4B
7F4D
7F50
7F53
7F54
7F55
7F56
7F58
7F59
7F5C

F5
C5

E5
DDE5
FDE5
CD7F0A
E5
DDEl
F3
DD4E02
DD4603
FD2 10000
FD39
DD6E00
DD6601
DD7504
DD7405
DD6E04
DD6605
23
DD75B4
DD7405
23
F9
DD6E08
DD6609
5D
54
3E07
29
3D
20FC
B7
ED52
87
ED52
B7
ED52
DD7508
DD7409
E5
Dl
B7
ED52
i9
DD7506
DD7407

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720

ORG 7F00H 5 0520

* MEMORY TEST. TESTS A BLOCK OF MEMORY. *
* INPUT: HL=> PARAMETER BLOCK #
* PARAM+0»-H=STARTING ADDRESS OF BLOCK *
* PARAM+2i+3=ENDING ADDRESS OF BLOCK *
* PARAM+4J+5 RESERVED FOR SUCCESS FLAG *
* PARAM+6»+7==RESERVED FOR "IS" RESULT *
* PARAM+8»+9=N0N~ZER0 "SEED" VALUE *
* OUTPUT :PARAM+4i +5=0 IF TEST SUCCESSFUL. FAILING *
* LOCATION IF TEST NOT SUCCESSFUL *
* PARAM+6,+7=TW0 BYTES FROM MEMORY ~ "IS" *
* PARAM+B5+9=TEST PATTERN ~ "S/B" *

METEST

MET010

MET020

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
LD
LD
ADD
LD
LD
LD
LD
LD
LD
INC
LD
LD
INC
LD

LD
LD
LD
ADD
DEC
JR
OR
SBC
OR
SBC
OR
SBC
LD
LD
PUSH
POP
OR

ADD
LD

AF
BC
DE
HL
IX
lY
0A7FH
HL
IX

C» CIX+2)
B, (IX-+-3)

IY,0
lY.SP
L, (IX+0)
H) (IX+1)
(IX+4),L
(IX+5),H
L, (IX+4)
Hi (IX+5)
HL
(IX+4) .L
(IX+5),H
HL
SP,HL
L) (IX+8)
H, (IX+9)
E)L
D.H
A.7
HLiHL
A
NZ . MET020
A
HL.DE
A
HLtDE
A
HLiDE
(IX+8).L
{IX+9>,H
HL
DE
A
HL»DE
HLjDE
(IX+6)»L
(IX+7)»H

!SAVE REGISTERS

!**#GET PB LOC'N***
; TRANSFER TO IX

! DISABLE INT FOR STACK
;END ADDRESS TO BC

;ZERO lY FOR ADD SP
; TRANSFER CURNT SP TO lY
;GET START

UNITIALIZE CURRENT

5 CURRENT ADDRESS TO HL

JBUMP CURRENT ADDRESS
! CURNT FOR FAILING LOC

nST STACK ACTION AT -1
;SET SP FOR TEST
?GET SEED

!PUT IN HL AND DE

;L00P COUNT FOR SHIFT
?SEED»2
? DECREMENT LOOP COUNT
;7 TIMES=TIMES 128

? TIMES 127

;TIMES 126

?TIMES 125
; STORE NEW SEED

) ACTUAL TEST HERE
;PUSH AND RETRIEVE
; CLEAR CARRY
!TEST FOR EQUAL
; RESTORE "IS"
;SAVE IN "IS"

111

7F5F 2012 00730 JR NZiMET030
7F61 DD6E04 00740 LD Lj(IX+4)
7F64 DD6605 00750 LD H. (IX+5)
7F67 B7 00760 OR A
7F68 ED42 00770 SBC HLjBC
7F6A 20BB 00780 JR NZihET010
7F6C AF 00790 XOR A
7F6D DD7704 00800 LD (IX+4),A
7F70 DD7705 00810 LD (IX+5),A
7F73 FDF9 00820 MET030 LD SP,IY
7F75 FDEl 00830 POP lY
7F77 DDEl 00840 POP IX
7F79 El 00850 POP HL
7F7A Dl 00860 POP DE
7F7B CI 00870 POP BC
7F7C Fl 00880 POP AF
7F7D C9 00890 RET
00130 00900 END
00000 TOTAL ERRORS

!g0 if not equal
;get current location

; clear carry
5TEST FOR END
SLOOP FOR NXT TST OF 2
;TEST SUCCESSFUL HERE
;SET SUCCESSFUL FLAG

; RESTORE SP
? RESTORE REGISTERS

; RETURN TO CALLING PROG

METEST DECIMAL VALUES

245)
10f
3) 2

IW,
U6i
93

»

82)
221,
117)
^21)

119,
2;t'5,

197, 213, 229, 221, 229, 253, 229, 205, 127'
229) 221) 225) 243) 221, 78) 2) 221, 70,
53) 33) 0) 0) 253, 57) 221, 110, 0,
102, 1, 221, 117) 4, 221) 116) 5) 221)
4) 221) 102) 5) 35) 221, 117, 4, 221,
5, 35) 249, 221, 110, 8, 221, 102, 9,

84, 62, 7, 41) 61) 32, 252, 183, 237,
183) 237) 82, 183, 237, 82, 221, 117, B)

209, 183, 237, 82, 25, 221,
7) 32) 18, 221, 110, 4)
237) 66, 32) 187, 175, 221,
5) 253) 249) 253) 225) 221,

241) 201

116, 9, 229,
6, 221, 116i
102) 5) 183;
4) 221) 119:
225, 209) 193;

CHKSUM= 51

MLEBYE: FAST 8 BY 8 MULTIPLY

System Configuration

Model I, Model Ml, Model II Stand Alone.

Description

MLEBYE multiplies an 8-bit binary number by an 8-bit binary number to give a
16-bit product. The multiply is a "fast" multiply that operates twice as fast as
conventional multiplies. The multiply is an "unsigned" multiply, where both
operands are treated as 8-bit absolute numbers.

Input/Output Parameters

On input, the H register contains the 8-bit multiplier and the L register contains
the 8-bit multiplicand. On output, HL contains the 16-bit product.

112

INPUT

H L

MULTIPLIER
0-255

MULTIPLICAND
0-255 ^

OUTPUT

H

PRODUCT 0-65,025

Algorithm

The MLEBYE subroutine performs the multiply by a bit-by-bit multiply in eight

steps. To reduce overhead, "straight-line" coding rather than a loop structure is

used.

The multiplicand is put into BC and the multiplier into H. The L register is

cleared. The HL register is used to shift out multiplier bits from the left end into

the carry and to hold the partial product in the L register end. The HL register is

shifted left eight times. For each shift, a multipler bit from H is tested. If it is a

one bit, the multiplicand in C is added to HL by an "ADD HL, BC"; if it is a

zero, nothing is done. The next shift moves the partial product in L toward the

left. At the end of the eight steps, the entire multiplier has been shifted out of H,

and HL holds the 16-bit product.

Sample Calling Sequence

NAME OF SUBROUTINE? MLEBYE
HL VALUE? 65535 MULTIPLIER = 255, MULTIPLICAND
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 55000
SUBROUTINE EXECUTED AT 55000
input: OUTPUT:
HL= 65535 HL= 65025 RESULT = 255 x 255

255

NAME OF SUBROUTINE?

Notes

1. Maximum multiplier is 255. Maximum multiplicand is 255. The maximum
product w\\\ be 65,535.

Program Listing

7F00 00100 ORG 7F00H ;0520
00110 ;**##*##*#*****«*****####*###*#«#*##*##««*«»#««*#**###*
00120 ;* FAST B BIl BY 8 BIT MULTIPLY TO YIELD 16 BIT PRODUCT.*
00130 ;* INPUT: HL :=MULTIPLIER IN H, MULTIPLICAND IN L *
00140 ;» OUTPUT: HL==16-BIT PRODUCT* 0-65535 *
00150 ;»»*###*#»*****#*#***«*«»*#**##«*«#«#«««*«»»*##########*«
00160 ;

7F(30 C5 00170 MLEBYE PUSH BC SSAVE REGISTER
7F01 CD7F0A 00180 CALL 0A7FH ?«#«GET HL***
7F04 4D 00190 LD C»L ; MULTIPLICAND TO C
7Fa5 0600 00200 LD Bt0 ;NOW IN BC
7F07 68 00210 LD L,B ;0 TO L
7F08 29 00220 ADD HLjHL 5 SHI FT MULTIPLIER. PJ^ODUCT
7F09 3001 00230 JR NCiMLE010 5G0 IF MULTIPLIER BIT=0
7F0B 09 00240 ADD HL.BC ;ADD MULTIPLICAND
7F0C 29 00250 MLE010 ADD HLjHL

113

7FBD 3001 00260 JR NCiMLE020
7F0F 09 00270 ADD HLiBC
7F10 29 00280 MLE020 ADD HLiHL
7F11 3001 00290 JR NCiMLE030
7F13 09 00300 ADD HL»BC
7F14 29 00310 MLE030 ADD HL»HL
7F15 3001 00320 JR NC.MLE040
7F17 09 00330 ADD HL»BC
7Fi8 29 00340 riLE040 ADD HL»HL
7F19 3001 00350 JR NC»MLE050
7F1B 09 00360 ADD HLfBC
7F1C 29 00370 MLE050 ADD HLiHL
7FID 3001 00380 JR NC»riLE060
7F1F 09 00390 ADD HLiBC
7F20 29 00400 MLE060 ADD HL»HL
7F21 3001 00410 JR NC»MLE070
7F23 09 00420 ADD HLtBC
7F24 29 00430 MLE070 ADD HLjHL
7F25 3001 00440 JR NC»MLE080
7F27 09 00450 ADD HLjBC
7F28 CI 00460 MLE080 POP BC
7F29 C39A0A 00470 JP 0A9AH
7F2C C9 00480 RET
0000 00490 END
00000 TOTAL ERRORS

? RESTORE REGISTER
;***RETURN ARGUMENT***
; NON-BASIC RETURN

MLEBYE DECIMAL VALUES

197» 205» 127, 10, 77, 6, 0, 104, 41* 48»
1» 9» 41» 48» 1, 9, 41, 48, 1, 9,
41 * 48, 1, 9, 41, 48, 1, 9, 41, 48,
1, 9» 41, 48, 1j 9t 41 1 48 J 1-, 9,
193, 195, 154, 10^ 201

CHKSUM= 223

MLSBYS: SIXTEEN BY SIXTEEN MULTIPLY

System Configuration

Model I, Model III, Model II Stand Alone.

Description

MLSBYS multiplies a 16-bit binary number by a 16-bit binary nunnber. The

multiply is an "unsigned" multiply, where both numbers are considered to be

absolute numbers without sign. A 32-bit product is returned.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the 16-bit multiplicand. The next two
bytes of the parameter block contain a 16-bit multiplier. Both are-in Z-80 16-bit

format. The next four bytes of the parameter block are reserved for the 32-bit

quotient.

114

On output, PARAM+3to PARAM+6 hold the 32-bit product, arranged in next

ms, tns, Is, next Is format. The contents of the remainder of the parameter

block remain unchanged.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

1 6-BIT
MULTIPLICAND

+2

+3

16-BIT
MULTIPLIER "

+4

+5

+6

+7

RESERVED
FOR

RESULT

»

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

-- UNCHANGED -

-- UNCHANGED --

OUTPUT

UNCHANGED

32-BIT
PRODUCT

Algorithm

The MLSBYS subroutine performs the multiply by a "bit-by-bit" multiply in 16

iterations. The multiplier bits are tested from left to right. For each one bit in the

multiplier, the multiplicand is added to a "partial product." The partial product

is shifted left with each iteration. At the end of 16 Iterations, all multiplier bits

have been tested, and the partial product contains the true 32-bit product of the

multiply.

The multiplicand is first put into BC, and the multiplier in DE. The A register is

initialized with the iteration count of 16. The HL register is cleared toO. The DE
and HL registers will contain the partial product and will be shifted toward the

left.

The code atMLSOlO is the 16-iteration loop of MLSBYS. For each iteration, DE,

HL is shifted one bit left. As it is shifted, the multiplier bit from DE goes into the

carry. If the carry is set (multiplier bit Is a one), the multiplicand in BC is added
to the partial product. If the carry Is reset (multiplier bit is a zero), no add is

done. At the end of 16 Iterations DE, HL contains the 32-blt product.

Sample Calling Sequence

NAME OF SUBROUTINE? MLSBYS
HL VALUE? 38888
PARAMETER BLOCK LOCATION? 38888
PARAMETER BLOCK VALUES?

MULTIPLICAND
MULTIPLIER

o5535
65535
0'

|-m'TIALtZE RESULT FOR EXAMPLE

+ 02
+ 22
+ 42
+ 6 2
+ 80
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 40000
SUBROUTINE EXECUTED AT 40000
INPUT: OUTPUT:
HL= 38B88 HL== 38888

115

PARAM+ 255 PARAM+ 255
PARAM+ 1 255 PARAM+ 1 255
PARAM+ 2 255 PARAM+ 2 255
PARAM+ 3 255 PARAM+ 3 255
PARAM+ 4 PARAM+ 4 254
PARAM+ 5 PARAM+ 5 255
PARAM+ 6 PARAM+ 6 1

PARAM+ 7 PARAM+ 7

UNCHANGED

254,255,1,0 = 255,254,0,
1 = 4, 294, 836, 225

NAME OF SUBROUTINE?

Notes

1. Maximum multiplier is 65,535. Maximum multiplicand is 65,535.

2. Note that the product is in 1,0,3,2 order.

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDE5
7F06 CD7F0A
7F09 E5
7F0A DDE!
7F0C DD4E0a
7F0F DD4601
7F12 DD5E02
7F15 DD5603
7F1S 3Ei0
7F1A 210000
7F1D 29
7F1E EB
7F1F ED6A
7F21 EB
7F22 3004
7F24 09
7F25 3001
7F27 13
7F28 3D
7F29 20F2
7F2B DD7304
7F2E DD7205
7F31 DD7506
7F34 DD7407
7F37 DDEl
7F39 El
7F3A Dl
7F3B CI
7F3C Fl
7F3D C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540

ERRORS

ORG 7F00H ;0522

* SIXTEEN BY SIXTEEN MULTIPLY TO YIELD 32-eiT PRODUCT, *
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0,+i=MULTIPLICAND *
* PARAM+2 1 +3=MULT I PL I ER *
* PARAM+4»+5»+6)+7=RESERVED FOR PRODUCT *
» 0UTPUT:PARA+4i+5.+6»+7 HOLD 32-BIT PRODUCT *

MLSBYS

MLS010

MLS020

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD

LD
LD
LD
ADD
EX
ADC

JR
ADD
JR
INC

JR
LD
LD
LD

POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX
0A7FH
HL
IX
C, <IX+0)
B. (IX+1)
E) <IX+2)
D, (IX+3)
Ai 16
HLi0
HL,HL
DE.HL
HL,HL
DE.HL
NC,MLS020
HL.BC
NC»MLS020
DE
A
NZiMLS010
(IX+4),E
(IX+5)jD
(IX+6),L
<IX+7),H
IX
HL
DE
BC
AF

;SAVE REGISTERS

;*#*GET PB LOC'N***
! TRANSFER TO IX

JPUT MULTIPLICAND IN BC

!PUT MULTIPLIER IN DE

! ITERATION COUNT
;ZERO PARTIAL PRODUCT

iSHIFT PARTIAL PROD LEFT
;GET MS 16 BITS
;SHIFT PART PROD PLUS C
) RESTORE UPPER 16 BITS
!60 IF MULTIPLIER BIT=0
;add in MULTPLICAND
!G0 IF NO CARRY
;BUMP UPPER 16 BITS
;DECREMENT ITERATION CNT
?LOOP FOR 16 ITERATIONS

i STORE PRODUCT

? RESTORE REGISTERS

;RETURN to CALLING PROG

116

MLSBYS DECIMAL VALUES

245? 197j 213* 229) 221) 1i

221) 225) 221) 78) 0) 221i
2) 221) 86) 3) 62 1 16><i 33

1

235) 237) 106) 235i 48) 4i

61) 32) 242) 221) 115) 4)
117) 6) 221) 116) 7) 221)
241) 201

29) 205 1 1 27

)

10
701 1) 221) 94)
0) 0) 41)
9) 48) 1) 19»

221 114) 5) 221
225' ^09) 193)

CHKSUM= 201

MOVEBL: MOVE BLOCK

System Configuration

Model I, Mode! Ill, Model II Stand Alone.

Description

MOVBLK moves a block of memory to another block of memory. The blocks

may be overlapping; a check is made for the proper direction of the move to

prevent replication of data if the block move is made in the wrong direction.

Any number of bytes up to the limit of memory may be moved.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the source block in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes are the address of the destination block in Z-80 ad-

dress format. The next two bytes of the parameter block contain the number of

bytes to move in Z-80 format.

On output, the parameter block contents remain unchanged. The source block

has been moved to the destination block area.

INPUT

H

POINTER TO PARAM+0
1

PARAM-l-0

+ 1

SOURCE
ADDRESS
(MEM 1+01

+2

+3

DESTINATION
ADDRESS
(MEM2+0)

+4

+5

#0F
BYTES

TO MOVE

OUTPUT

H L
1

N.

UNCHANGED
1

y

PARA

V

M+0

+ 1

+2

+3

+4

+5

[

- UNCHANGED - -

- UNCHANGED -

>/
- UNCHANGED - -

117

MEM 1+0

+ 1

+2
SOURCE
BYTES

+3

+4

+5

+6
"

MEM2+0

+ 1

+2

+3

+4

+5

+6

AREA
FOR

DESTINATION
BYTES

MEM 1+0
H -

+ 1

+2

=^ -:
- UNCHANGED -

+4

+5

+6
'

MEM2+0

+ 1

^+2
V SOURCE

BYTES> +3
/ i_

+4

+5

+6

Algorithm

The main concern in MOVEBL is to test for either a "beginning to end" move
or an "end to beginning" move. The wrong choice wi[| replicate data in the

blocl< when the source and destination areas are overlapping. A test for overlap
is not done, since It is simpler to choose either an LDIR or LDDR based on the

relationship of the starting addresses.

The source address Is put Into HL, the destination address into DE, and the

number of bytes into BC. A comparison is then done by subtracting the destina-

tion address from the source address. If the result is positive, the source address

is less than the destination and an LDIR will perform the move with no conflict.

If the result Is negative, an LDDR must be done. In this case the source and
destination addresses are recomputed so that they point to the end of the blocks
for the LDDR.

Sample Calling Sequence

NAME OF SUBROUTINE? MOVEBL
HL VALUE? 45000
PARAMETER BLOCK LOCATION? 45000
PARAMETER BLOCK VALUES?
+ 02 50000 SOURCE ADDRESS
+ 22 50001 DESTINATION ADDRESS
+ 425 5 BYTES
-f 6
MEMORY BLOCK I LOCATION? 50000
MEMORY BLOCK 1 VALUES?
» 1

+ 1 i 1

-INITIALIZE SOURCE FOR EXAMPLE

118

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777
INPUT: OUTPUT:
HL= 45000 HL= 45000
PARAM+ 80 PARAM+ 80
PARAM+ 1 195 PARAM+ 1 195
PARAM+ 2 81 PARAM+ j^ 81 -UNCHANGED
PARAM+ 3 195 PARAM+ 3 195
PARAM+ 4 5 PARAM+ 4 5
PARAM+ 5 PARAM+ 5 ,

MEf181 + MEMB1+
MEMB1+ 1 1 MEMBI+ 1

MEMB1+ 2 2 MEMBi+ 2 1

MEMB1+ 3 3 MEMB1+ 3 2 'DESTINATION

MEMB1+ 4 4 MEMB1+ 4 3
MEMB1+ 5 5 MEMB1+ 5 4

MEMB1+ 6 6 MEMB1+ 6 6

NAME OF SUBROUTINE?

Hoies

1. The number of bytes moved may be 1 to 65,536 (0 is 65,536).

Program Listing

7F00

7F00
7F01
7F02
7F03
7F05
7F08
7F09
7F0B
7F0E
7F11
7F14
7F17
7F1A
7F1D
7F1E
7F1F
7F21
7F23
7F24
7F26
7F28
7F2A
7F2B
7F2C
7F2D
7F2E

C5
D5
E5
DDE5
CD7F0A

DDEl
DD6E00
DD6&01
DD5E02
DD5603
DD4E04
DD4605
E5
B7
ED52
CB7C
El
2004
EDB0
1808
0B
09
EB
09
EB

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460

ORG 7F00H i;0612
*****»*************************************«#*********
* MOVE BLOCK. MOVES BLOCK OF DATA FROM SOURCE AREA TO #

* DESTINATION AREA. AREAS MAY BE OVERLAPPING. *

* INPUT! HL=> PARAMETER BLOCK *
« PARAM+0»+l=SOURCE ADDRESS #

* PARAM+2i+3=DESTINATI0N ADDRESS *
* PARAM+4j+5=# of BYTES TO MOVE *

* OUTPUT: BLOCK MOVED *

MOVEBL

MOV020

PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
LD
PUSH
OR
SBC
BIT
POP
JR
LDIR
JR
DEC
ADD
EX
ADD
EX

BC
DE
HL
IX

0A7FH
HL
IX
L» (IX+0)

(IX+1)
<IX+2)
(IX+3)
(IX+4)
(I X+5

)

Hi

El

Di

Ci

Bi

HL
A
HLjDE
7»H
HL
NZ 1 MOV020

MOV030
BC
HL»BC
DEfHL
HLiBC
DEjHL

;SAVE REGISTERS

!***GET PB LOC'N***
; TRANSFER TO IX

;PUT SOURCE ADDRESS IN HL

;PUT DESTINATION ADD IN DE

SPUT BYTE COUNT IN BC

!SAVE SOURCE ADDRESS
; CLEAR CARRY
? COMPARE SOURCE TO DEST ADDR
STEST SIGN
; RESTORE SOURCE ADDRESS
!G0 IF LDDR REQUIRED

!MOVE BLOCK
;G0 TO CLEANUP
;# OF BYTES-1
! POINT TO NEW SOURCE .

;GET DESTINATION
! POINT TO NEW DESTINATION
? RESTORE

119

7F2F 03 00470 INC ec
7F30 EDB8 00480 LDDR
7F32 DDEl 00490 MOV030 POP IX
7F34 El 00500 POP HL
7F35 Dl 00510 POP DE
7F36 CI 00520 POP BC
7F37 C9 00530 RET
0000 00540 END

;# BYTES
I MOVE BLOCK

! RESTORE REGISTERS

? RETURN TO CALLING PROGRAM

00000 TOTAL ERRORS

MOVEBL DECIMAL VALUES

197» 213» 229» 221? 229) 205, 127» 10, 229, 221,
225j 221, 110J 0, 221j 102^ 1, 221, 94, 2,
221, 86, 3, 221, 78, 4, 221, 70, 5, 229,
183» 237, 82, 203» 124, 225, 32, 4» 237, 176,
24, S, 11, 9, 235, 9, 235, 3, 237, 184,
221, 225, 225, 209, 193, 201

CHKSUM= 1:

MPADDN: MULTIPLE-PRECISION ADD

System Configuration

Model I, Model III, Model II Stand Alone.

Description

MPADDN adds a "source" string of bytes to a "destination" string of bytes and
puts the result of the add into the destination string. Each of the two strings is a

multiple-precision binary number. Each of the two strings is assumed to be the

same length. The length of each string may be any number from 1 through 255 or

0, which is 256 bytes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of the destination string in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes of the parameter block contain the address of the

source string in the same format. The next byte of the parameter block contains
the number of bytes in the two operands.

On output, the parameter block and source string are unchanged. The destina-

tion string contains the result of the multiple-precision add.

INPUT OUTPUT

H
+

POINTER TO PARAM+0 ^ UNCHANGED
1 7

120

t+0

+ 1

ADDRESS
OFMEM1-I-0 "

+2

+3

ADDRESS
" OFMEM2+0 "

+4 # OF BYTES

PARAM+0

+ 1

+2

+3

+4
»

-- UNCHANGED --

-- UNCHANGED --

UNCHANGED

MEM 1+0

+ 1

+2

+3

+4

+5

+6

OPERAND
ONE
BYTES

»

MEM 1+0

+ 1

+2

+3

+4

+5

+6

RESULT
OF
ADD
BYTES

MEM2+0

+ 1

+2

+3

+4

+5

+6

OPERAND
TWO
BYTES

»

MEM2+0

+ 1

+2

> +3
" UNCHANGED -

+4

+5

+6

Algorithm

The MPADDN subroutine performs one add for each byte in the operands. The

destination string address and source string address are first picked up from

the parameter bloclc and put into DE and HL, respectively. The number of bytes

in the add is then picl<ed up and put into the BC register pair. This number

minus one is then added to the source and destination pointers so that they

point to the least significant bytes of the source and destination strings. The

number of bytes is then put into the B register for loop control.

The next destination byte is then picked up from the destination string (DE

register pointer). An ADC is made of the two source string digits (HL register

pointer). The result is then stored in the destination string.

The source and destination string pointers are then decremented by one to

point to the next most significant two bytes of each operand. The B register

count is then decremented by a DJNZ, and a loop back to MPAOIO is made for

the next add.

The carry is cleared before the first add, but successive adds add in the carry

from the preceding operation. If the destination operand was OOH, F5H, 6EH,

11 H and the source operand was OOH, FFH, 77H, 33H, then the number of

121

operand bytes must be 4. The result in the destination operand would be 01 H,

F4H, E5H, 44H. Note that the result may be one bit larger than the original

number of bits in the operands.

Sample Calling Sequence

NAME OF SUBROUTINE? MPADDN
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 42000 POINTS TO DESTINATION
+ 22 44000 POINTS TO SOURCE
+ 425
+ 600
MEMORY BLOCK
MEMORY BLOCK

5 BYTES

1 LOCATION?
1 VALUES?

255
255
255

255

42000

- DESTINATION = FFFFFFFEFFH

MEMORY BLOCK
MEMORY BLOCK

LOCATION?
VALUES?

44000

sou ROE = 0000010001

H

MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMBi+
MEMei+
MEMB 1

+

MEMB1+
MEMB2+
MEMB2+
MEMB2+
MEMB2+
MEMB2+

16
164
224
171
5

255
255
255
254
255

1

1

OUTPUT

:

HL= 40000
PARAM+
PARAM+
PARAM+-
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB 1

+

MEMB 1

+

MEMB2+
MEMB2+
MEMB2+
MEMB2+
MEMB2+

16
164
224
171
5

1

1

-UNCHANGED

- R ESU LT = 00000000F F00H

-UNCHANGED

NAME OF SUBROUTINE?

Notes

1. The destination string is fixed length. Leading zero bytes must precede the
operands to handle the result, which may be one bit larger than either of the
operands.

2. This may be either a "signed" or "unsigned" add. If a two's complement
number is used, then the sign must be "sign extended" to the more significant

bits of the operands.

122

Program Listing

7F00

7F00 F5
7F01 C3
7F02 D5
7F03 E5
7F04 D0E5
7F06 CD7F0A
7F09 ES
7F0A DDEl
7h0C DD5E00
7F0F DD5601
7F12 DD6E02
7F15 DD6603
7F18 DD4E04
7F1B 0600
7FID 0B
7F1E 09
7F1F EB
7F20 89
7F21 EB
7F22 41
7F23 04
7F24 B7
7F25 lA
7F26 8E
7F27 J

2

7F28 2B
7F29 IB
7F2A 10F9
7F2C DDEl
7F2E El
7F2F Dl
7F30 CI

7(-3I Fl
7F32 C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00350

ERRORS

ORG 7F00H S0522
******#**************##*#**#*#^^#^^^f.^t.^(.^^^(.^(.^(;^f.^(.^(.^e.
* MULTIPLE-PRECISION ADD. ADDS TWO MULTIPLE-PRECISION *
* OPERANDS? ANY LENGTH. *
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0j+l=ADDRESS OF OPERAND 1 *
* PARAM+2»+3"ADDRESS OF OPERAND 2 «
* FARAM+4=# OF BYTES 0-256 *
* OUTPUT .-OPERAND 1 LOCATION HOLDS RESULT *

MPADDN PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
LD
LD

LD
DEC
ADD
EX
ADD
EX

INC
OR

MPA010 LD
ADC
LD
DEC
DEC
DJNZ
POP
POP
POP
POP
POP
RET
END

AF
BC

HL
IX
0A7FH
HL
IX
E, (IX+0)
D, (IX+1)
Lt (IX+2)
H» (IX+3)
Ct (IX+4)
Bv0
BC
HLtBC
DE»HL

DEiHL
B»C
B
A
A, (DE)
Ai (HL)
(DE) » A
HL
DE
MPA010
IX
HL
DE
BC
AF

JSAVE REGISTERS

S***GET PB LOC'N***
? transfer to ix

;get op 1 loc'n

;GET op 2 LOC'N

tSET # OF BYTES
;N0W IN BC
;#-l
;POINT TO LAST 0P2
;SWAP DE AND HL
; POINT TO LAST OPl
HSWAP BACK
!#-l BACK TO B
^ORIGINAL NUMBER
; CLEAR CARRY FOR FIRST ADD

!GET OPERAND 1 BYTE
;ADD OPERAND 2
1 STORE RESULT
! POINT TO NEXT 0P2
; POINT TO NEXT OPl
!LOOP FOR N BYTES

; RESTORE REGISTERS

JRETURN TO CALLING PROG

MPADDN DECIMAL VALUES

245» 197, 2i3» 229, 221» 229» 205, 127, 10, 229,
221, 225, 221, 94, 0, 221, 86, 1, 221, 110,
2, 221, 102, 3, 221, 7B, 4» 6, 0, 11>
9, 235» 9, 235, 65, 4, 183, 26, 142, 18,
43, 27i 16, 249, 221, 225, 225, 209, 193, 241,
201

CHKSUM= 73

123

MPSUBT: MULTIPLE-PRECISION SUBTRACT

System Configuration

Model I, Model 111, Model II Stand Alone.

Description

MPSUBT subtracts a "source" string of bytes from a "destination" string of

bytes and puts the result of the subtract into the destination string. Each of the

two strings is a multiple-precision binary number. Each of the two strings is

assumed to be the same length. The length of each string may be any number
from 1 through 255 or 0, which is 256 bytes.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes ofthe parameter block contain the address of the destination string in

standard Z-80 address format, least significant byte followed by most significant

byte. The next two bytes of the parameter block contain the address of the

source string in the same format. The next byte ofthe parameter block contains

the number of bytes in the two operands.

On output, the parameter block and source string are unchanged. The destina-

tion string contains the result of the multiple-precision subtract.

INPUT

H I

POINTER TO PARAM+0

PARAM+0

+ 1

ADDRESS
OF MEM 1+0

+2

+3

ADDRESS
OF MEM2+0

+A # BYTES

MEM 1+0

+ 1

+2

+3

+4

+5

+6

OPERAND
ONE
BYTES

OUTPUT

H L
t

\ UNCHANGED^
1

PARAM+0
- UNCHANGED -\ -

+ 1

+2
\

+3
- UNCHANGED -* -

>X
+4 UNCHANGED

-

MEM 1+0
- - _

+ 1

RESULT - -

+2 OF
\ SUB - -—7> +^ BYTES

+4

+5
- _ 1-

+6

124

MEM2-H3

+ 1

+2

+3

+4

+5

+6

OPERAND
TWO
BYTES

MEM2+0

+ 1

+2
s - UNCHANGED "

> +3
/

+4

+5

+6

Algorithm

The MPSUBT subroutine performs one subtract for each byte in the operands.
The destination string address and source string address are first picl<ed up
from the parameter block and put into DE and HL, respectively. The number of
bytes in the subtract is then picked up and put into the BC register pair. This
number minus one is then added to the source and destination pointers so that

they point to the least significant bytes of the source and destination strings.

The number of bytes is then put into the B register for loop control.

The next destination byte is then picked up from the destination string (DE
register pointer). An SBC is made of the two source string digits (HL register

pointer). The result is then stored in the destination string.

The source and destination string pointers are then decremented by one to

point to the next most significant two bytes of each operand. The B register

count is then decremented by a DJNZ, and a loop back to MPS01 is made for

the next subtract.

The carry is cleared before the first subtract, but successive subtracts subtract
the carry from the preceding operation. If the destination operand was OOH,
F5H, 6EH, 11 H and the source operand was OOH, FFH, 77H, 33H, then the
number of operand bytes must be 4. The result in the destination operand
would be FFH, F5H, E6H, DEH. The result may be one bit larger than the
original number of bits in the operands or may be a negative number.

Sample Calling Sequence

W/iME OF SUBROUTINE? MPSUBT
HL VALUE? 40000
PAF^AMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?+02 42000
4 2 2 44000
+ 4 2 5 #0F BYTES-(600
MEMORY BLOCK 1 LOCATION? 42000
MEMORY BLOCK 1 VALUES?

DESTINATION = 0000(J0a0H

125

MEMORY BLOCK 2 LOCATION? 44000
MEMORY BLOCK 2 VALUES?

-SOURCE =00000001H

MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 3S000

OUTPUT:
HL= 40000

INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMBi+
MEMB1+
MEMei+
MEMB1+
MEMB1+
MEMB2+
MEMe2+
MEMB2+
MEMB2+
MEMB2+

16
164
224
171

1

PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB2+
MEMB2+
MEMB2+
MEMB2+
MEMB2+

1

6

164

171
5

J
255
255
255
255
255

1

UNCHANGED

-RESULT = FFFFFFFFH

-SOURCE UNCHANGED

NAME OF SUBROUTINE?

Notes

1. The destination string is a fixed length. Leading zero bytes must precede
the operands to handle the result, which may be one bit larger than either of the
operands.

2. This may be either a "signed" or "unsigned" subtract. If a two's comple-
ment number is used, then the sign must be "sign extended" to the more
significant bits of the operands.

Program Listing

7F00

7F00 F5
7F0i C5
7F02 D5
7F03 E5
7F04 DDE5
7F06 CD7F0A
7F09 E5
7F0A DDEl
7F0C DD5E00

00100
00110
00120
00130
00140
00150
00160
00170
001 80
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290

ORG 7F00H 5 0522

* MULTIPLE-PRECISION SUBTRACT. SUBTRACTS TWO MULTIPLE- *
* PRECISION OPERANDS* ANY LENGTH. *
* input: HL=> parameter BLOCK #
* PARAM+05+l«ADDRESS OF OPERAND 1 #
* PARAM+2»+3=ADDRESS OF OPERAND 2 *
* PARAM+4=# OF BYTES 0-256
* OUTPUT: OPERAND 1 LOCATION HOLDS RESULT *

MPSUBT PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

AF
BC

HL
IX
0A7FH
HL
IX
Ej <IX+0)

SSAVE REGISTERS

;*#*GET PB LOC'N***
S TRANSFER TO IX

;GET OP 1 LOC'N

126

7F0F DD5601 00300 LD Dj <IX + 1>
7F12 DD6E02 00310 LD L» (IX+2) ?CiET OP 2 LOC*N
7Fi5 DD6603 00320 LD H) <IX+3)
7FI8 DD4E04 00330 LD Ci (IX+4) ;GET # OF BYTES
7F1B 0600 00340 LD B>0 ;now IN BC
7F1D 0B 00350 DEC BC ;#-l
7F1E 09 00360 ADD HL»BC ; POINT TO LAST 0P2
7F1F Ee 00370 EX DE»HL ;SWAP DE AND HL
7F20 09 00380 ADD HLfBC ; POINT TO LAST OPl
7F21 EB 00390 EX DE^HL !SWAP BACK
7F22 41 00400 LD BjC !#-l BACK TO B
7F23 04 00410 INC B ;0R!6INAL NUMBER
7F24 B7 00420 OR A ; CLEAR CARRY FOR FIRST SUB
7F25 lA 00430 MPS010 LD A» <DE) ;GET OPERAND 1 BYTE
7F26 9E 00440 SBC At <HL) ;SUB OPERAND 2
7F27 12 00450 LD (DE > .

A

; STORE RESULT
7F28 2B 00460 DEC HL ? POINT TO NEXT 0P2
7F29 IB 00470 DEC DE ! POINT TO NEXT OPl

7F2A 10F9 00480 DJNZ MPS0i0 JLOOP FOR N BYTES
7F2C DDEl 00490 POP IX ! RESTORE REGISTERS
7F2E El 00500 POP HL
7F2F Dl 00510 POP DE
7F30 CI 00520 POP BC
7F3I Fi 00530 POP AF
7F32 C9 00540 RET !RETURW TO CALLING PROG
0000 00550 END
00000 TOTAL ERRORS

MSLEFT: MULTIPLE SHIFT LEFT

MPSUBT DECIMAL VALUES

245) 197) 213) 229? 221) 229) 205) 127) 10) 229

i

221) 225) 221) 94) 0) 221) 86) 1) 221) 110.

2) 221) 102) 3) 221) 78 » 4* 6) 0i 11)

9) 235) 9i 235) 65) 4) 183) 26) 158) 18)

43) 27. 16) 249) 221) 225. 225) 209) 193) 241.
201

CHKSUM= 89

System Configuration

Model 1, Model 111, Model II Stand Alone.

Description

MSLEFT shifts a given 16-bit value left a specified number of bit positions. The

shift performed is a "logical" shift where zeroes fill vacated bit positions on the

right.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the number to be shifted in standard

Z-80 16-bit format, least significant byte followed by most significant byte. The

next byte of the parameter block contains the number of shifts to be performed,

from 1 to 15.

127

On output, the value in the first two bytes of the parameter block has been
shifted the appropriate number of times. The count in the third byte of the

parameter block remains unchanged.

INPUT

1 1

1

POINTER TO PARAM+0
1

1

M+0

+ 1

le-BIT VALUE
TO BE

SHIFTED
-

+2 # OF SHIFTS

^

»

OUTPUT

H
1 1

1

UNCHANGED
r

M+0

+ 1

SHIFTED
RESULT

-

+2 UNCHANGED

Algorithm

The MSLEFT subroutine performs the shift by placing the number to be shifted

in HL and the count in the B register. HL is added to itself a number of times
corresponding to the count in the B register to effect the shift.

Sample Calling Sequence

NAME OF SUBROUTINE? MSLEFT
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 021 VALUE TO BE SHIFTED =

+ 2 1 8 8 SHIFTS
•+3
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 50000
SUBROUTINE EXECUTED AT 50000
input:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2

OUTPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
?}

RESULT

UNCHANGED

NAME OF SUBROUTINE?

Notes

1. If is specified as a shift count, 256 shifts will.be done, resulting in all

zeroes in the result.

2. If 16 to 255 shifts are specified, the result will be all zeroes.

3. Note that the value to be shifted is Is bytes, ms byte.

Program Listing

7F00 00100
00110
00120
00130
00140
00150
00160
00170
00180

ORG 7F00H ;0522
;******************^(.*^f#^(.^(.#^t#*^«.^f.^f#^t.^nf##^t#^t*********^^*^(-^(.
[* MULTIPLE SHIFT LEFT. SHIFTS THE GIVEN 16~BIT VALUE *
;* A SPECIFIED NUMBER OF SHIFTS IN LOGICAL FASHION fh

;* input: HL==>PARAMETER BLOCK *.

;* PARAM+0 J +1=VALUE TO BE SHIFTED *
!* PARAM+-2=NUMBER OF SHIFTS *
: * OUTPUT : PARAM+0 , +• 1 =SH I FTED VALUE *
l***************^n(.#*#*****^£.#*^(.^(.^(.^(.^(.^(.*#^f.**^t^^^t^(,^^^(,#^(.^nf^(.^^#^,..^

128

00190 ;

7FB0 C5 00200 MSLEFT PUSH BC
7F01 E5 00210 PUSH HL
7F02 DDE5 00220 PUSH IX
7F04 CD7F0A 00230 CALL 0A7FH
7F07 E5 00240 PUBH HL
7FB8 DDEl 00250 POP IX
7F0A DD6E0B 00260 LD L, (IX+0)
7F0D DD6601 00270 LD H» <IX + 1)
7F10 DD4602 00280 LD B) (IX+2)
7F13 29 00290 MSL010 ADD HL»HL
7F34 10FD 00300 DJNZ MSL010
7F16 DD7500 00310 MSL030 LD (IX+0>»L
7F19 DD7401 00320 LD (IX+1),H
7FIC DDEl 00330 MSL040 POP IX
7F1E El 00340 POP HL
7F1F CI 00350 POP ec
7F2B C9 00360 RET
0000 00370 END
00000 TOTAL ERRORS

;SAVE REGISTERS

;***GET PB LOC'N***
TRANSFER TO IX

;SET LSB OF VALUE
;GET MSB OF VALUE
;6ET tf OF SHIFTS

;LEFT SHIFT MS BYTE
;LOOP 'TIL DONE

;STORE SHIFTED RESULT

? RESTORE REGISTERS

; RETURN TO CALLING PROG

MSLEFT DECIMAL VALUES

1 97 » 229 f 221) 229 » 205 » 1 27 » 1 » 229 » 22 1

>

2215 110* 0. 221, 102, 1, 221 » 70, 2, 41,
16, 253, 221 1 1 17t 0, 221 , 116, 1 , 221 » 225'
225, 193, 201

1'25'

MSRGHT: MULTIPLE SHIFT RIGHT

CHKSUM= 28

System Configuration

Model 1, Model III, Model II Stand Alone.

Description

MSRGHT shifts a given 16-bit value right a specified number of bit positions.

The shift performed is a "logical" shift where zeroes fill vacated bit positions

on the left.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the number to be shifted in standard

Z-80 16-bit format, least significant byte followed by most significant byte. The

next byte of the parameter block contains the numberof shifts to be performed,

from 1 to 15.

On output, the value in the first two bytes of the parameter block has been

shifted the appropriate number of times. The count in the third byte of the

parameter block remains unchanged.

INPUT

H

POINTER TO PARAM+0 4>

OUTPUT

UNCHANGED

129

MEM 14^

+ 1

16-BIT VALUE
TO BE
SHIFTED

+2 # OF SHIFTS

MEM 1+0

^

+ 1

+2

SHIFTED
RESULT

UNCHANGED

Algorithm

The MSRCHT subroutine performs the shift by placing the number to be shifted
in HL and the count in the B register. HL is shifted right by first shifting H with
an SRL. This shifts H one bit position, with the carry being set by the Isb of H. L

is then shifted right by an RR, which shifts L to itself and places the previous
value of the carry into the msb of L. This shift sequence is done a number of
times corresponding to the count in the B register.

Sample Calling Sequence

PARAMETER BLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?
+ 02 3276B VALUE TO BE SHIFTED =1
+ 2 1 15 15SHIFTS
+ 300
MEMORY BLOCK i LOCATION?
MOVE SUBROUTINE TO? 44444
SUBROUTINE EXECUTED AT 44444
INPUT:
HL= 50000
PARAM+
PARAM+ 1 128
PARAM+ 2 15

OUTPUT:
HL=: 50000
PARAM+
PARAM+ 1

PARAM+ 2

1

15

RESULT

UNCHANGED

NAME OF SUBROUTINE?

Nofes

1. If is specified as a shift count, 256 shifts will be done, resulting in al

zeroes in the result.

2. If 16 to 255 shifts are specified, the result will be all zeroes.

Program Listing

7F00

7F00 C5
7F01 E5
7F02 DDE5
7F04 CD7F0A

00100
00110
00120
00O0
00140
00150
00160
00170
001B0
00190
00200
00210
00220
00230

ORG 7F00H ;0522

i* MULTIPLE SHIFT RIGHT. SHIFTS THE GIVEN 16-BIT VALUE *•* A SPECIFIED NUMBER OF SHIFTS IN LOGICAL FASHION »
;* INPUT: HL=>PARAMETER BLOCK *
"* PARAM+0»+l=VALUE TO BE SHIFTED #
5* PARAM+3=NUMBER OF SHIFTS
;* OUTPUT:PARAM+0»+l=SHIFTED VALUE

MSRGHT PUSH BC
PUSH HL
PUSH I

X

CALL 0A7FH

;SAVE REGISTERS

;***GET PB LOC'N***

130

7F07 E5 00240 PUSH HL
7FB8 DDE! 00250 POP IX
7F0A DD6E00 00260 LD L» (IX-t-0)

7F0D DD660i 00270 LD H» <IX+1)
7FI0 DD4602 002B0 LD B> <IX + 2)
7F13 C83C 00290 MBR010 SRL H
7F I 5 CBID 00300 RR L
7F17 10FA 00310 DJNZ MSR0i0
7F 1

9

DD7500 00320 MBR030 LD (IX-f0)»L

7F1C DD7401 00330 LD CIX +DiH
VI tF DDE I 00340 MSR040 POP IX

7F2.1 El 00350 POP HL
7F22 CI 00360 POP ec
7F23 C9 00370 RET
0000 003B0 END
00000 TOTAL E FURORS

? TRANSFER TO IX

;6ET LSB OF VALUE
;GET MSB OF VALUE
;GET tt OF SHIFTS

•RIGHT SHIFT MS BYTE
; RIGHT SHIFT LS BYTE
;L00P 'TIL DONE

; STORE SHIFTED RESULT

? RESTORE REGISTERS

? RETURN TO CALLING PROG

MSRGHT DECIMAL VALUES

197) 229 » 221 T 229? 205 » 127» 10» 229 i 221.
221 » 110) 0» 221) 102) 1) 221) 70 » '2t 203 t

60^ 203) 29) 16) 250* 221) 117) 0) 221) 116;
1) 221) 225. 225) 193) 201

225

'

CHKSUM= 223

MUNOTE: MUSICAL NOTE ROUTINE

System Configuration

Model I, Model 111.

Description

MUNOTE outputs a musical note through the cassette port. The cassette jack

output may be connected to a small, inexpensive amplifier for music, audio

sound effects, or warning tones. The tone ranges over seven octaves starting

with A three octaves below middle A and ending with G#, three octaves

above middle G#. The duration of the tone may be specified by the user in

1/1 6th second increments. Pitches and durations are approximate!

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of MUNOTE in standard

Z-80 address format, least significant byte followed by most significant byte.

This address may be easily picked up from the USR call if MUNOTE is called

from BASIC or from the assembly-language CALL address. It is necessary so that

the code in MUNOTE is completely relocatable. The next byte of the parameter

block contains the note value of through 83. This note value corresponds to

musical notes as shown in the table below. The next byte of the parameter

block specifies the duration of the note in 1/1 6th second increments. A value of

3, for example, would be 3/16ths second.

131

On output, the contents of the parameter block remain unchanged and the note
has been played.

OUTPUTINPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

+2

+3

LOCATION
OF

MUNOTE

NOTE VALUE
0-83

DURATION IN
1/16 NOTES

u ^

PARAM+0

+ 1

+2

+3P

-- UNCHANGED --

H

UNCHANGED

UNCHANGED

UNCHANGED

Table of values for musical notes.

VAL NOTE FREOUEN
A 27.5

1 A# 29.1352
2 B 30.8677
3 C 32.7032
4 C# 34.6478
5 D 36.7081
6 D# 38.8909
7 B 41.2035
8 F 43.6535
9 F# 46.2493
10 G 48. 9995
U G# 51.9131
12 A 55
13 A# 58.2705
14 B 61.7355
15 C 65.4064
16 C# 69.2957
17 D 73.4163
18 D# 77.7818
19 E 82.407
20 F 87.3071
21 Ftt 92. 4987
22 G 97.999
23 G# 103.826
24 A 110
25 A# 116.541
26 B 123.471
27 C 130.813
28 C# 138.592
29 D 146.833
30 D# 155.564
31 E 164.814
32 F 174.614
33 Ftt 184.997
34 G 195.998
35 G# 207.653
36 A 220
37 A# 233. 082
38 B 246.942
39 C 261.626
40 C# 277. 183
41 D 293. 665
42 D# 311.128
43 E 329.628
44 F 349.229
45 F# 369.995
46 G 391.996
47 G# 415.306

TABLE VALUES
122» 5 1)

43, 5 1<
225, 4 li

154, 4 2i
88> 4 2i
26, 4 2)
223, 3 2i
167, 3 2i
114, 3 2i
65, 3 2i
18» 3 3,
230, 2 3,
188, 2 3)
148, 2 3,
ill, 2 3,
76, 2 4»
43, 2 4,
12, 2 4,
238, 1 4,
210, 1 5,
184, 1 5,
159, 1 5,
136, 1 6,
114, 1 6,
93, 1 6,
73, 1 7,
54, 1 7,
37, 1 8,
20, 1 8,
5, 1 9»
246, 9,
232, 10 ,

219, 10 ,

206, a ,

195, 12 ,

184, 12 ,

173, 13 ,

163, 14 ,

154, 15 ,

145, 16 ,

137, 17 >

129, 18 t

122, 19 ,

115, 20 ,

108, 21 ,

102, 23 ,

96, 24 ,

91, 25 ,

132

48 A 440.001 86, 27,
49 A# 466, 165 81, 29,
50 B 493.884 76, 30,
51 C 523.252 72, 32,
52 C# 554.367 67, 34,
53 D 587.331 64i 36,
54 D# 622.256 60, 38,
55 E 659.257 56, 41,
56 p 698.458 53, 43,
57 F# 739.991 50, 46,
58 G 783.993 47, 48,
59 G# 830.612 44, 51,
60 A 880.003 42, 55,
61 A# 932.33 39, 58,
62 B 987.769 37

1

61,
63 C 1046.51 35, 65,
64 Ctt 1108.73 33) 69,
65 D 1174.66 31) 73,
66 D# 1244.51 29 > 77,
67 E 1318.51 27 82,
68 F 1396.92 25 t 87,
69 F# 1479.98 24 t 92,
70 G 1567.99 22) 97, a
71 6# 1661.22 21 1 103,
72 A 1760.01 20 , 110,
73 A# 1 864 . 66 18 I 116,
74 B 1975.54 17 , 123,
75 C 2093.01 16 , 130,
76 C# 2217.47 15 , 138,
77 D 2349.33 14 , 146,
78 D# 2489.03 13 , 155,
79 E 2637 . 03 12 , 164,
80 F 2793.84 12 , 174,
81 F# 2959.97 11 , 184,
82 G 3135.98 10 , 195,
83 G« 3322.45 9, 207,

Algorithm

Operation of MUNOTE is very similar to TONOUT. MUNOTE, however, picks

up a frequency count and duration count from the MUNTB table. This table is

referenced to the note value in the parameter block. The note value of

through 83 is multiplied by 4, added to the starting address of MUNOTE from

the parameter block, and then added to the displacement of the table, MUNTB,
to point to the table entry. The frequency count and duration count from

MUNTB are then picked up and put into DE and BC, respectively. The duration

count is multiplied by the number of 16ths specified in the parameter block,

and the final duration count is put into IX. From this point on, the code is

almost identical to the TONOUT code.

MUNOTE uses two loops. The outer loop (from MUN010) produces the num-

ber of cycles equal to the duration count. The inner loop is made up of two

parts. The MUN020 portion outputs an "on" pulse from the cassette output.

The MUN030 portion turns off the cassette port for the same period of time.

Both portions use the frequency count from the DE register for a timing loop

count.

The MUN010 loop puts the DE frequency count into HL and turns on the

cassette {OUT OFFH,A). The count in HL is then decremented by one in the

MUN020 timing loop. At the end of the loop, the count is again put into HL

133

from DE, the cassette is turned off, and the count is decremented by one in the

MUN030 timing loop. After this loop, the duration, or cycle, count in IX Is

decremented by one and if it is not negative, a jump is made backtoMUNOlO
for the next cycle.

Sample Calling Sequence

NAME OF SUBROUTINE? MUNOTE
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02 37000 START OF MUNOTE
+ 2 1 60 FIFTH OCTAVE, A
•+•3 12 1/8TH SECOND
+ 400
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
input:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

output:
HL= 40000

136 PARAM+ 136
144 PARAM+ 1 144
60 PARAM+ 2 60
2 PARAM+ 3 2

NAME OF SUBROUTINE?

Notes

1. The table values are for a standard TRS-80 Model I clock frequency. They
must be recomputed for clock speed upgrades or adjusted for a Model III.

Multiply the frequency values by 1 .143 and divide the duration values by 1 .143

for a Model III.

2. Lower octave durations and higher octave frequencies are approximate.

Program Listing

7F00

7F00
7F01
7F02
7F03
7F04
7F06
7F08
7F0B
7F0C
7F0E
7F11

F5
C5
D5
E5
DDES
FDE5
CD7F0A
E5
DDEl
DD6E02
2600

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310

ORG 7F00H ;0522
##*#*****###****#**###*^(.^(.#^(.^(,^(.^(.^(.^(.#»***#t(**#«****#***#*»
* MUSICAL NOTE ROUTINE. OUTPUTS MUSICAL NOTE THROUGH *
* CASSETTE PORT. *
* INPUT: HL=> PARAMETER BLOCK
* PARAM+0,+l=LOCATION OF MUNOTE *
* PARAM+2=N0TE VALUEi THROUGH 83 *
* PARAM+3=DURATI0N IN 1/16TH NOTES *
* OUTPUT: NOTE OUTPUT TO CASSETTE PORT
*********** *****»*#**«#**#*#**#^nnnnnt#*^nnt^f^t^j^f^t***»*##**

MUNOTE PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

AF
BC
DE
HL
IX
lY
0A7FH
HL
IX
L, (IX+2)
H,0

?SAVE REGISTERS

;***GET PB LOC'N***
;transfer to IX.

!GET NOTE VALUE
;NOW IN HL

134

7Fi3 29 00320 ADD HL)HL
7F14 29 00330 ADD HLiHL
7F15 DD5E00 00340 LD E* <IX+0)
7F18 DD5601 00350 LD D, < IX+1>
7Fie 19 00360 ADD HL.DE
7FiC n5F00 00370 LD DE» MUNTB
7F1F 19 003S0 ADD HL»DE
7F20 E5 00390 PUSH HL
7F21 FDEl 00400 POP lY
7F23 FD5E00 00410 LD El (IY+0>
7F26 FD5601 00420 LD Dt (IY+1

)

7F29 FD4E02 00430 LD C» (iy+2)
7F2C FD4603 00440 LD B. <IY+3>
7F2F 210000 00450 LD HLj0
7F32 DD7E03 00460 LD A, (IX+3)
7F35 09 00470 MUN005 ADD HLtBC
7F36 3D 00480 DEC A

7F37 20FC 00490 JR NZ » MUN005
7F39 E5 00500 MUN008 PUSH HL
7F3A DDEl 00510 POP IX

7F3C 01FFFF 00520 LD BC»~1
7F3F 6B 00530 MUN010 LD L,E
7F40 62 00540 LD H.D
7FA1 3E01 00550 LD A«l
7F43 D3FF 00560 OUT (0FFH) 1 A
7F45 09 00570 MUN020 ADD HLiBC
7F46 DA457F 00580 JP C»MUN020
7F49 66 00590 LD L,E
7F4A 62 00600 LD H»D
7F4B 3E02 00610 LD A. 2
7F4D D3FF 00620 OUT (0FFH)iA
7F4F 09 00630 MUN030 ADD HL»BC
7F50 38FD 00640 JR CjMUN030
7F52 DD09 00650 ADD IX. BC
7F54 3aE9 00660 JR CiMUN010
7F56 FDEl 00670 POP lY
7F58 DDEl 00680 POP IX
7F5A El 00690 POP HL
7F5B Dl 00700 POP DE
7F5C Ci 00710 POP BC
7F5D Fl 00720 POP AF
7F5E C9 00730 RET
005F 00740 MUNTB EQU *~MUNOTE

00750 ; MUSICAL NOTE TABLE. ENTRY+0,+
00760 ; ENTRY+2»+3 I£; DURATION COUNT

0000 00770 END
00000 TOTAL ERRORS

;INDEX*2
?INDEX*4
",PUT MUNOTE BASE IN BC

;BASE PLUS INDEX
;TABLE DISPLACEMENT
; POINT TO ENTRY
; TRANSFER ENTRY LOC TO lY

5 PUT FREQ COUNT IN DE

;PUT DUR COUNT IN BC

;INITIALIZE DURATION
?GET DURATION IN 1/16THS

; CHANGE TO SPEC DURATION
^DECREMENT 1/16THS CNT
;L00P til DONE

? transfer new cnt to ix

;for tight loop
?put freq count in hl 4

;4
tMAXImum positive 7
; OUTPUT 11

5 COUNT- 1 11

JLOOP FOR 1/2 CYCLE 7/12
;PUT FREQ COUNT IN HL 4
;4
^MAXIMUM NEGATIVE 7
! OUTPUT 11

; COUNT- 1 11

;L00P FOR 1/2 CYCLE 7/12
;decrement dur count is

sloop if not done 7/12
; restore registers

; RETURN TO CALLING PROG

1 IB FREQUENCY COUNT.
FOR 1/16THS.

MUNOTE DECIMAL VALUES

245
101
41»
01 :

li :

221
1 1

218
56i
225

197i 213t 229i 221;
229i 221i 225i 221i
221i 94i 01 221 J 86:

110
1)

? 1 j:^_)3 >

I 2» 38:

25 » 17'
0f
95

205
41)

127-

>5 1 229 J

;!53i 78

1

1 ^'6 1 3
i55i 255

253 225 1 25 3 1 94 1

i 253i 701 3i 33i
9i 61i 32i 252i 229
107» 9Bi 62i li 211

69i 127i 107i 98i 62t 2i
?53i 221? 9i 56i 233i 253'
209i 193) 241 1 201

253i
05

221

1

255)
21 li 255

1

225) 221

86:

i!25

)

225'

CHKBUM= 225

135

MVDIAG: MOVING DOT DIAGONAL

System Configuration

Model I, Model III.

Description

MVDIAG moves a "dot" along a diagonal line with a varying time delay. This
effect can be used for games or other applications. The dot may move along the
diagonal from "bottom" to "top" of the screen, or from "top" to "bottom."
The amount of time that the dot remains in any position can be adjusted under
program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the starting x character position of the dot,
from to 63. The next byte of the parameter block contains the starting line

number y of the dot, from to 15. The next byte of the parameter block con-
tains the number of character positions of travel. This will be a maximum of 1

6

for a diagonal that starts 16 character positions or greater from the side of the
screen. The next byte of the parameter block contains the time delay value
from 1 to 255 orO (256). One is a minimum time delay, while 255 and (256)
are maximum time delays. The next byte of the parameter block contains the
direction of travel— is up to the right, 1 is up to the left, 2 is down to the right,

and 3 is down to the left.

On output, the parameter block contents are unchanged. The dot has moved
over the specified diagonal.

INPUT OUTPUT

POINTER TO PARAM+0

1+0 STARTING X

+ 1 STARTING Y

+2 LENGTH OF
TRAVEL

+3 TIME DELAY

+4 DIRECTION

H
,

L

\
UNCHANGED^

1

PARAM+0 UNCHANGED

+ 1 UNCHANGED

+2

+3

UNCHANGED

N UNCHANGED7
+4 UNCHANGED

Algorithm

The MVDIAG subroutine performs the move by computing the starting address
of the dot in video display memory, by computing the "increment" to add to
the address to obtain the next dot position, and by controlling the move with a
count of the number of character positions involved.

First, the line number value is picked up from the parameter block. This is

multiplied by 64 to find the number of bytes (displacement) from the start of

136

video display memory. This value is added to 3C00H to find the actual video

memory address for the line start. This value is added to the character position

of the start from the parameter block to find the starting position in video

display memory.

Next, a test is made of the direction of travel. Based on the direction, an incre-

ment value of — 4rrl (up to left), — 3FH {up to right), 3FH (down to left), or41H

(down to right) is found. This represents the number to be added to the last

video display memory location to find the next video display memory location

for the dot.

The code at MVD020 is the main loop of the subroutine. A byte of OBFH is

stored to the current video display memory position. A time delay is then done

by decrementing the count value in the C register. After the delay, a byte of 80H

is stored to "erase" the last dot.

The increment value is then added to the current video display memory posi-

tion to find the next location of the dot. A count of the number of character

positions involved is then decremented, and a jump is made to MVD020 if the

count is not zero.

Sample Calling Sequence

NAME OF SUBROUTINE? MVDIAG
HL VALUE? 43333
PARAMETER BLOCK LOCATION? 43333
PARAMETER BLOCK VALUES?
+ 018 X = 8

+ 1 1 15 Y = 15

+ 2 1 16 LENGTH = 16 (END X, Y = 24, 0)

+ 310 MAXIMUM DELAY
+ 410 UP TO RIGHT
-t- 5
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 3ea£38

SUBROUTINE EXECUTED AT 3BBB8
input: OUTPUT:
HL= 43333 HL=: 43333
PARAM+ 8 PARAM+ 8

PARAM+ i 1^> PARAM+ 1 15

PARAh+ 2 16 PARAM+ 2 16 -UNCHANGED
PARAM+ 3 PARAM+ 3
PARAM+ 4 PARAM+ 4 ^

NAME OF SUBROUTINE?

Notes

1. The program may "bomb" the system if the length of travel goes beyond

video display memory boundaries or if x or y are incorrect values. Maximum

length is 16.

2. Add additional time wasting instructions as required.

3. Delete time wasting instructions as required. Substituting NOPs (zeroes)

will shorten the delay.

4. Speed at maximum delay is about 85 character positions per second.

137

Program Listing

7F00

7F00
7Fai
7F02
7F03
7FI34

IFQh
7F08
7F0B
7F0C
7F0E
7F10
7F13
7F15
7F16
7F18
7F1B
7F1C
7F1F
7F21
7F22
7F25
7F2S
7F2A
7F2D
7F2F
7F32
7F34
7F36
7F37
7F38
7F3A
7F3D
7F3E
7F42
7F46
7F4A
7F4E
7F50
7F52
7F53
7F55
7F57
7F59
7F5A
7F5e
7F5C
7F5D
0000
00000

F5
C5
D5
E5
DDE5
FDE5
CD7F0A

DDEl
0606
DD6E01
2600
29
10FD
01003C
09
DD4E00
0600
09
DD4602
DD4E04
CB49
IIBFFF
2803
n3F00
CB41
2002
13
13
36BF
DD4E03
0D

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560

ORG 7F00H ;0522

FD2A0000 00570
FD2A0000 00580
FD2A0000 00590
FD2A0000 00600
20ED 00610
3680 00620
19 00630
10E3 00640
FDEl 00650
DDEl 00660
El 00670
Dl 00680
CI 00690
Fl 00700
C9 00710

00720
TOTAL ERRORS

* MOVING DOT DIAGONAL. MOVES DOT ALONG DIAGONAL LINE
* WITH VARYING TIME DELAY
* INPUT: HL=> PARAMETER BLOCK
* PARAM+0=STARTING CHAR POS'N (X)
* PARAM+1=STARTING LINE # (Y)
* PARAM+2=LENGTH OF TRAVEL IN CHAR POSNS
* PARAM+3=TIME DELAY* 1=MIN 255/0=MAX
* PARAM+4=0 IS UP TO RIGHT) 1 IS UP TO LEFT
* 2 IS DOWN TO RIGHT? 3 IS DOWN TO
* LEFT
* OUT PUT: DOT MOVES ALONG DIAGONAL LINE
*****#**##*********##*^^##^^^^^^^^^^^^^t**#*»*^(##**####^(.*##^f,^(.^(.^(.*

MVDIAG

MVD010

MVD015

MVD020

MVD030

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP

LD
LD
ADD
DJNZ

ADD
LD
LD
ADD
LD
LD
BIT
LD
JR
LD
BIT
JR
INC
INC
LD
LD
DEC
LD

LD
LD
JR

ADD
DJNZ
POP
POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX

lY
0A7FH
HL
IX
B)6
Li (IX+1)
H»0
HLiHL
MVD010
BC.3C00H
HL,BC
C. (IX+0)
B)0
HLiBC
B» (IX+2>
C) < IX+4)
IjC
DEj~41H
2.MVD015
DEi3FH
0,C
NZ . MVD020
DE
DE
(HL) , 0BFH
C^ (IX+3)
C
lY, <0)
IY» (0)
lY, (0)
lY) (0)
NZ,MVD030
(HL) , 80H
HL.DE
MVD020
lY
IX
HL
DE
BC
AF

!SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

; ITERATION COUNT
?6ET LINE #
SNOW IN HL

;LINE# * 64
;L00P 'TIL DONE

;START OF SCREEN
;FIND LOC OF LINE START
;GET CHAR POSN (X)
?NOW IN BC
;FIND ACTUAL LOC'N
;GET LENGTH OF TRAVEL
iGET DIRECTION CODE
?TEST DIRECTION
; INCREMENT FOR NEXT DOT
;G0 IF UP
; INCREMENT FOR DOWN
JTEST RIGHT/LEFT
?G0 IF LEFT
J RIGHT

!SET CHAR POS TO ALL ON
;GET DELAY COUNT

; DECREMENT COUNT
;WASTE TIME

; DELAY LOOP
; RESET CHAR POS
! POINT TO NEXT POSITION
;L00P FOR LENGTH OF LINE

; RESTORE REGISTERS

?RETURN TO CALLING PROG

138

MVDIAG DECIMAL VALUES

245j 197t 2i3> 229? :

10. 229) 221» 225» 6'

0» All 16'» 253) 1) 0'

0» 6) 05 9) 221) 70.

:2l5 229. 253
6, 221, 110
605 9. 221 J 78

2» 221) 78) 4)

229) 205
1) 38)

127.

203) 73) 17) 191) 255) 40) 3) 17) 63» 0,
203) 65. 32) 2) 19) 19? 54. 191) 221) 78)
3) 13) 253) 42) 0. 0) 253) 42) 0) 0i
253) 42) 0) 0) 253) 42) 0) 0) 32. 237.
54) 128) 25) 16) 227) 253) 225) 221) 225) 225
209) 193) 241) 201

CHKSUM= 175

MVHORZ: MOVING DOT HORIZONTAL

System Configuration

Model I, Model III.

Description

MVHORZ moves a "dot" along a horizontal line with a varying tinne delay.

This effect can be used for games or other applications. The dot may move
along the horizontal line from right to left, or from left to right, on the screen.

The amount of time that the dot remains in any position can be adjusted under

program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the starting x character position of the dot,

from to 63. The next byte of the parameter block contains the starting line

number y of the dot, from to 15. The next byte of the parameter block con-

tains the number of character positions of travel. This will be a maximum of 64

for horizontal travel that starts at a right or left edge of the screen. The next byte

of the parameter block contains the time delay value from 1 to 255 or (256).

One is a minimum time delay, while 255 and (256) are maximum time delays.

On output, the parameter block contents are unchanged. The dot has moved

over the specified horizontal line.

INPUT OUTPUT

POINTER TO PARAM+0
\

PARAM+0 STARTING X

+ 1 STARTING Y

+2 LENGTH
(-64TO+64)

+3 TIME DELAY
COUNT

^

PARAM+0

+ 1

+2

+3»

UNCHANGED
1

UNCHANGED

UNCHANGED

UNCHANGED

UNCHANGED

139

Algorithm

The MVHORZ subroutine performs the move by computing the starting ad-

dress of the dot in video display memory, by finding the direction of travel, and
by controlling the move with a count of the number of character positions

involved.

First, the line number value is picked up from the parameter block. This is

multiplied by 64 to find the number of bytes (displacement) from the start of

video display memory. This value is added to 3C00H to find the actual video

memory address for the line start. This value is added to the character position

of the start from the parameter block to find the starting position in video

display memory.

Next, a test is made of the direction of travel. Based on the direction, a "move
right" code segment (MVH040) or a "move left" code segment (MVH020) is

entered. Both segments are very similar, except that the "move right" incre-

ments the next character position pointer, while the "move left" decrements
the next character position pointer.

In each code segment, a byte of OBFH is stored to the current video display
memory position. A time delay is then done by decrementing the count value
in the C register. After the delay, a byte of 80H is stored to "erase" the last dot.

The current video display memory position in HL is then incremented or decre-
mented to find the next location of the dot. The count of the number of charac-
ter positions involved is then decremented, and a jump is made to MVH020 or

MVH040 if the count is not zero.

Sample Calling Seqence

NAME OF SUBROUTINE? MVHORZ
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+0 1 X=0+118 Y=8
+ 2 1 64 LENGTH = 64 {END X,Y = 64, 8), RIGHT
+ 310 MAXIMUM DELAY
+ 400
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT: OUTPUT!
HL= 40000 HL= 40000
PARAM+ PARAM+
PARAM+ 1 8 PARAM+ 1 S
PARAM+ 2 64 PARAM+ 2 64
PARAM+ 3 PARAM+ 3

NAME OF SUBROUTINE?

Notes

1. The program may "bomb" the system if the length of travel goes beyond
video display memory boundaries. Maximum length is -64 or +64.

140

2. The program may "bomb" the system if the x and y coordinates are im-

properly specified.

3. Use additional time-wasting instructions as required.

4. Delete time-wasting instructions as required. NOPs (all zeroes) may be

substituted to shorten delay times.

5. Speed at maximum delay is about 85 character positions per second.

Program Listing

7^00

7F00
7F01
7F02
7F(33

7F05
7F(37
7F0A
7F0B
7F0D
7F0F
7F12
7Fi4
7Fif)

7F17
7FiA
7F1B
7FiE
7F20
7F21
7F24
7F26
7F2e
7F29
7F2B
7F2C
7F2E
7F"3

1

7F32
7F36
7F3A
7F3E
7F42
7F44
7F46
7F47
7F49
7F4B
7F4D
7F50
7F51
7F55

F5
C5
E3
DDE5
FDE5
CD7F0A
E5
DDEl
0606
DD6E01
2600
29
10FD
01003C
09
DD4E00
0600
09
DD4602
CB78
2823
78
ED44
47
36BF
DD4E03
0D
FD2A0000
FD2A0000
FD2A0000
FD2A0000
20ED
3680
2B
10E3
181D
36BF
DD4E03
0D
FD2A0000
FD2A0000

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630

ORG 7F00H ;0522

* MOVING DOT HORIZONTAL. MOVES DOT ALONG HORIZONTAL *
* LINE WITH VARYING TIME DELAY.
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0=STARTING CHAR POS'N (X) *
* PARAM+1=STARTING LINE # (Y) *
* PARAM+2=LENGTH OF TRAVEL IN CHAR POBNS *
* + IS TO RIGHT, - IS TO LEFT *
* PARAM+3=TIME DELAY* 1=MIN 255/0=MAX
* OUTPUT:D0T MOVES ALONG LINE *
**************#********»»»*#****#***####**#********#*^(,^i(.

MVHORZ

MVH010

MVH020

MVH030

MVH040

MVH050

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
ADD
DJNZ
LD
ADD
LD
LD
ADD
LD
BIT
JR
LD
NEG

LD
DEC
LD
LD
LD
LD
JR
LD
DEC
DJNZ
JR

LD
DEC
LD

AF
BC
HL
IX
lY
0A7FH
HL
IX
B56
Li (IX+l)
Ht0
HL) HL
MVH010
BC5 3C00H
HLjBC
C, (IX+0)
Bt0
HLiBC
B» (IX+2>
7je
Z) MVH040
AtB

B)A
<HL),0BFH
C, CIX+3)
C

(0)
(0)
<0)
(0>
MVH030

lY:

lY!

lY.

IY1

N2-

<HL))80H
HL
MVH020
MVH090
{HL),0BFH
C» < IX+3)
C

lY, (0)
IYt (0)

;SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

ITERATION COUNT
;get line #
?NOW IN HL

;LINE# * 64
;L00P 'TIL DONE

? START OF SCREEN
;FIND LOC OF LINE START
;get char posn (X)
•HOU IN BC
;FIND ACTUAL LOC'N
-get length of travel
?test sign
;G0 if RIGHT
;left
;FIND ABSOLUTE VALUE
?EACK TO B FOR DJNZ

;SET CHAR POS TO ALL ON
;GET DELAY COUNT

; DECREMENT COUNT
? WASTE TIME

; DELAY LOOP
; RESET CHAR POS
; POINT TO NEXT POSN
iLOOP FOR LENGTH OF LINE

;G0 TO CLEAN UP
?SET CHAR POS TO ALL ON
;GET delay COUNT .

; DECREMENT COUNT
; WASTE TIME

141

7F59 FD2A0000 00640 LD lY, (P5^

7F5D FD2A0000 00650 LD lYt (0)
7F61 20ED 00660 JR N2iMVH050
7F63 3680 00670 LD (HL)t80H
7F65 23 00680 INC HL
7F66 10E3 00690 DJNZ MVH040
7F68 FDEl 00700 MVH090 POP lY
7F6A DDEl 00710 POP IX
7F6C El 00720 POP HL
7F6D CI 00730 POP BC
7F6E Fl 00740 POP AF
7F6F C9 00750 RET
0BQI3 00760 END
000(80 TOTAL ERRORS

! DELAY LOOP
; reset char pos
; point to next posn
;loop for length of line

? restore registers

? RETURN TO CALLING PROG

MVHORZ DECIMAL VALUES

245, 197, 229, 221, 229, 253, 229, 205,
229, 221, 225, 6, 6, 221, 110, 1, 38,
41, 16, 253, 1, 0, 60, 9, 221, 78, 0,
6, 0, 9, 221, 70, 2, 203, 120, 40, 35,
120, 237, 68, 71, 54, 191, 221, 78, 3,
253, 42, 0, 0, 253, 42, 0, 0, 253, 42,
0, 0, 253, 42, 0, 0, 32, 237, 54, 128,
43, 16, 227, 24, 29, 54, 191, 221, 78,
13, 253, 42, 0, 0, 253, 42, 0, 0, 253,
42, 0, 0, 253, 42, 0, 0, 32, 237, 54,
128, 35, 16, 227, 253, 225, 221, 225, 2:

241, 201

127, 10!

1 3;

193:

CHKSUM= 146

MVVERT: MOVING DOT VERTICAL

System Configuration

Model I, Model Mi.

Description

MVVERT moves a "dot" along a vertical line with a varying time delay. This

effect can be used for games or other applications. The dot may move along the

vertical line from top to bottom, or from bottom to top, on the screen. The
amount of time that the dot remains in any position can be adjusted under

program control.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the starting x character position of the dot,

from to 63. The next byte of the parameter block contains the starting line

number y of the dot, from to 15. The next byte of the parameter block con-

tains the number of character positions of travel. This will be a maximum of 16

for vertical travel that starts at the top or bottom of the screen. The next byte of

the parameter block contains the time delay value from 1 to 255 orO (256). One
is a minimum time delay, while 255 and (256) are maximum time delays.

142

On output, the parameter block contents are unchanged. The dot has moved
over the specified vertical line.

INPUT

POINTER TO PARAM+0

PARAM+0 STARTING X

+ 1 STARTING Y

+2 LENGTH
(-16T0+161

+3 TIME DELAY
COUNT

OUTPUT

H L
1

s
UNCHANGED

1

>

PARAM+0

+ 1

+2

1

UNCHANGED

UNCHANGED

UNCHANGED

UNCHANGED

Algorithm

The MVVERT subroutine performs the move by computing the starting address
of the dot in video display memory, by finding the direction of travel, and by
controlling the move with a count of the number of character positions in-

volved.

First, the line number value Is picked up from the parameter block. This is

multiplied by 64 to find the number of bytes (displacement) from the start of

video display memory. This value is added to 3C00H to find the actual video
memory address for the line start. This value is added to the character position

of the start from the parameter block to find the starting position in video
display memory.

Next, a test Is made of the direction of travel. Based on the direction, an incre-

ment value of 40H (down) or -40H (up) Is stored In DE.

The code at MVV020 Is the main loop of the subroutine. A byte of OBFH is

stored to the current video display memory position. A time delay is then done
by decrementing the count value In the C register. After the delay, a byte of 80H
is stored to "erase" the last dot.

The current video display memory position In HL Is then incremented or decre-

mented by the Increment value In DE to find the next location of the dot. The

count of the number of character positions Involved is then decremented, and a

jump is made to MVV020.

Sample Calling Sequence

NANE OF SUBROUTINE? MVVERT
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 1 32 X = 32
•+ 1 1 Y =

+ 2 1 240 LENGTH = 16, DOWN
•+ 3 1 MAXIMUM DELAY
+ 4
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 39000
SUBROUTINE EXECUTED AT 39000
INPUTS OUTPUT:

143

PARAM+ 32
PARAM+ 1

PARAM+ 2 240
PARAH+ 3

HL-~~- 40000
PARAM+ 32
PARAM+ 1

PARAM+ 2 240
PARAM+ 3

-UNCHANGED

name: of subroutine?

Notes

1. The program may "bomb" the system if the length of travel goes beyond
video display memory boundaries.

2. The program may "bomb" the system if the x and y coordinates are im-

properly specified.

3. Use additional time-u'asting instructions as required.

4. Delete time-wasting instructions as required. NOPs (all zeroes) may be

substituted to shorten delay times.

5. Speed at maximum delay is about 85 character positions per second.

Program Listing

7f 00

7F00
7F01
7F02
7F03
7F04
7F06
7F08
7F0B
7F0C
7F0E
7Fi0
7F13
7F15
7F16
7F18
7F1B
7FiC
7F1F
7F21
7F22
7F25
7F27
7F2A
7F2C
7F2D
7F2F

F5
C5
D5
E5
DDE5
FDE5
CD7F0A
E5
DDEl
0606
DD6E0i
2600
29
10FD
01003C
09
DD4E00
0600
09
DD4602
ce78
11C0FF
2807
78
ED44
47

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480

ORG 7F00H 5 0522

* MOVING DOT VERTICAL. MOVES DOT ALONG VERTICAL LINE *
WITH VARYING TIME DELAY *

input: HL=> parameter BLOCK #
PARAM+0=STARTING CHAR POS'N (X) *
PARAM+1=STARTING LINE # (Y) «
PARAM+2=LENGTH OF TRAVEL IN CHAR POSNS *

+ IS UP, - IS DOWN *
PARAM+3=TIME DELAYt 1=MIN 255/0=MAX *

OUTPUTJDOT MOVES ALONG VERTICAL LINE *

MVVERT

MVV010

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

LD
ADD
DJN2
LD
ADD

LD
ADD
LD
BIT
LD
JR
LD
NEG

AF
BC
DE
HL
IX
lY
0A7FH
HL
IX
B 1 6
L, (IX+i)
H,0
HL 5 HL
MVV010
BC.3C00H
HL)BC
C, (IX + 0)
Bi0
HL»BC
B, (IX+2)
7,B
DE»-40H
Z,MVV020
AiB

B? A

;SAVE REGISTERS

?***GET PB LOC'N***
; TRANSFER TO IX

? ITERATION COUNT
SGET LINE #
;N0W IN HL

iLINE# * 64
;L00P 'TIL DONE

; START OF SCREEN
?FIND LOC OF LINE START
;GET CHAR POSN (X)
;NOW IN BC
?FIND ACTUAL LOC'N
?GET LENGTH OF TRAVEL
;TEST SIGN
; INCREMENT FOR NEXT DOT
; GO IF UP
J DOWN
?FIND ABSOLUTE VALUE
;BACK TO B FOR DJNZ

144

7F30 114000 00490 LD DE»40H
7F33 36BF 00500 MW020 LD (HL)»0BFH
7F35 DD4E03 00510 LD C, (IX+3)
7F38 0D 00520 MVV030 DEC C
7F39 FD2A0000 00530 LD lY, <0)
7F3D FD2A0000 00540 LD lY, (0)
7F41 FD2A0000 00550 LD IYj C0)
7F45 FD2A0000 00560 LD lY, (0)
7F49 20ED 00570 JR NZ»MVV030
7F4B 36B0 00580 LD (HL) , a0H
7F4D 19 00590 ADD HL.DE
7F4E 10E3 00600 DJNZ MW020
7F50 FDEl 00610 POP lY
7F52 DDEl 00620 POP IX
7F54 El 00630 POP HL
7F55 Dl 00640 POP DE
7FS6 CI 00650 POP BC
7F57 Fl 00660 POP AF
7F58 C9 00670 RET
0000 00680 END
00000 TOTAL ERRORS

UNCREMENT FOR DOWN
;SET CHAR PCS TO ALL ON
;GET DELAY COUNT

; DECREMENT COUNT
; WASTE TIME

; DELAY LOOP
; RESET CHAR POS
; POINT TO NEXT POSITION
?LOOP FOR LENGTH OF LINE

; RESTORE REGISTERS

; RETURN TO CALLING PROG

MVVERT DECIMAL VALUES

245) 197, 213) 229, 221, 229, 253, 229i 205-
101 229, 221, 225, 6, 6» 221» 110, 1, 38,
01 41, 16, 253, 1j 0» 60, 9, 221, 78,
0) 6, 01 9, 221, 70, 2, 203, 120, 17,
192, 255, 40, 7» 120, 237, 68, 71j 17, 64,
0, 54, 191, 221, 78, 3, 13j 253, 42, 0,
0, 253, 42, 0, 0» 253, 42, 0, 0, 253,
42, 0, 0, 32, 237» 54, 128, 25, 16, 227,
253, 225, 221, 225, 225, 209, 193, 241, 201

127

1

CHKSUM= 81

NECDRV: NEC SPINWRriER DRIVER

System Configuration

Model I.

Description

NECDRV is a printer driver for the serial NEC Spinwriter Printer or similar type

of serial printer. Previous to use, the SETCOM subroutine must have been run

to initialize the RS-232-C interface to the proper baud rate and other serial

parameters. The NECDRV subroutine outputs a single character to the serial

printer with automatic line feed. The wiring configuration for the Spinwriter

cabling is shown in the figure below.

Input/Output Parameters

On input, the L register contains the character to be printed. On output the

character has been printed and all registers are unchanged.

145

INPUT OUTPUT

H L

CHARACTER

H L
1

UNCHANGED

Algorithm

The NECDRV subroutine first gets the status from the RS-232-C controller

holding register. If the transmitter holding register is not empty, the previous

character has not been sent. If it is empty, the Clear to Send (CTS) line is

checked. If there is a CTS, the character in HL is output. A test for a carriage

return is then done. If the character is a carriage return, a line feed character is

sent by a jump back to NEC010.

Sample Calling Sequence

NAME OF SUBROUTINE? NECDRV
HL VALUE? 65 "A"
PARAMETER BLOCK LOCATION?
MEMORY BLOCK t LOCATION?
MOVE SUBROUTINE TO? 371300
SUBROUTINE EXECUTED AT 37000
INPUT: OUTPUT:
HL= 65 HL= 65

NAME OF SUBROUTINE?

Notes

1. See the SETCOM subroutine for comments about setting up the RS-232-C
interface.

2. Baud rates of 110 to 1200 may be used.

Program Listing

TRS=80
RS=232=C
CABLE

NEC CABLE

TD

RD

SGND

CTS

TD

RD

SGND
SGND

REVERSE
CHANNEL

NEC spmwriter connections.

7F00 00100
00110
00120
00130
00140
00150
00160
00170

ORG 7F00H ;0522

!* NEC BPINWRITER DRIVER. ROUTINE FOR USING NEC SPIN- *
;* WRITER WITH SERIAL OUTPUT. »
?* input: HL=CHARACTER to be PRINTED #
;* output: CHARACTER PRINTED ON SPINWRITER *

146

7h00 F5 00180 NECDRV PUSH AF ;SAVE REGISTER
7FB1 CD7F0A 00190 CALL 0A7FH !#*#GET CHARACTER***
7F04 3AEA00 00200 NEC010 LD A» <0EAH) ;GET STATUS
7F07 CB77 00210 BIT 6»A ;TEST XMTR HOLDING REG
7F(39 28F9 00220 JR Z)NEC010 ;G0 if not EMPTY
7F0B DBE8 00230 IN A» (0E8H) ;GET CLEAR TO SEND
7F0D CB7F 00240 BIT 7»A ;TE8T
7F0F 28F3 00250 JR Z,NEC010 ;G0 IE NOT CTS
7F11 7D 00260 LD A.L ;PUT CHARACTER IM A

7F12 D3EB 00270 OUT (0EBH) ,A ;OUTPUT CHARACTER
7F14 FE0D 00280 CP 0DH ?TEST FOR CR
7Ft6 2004 00290 JR NZ»NEC090 ;G0 IF NOT CR

7F18 3E0A 00300 LD A)0AH !LINE FEED
7F1A 18E8 00310 JR NEC010 ; OUTPUT LF
7F1C Fl 00320 NEC090 POP AF ; RESTORE REGISTER
7F1D C9 00330 RET
0000 00340 END
00000 TOTAL ERRORS

NECDRV DECIMAL VALUES

245 » 205 » 1 27 > 1 * 58 > 234 » » 203 > 119? 40

^

249, 2195 232i 203» 127. 40t 243, 125, 211. 235'

2545 13. 32, 4, 62, 10, 24, 232. 241. 201

CHKSUM= 102

PRANDM: PSEUDO-RANDOM NUMBER GENERATOR

System Configuration

Model I Model III, Model II Stand Alone.

Description

This subroutine returns a pseudo-random number in 32 bits. A pseudo-random

number differs from a random number in that It is repeatable. If the same

"seed" value is used, the same sequence of numbers as previously generated

will be repeated. At the same time, the sequence of numbers will appear to be

randomly distributed and can be utilized as random numbers for games, simu-

lations, and modeling.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The four

bytes of the parameter block contain the seed, or starting value, of the pseudo-

random number sequence. The seed value may not be zero.

On output, the four bytes of the parameter block contain the next pseudo-

random number in sequence.

INPUT

H L

POINTER TO PARAM+0
\

A

147

OUTPUT

UNCHANGED
\

PARAM+0

+ 1

+2

+3

16 MS BITS
OF SEED

16 LS BITS
OF SEED

PARAM+0

+ 1

+2

+3P

16 MS BITS
OF NEW
VALUE

16 LS BITS
OF NEW
VALUE

Algorithm

A pseudo-random number sequence with a relatively long cycle time can be

generated by multiplying a 32-bit value by an odd power of 5. In this case, the

third power of five is used to multiply the seed value by 125.

The 32-bit seed is picl<ed up from the parameter block and put into DE, HL. DE,

HL is now added to itself three times in the PRA010 loop to multiply the original

seed by 128. Next, the original seed value is put into BC. BC is then subtracted

from DE, HL three times to produce a result that is the original number times

125. This value is then stored back into the parameter block to be used as the

new seed.

Sample Calling Sequence

NAME OF SUBROUTINE? PRANDM
HL VALUE? 41300(3

PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02
+ 2 2
+ 400
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000

1} SEED = 00010001

H

INPUT:
HL- 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

OUTPUT:
HL== 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

125

125
-NEW VALUE = 007 D007DH

NAME OF SUBROUTINE?

Notes

1. Initialize the seed value at the beginning of the sequence with a nonzero

value. Thereafter, simply call PRANDM with the previous pseudo-random
number in the parameter block.

2. An initial seed of an odd number generates all odd numbers, an initial seed
of an even number, even numbers. You may use only the most significant n bits

of the 32 bits to obtain odd and even numbers.

Program Listing

7F00 00100 ORG 7F00H 50522
00110 ?**#******#*#*****#*#»************#******#****#««*«###**
00120 ;* PSEUDO-RANDOM NUMBER ROUTINE. GENERATES A PSEUDO- *
00130 ;* RANDOM (REPEATABLE) NUMBER. *
00140 ! INPUT: HL=> PARAMETER BLOCK

'

*
00150 ;* PARAM+0, +1=16 MS BITS OF SEED *
00160 !* PARAM+2,+3=16 LS BITS OF SEED »
00170 ;* OUTPUT: PARAM+0J +1=1 6 MS BITS OF NEW VALUE *
001S0 ;* PARAM+2»+3=16 LS BITS OF NEW VALUE *
00190)##****#*##***********#***####*#####«^^#^^##^^##^nn^#^^^^^^

148

7F1F
7F21

7F00 F5
7F01 C5
7K02 D5
7F03 E5
7^04 DDE5
7F06 CD7F0A
7F09 E5
7F0A DDEl
7F0C DD5E00
7F0F DD5601
7F12 DD6E02
7F15 DD6603
7F18 0607
7F1A 29
7F1B EB
7F1C ED6A
7FiE EB

10F9
3E03

7F23 DD4E02
7F26 DD4603
7F29 87
7F2A ED42
7F2C EB
7F2D DD4E00
7F30 DD4601
7F33 ED42
7F35 EB
7F36 3D
7F37 20EA
7F39 DD7300
7F3C DD7201
7F3F DD7502
7F42 DD7403
7F45 DDEl
7F47 El
7F4B Dl
7F49 CI
7F4A Fl
7F4B C9
0000
00000 TOTAL

00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610

ERRORS

PRANDM

PRA010

PRA020

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
LD
LD
LD
ADD
EX
ADC
EX
DJN2
LD
LD
LD
OR
SBC
EX
LD

SBC

DEC
JR
LD
LD

LD
POP
POP
POP
POP
POP
RET
END

AF
BC

HL
IX
0A7FH
HL
IX
E» (IX+0)
Di <IX+1)
L, (IX+2)
H. (IX+3)
B)7
HL^HL
DE,HL
HL»HL
DE»HL
PRA010
A)3
Ci <IX+2)
B. (IX+3)
A
HL»BC
DEiHL
C» <IX+0)
B, (IX+1)
HLiBC
DEiHL
A
NZ.PRA020
(IX+0)»E
(IX +DiD
(IX+2)»L
(IX+3)jH
IX
HL
DE
BC
AF

;SAVE REGISTERS

!#**GET PAR BL ADDR***
; TRANSFER TO IX

;DE HOLDS MS SEED

;HL HOLDS LS SEED

;FOR LOOP COUNT
;2 TIMES LS 16 BITS
!MS NOW IN HL
!2 TIME MS 16 BITS

;7 TIMES^TIMES 128
! COUNT FOR SUBTRACT

;GET LS 16 BITS OF SEED

PRESET CARRY
! SUBTRACT
!SWAP
?GET MS 16 BITS OF SEED

? SUBTRACT
;SWAP BACK
;3 TIMES=SEED*125
;G0 IF NOT 3

; STORE NEW VALUE

; RESTORE REGISTERS

; RETURN

PRANDM DECIMAL VALUES

245. 197» 213* 229. 221. 229. 205. 127. 10!
221. 225. 221. 94. 0. 221. 86. 1. 221. 110!
2. 221. 102. 3. 6. 7. 41. 235, 237. 106.
235. 16. 249. 62, 3. 221. 78. 2. 221. 70,
3. 183, 237. 66. 235, 221, 78, 0. 221. 70.
1. 237, 66, 235, 61. 32. 234. 221, 115, 0.
221, U4. 1. 221. 117, 2. 221. 116. 3. 22l!
225, 225. 209. 193. 241, 201

229!

CHKSUM= 229

RANDOM: RANDOM NUMBER GENERATOR

System Configuration

Model 1, Model III, Model II Stand Alone.

149

Description

This subroutine returns a true random number of through 1 27, provided cer-

tain conditions are met. If the subroutine is called at unpredictable intervals the

number returned will be truly random. An example of this would be a CALL to

RANDOM after a keypress from the TRS-80 keyboard. If RANDOM is called

repetitively to generate 100 "random" numbers, however, the numbers gener-

ated will not be random. It's very possible in this case that the number of

microprocessor cycles between each CALL will be fixed, and that the resulting

numbers will simply differ by a fixed amount.

RANDOM generates random numbers by using the count in the R register. As R

is used for refresh and is continually counting from through 127, the event

that causes the CALL to random must be "asynchronous" compared to the Z-80

timing and must occur over relatively long periods of time {hundreths of sec-

onds). RANDOM is simply a means to use the asynchronous event to conven-

iently generate a number from through 127.

Input/Output Parameters

There are no Input parameters to RANDOM.

On output, RANDOM returns the count In the R register in HL. H will beO and

L will be a value of through 127.

INPUT OUTPUT

H L

NONE ^
H L

#0-127

Algorithm

Obtaining the count from the R register can be compared to spinning a wheel

that has 128 divisions numbered through 127. The wheel is stopped at ran-

dom times to yield a true random number.

R is incremented from through 127 to provide a refresh address for the TRS-80

dynamic RAM. An increment occurs each "fetch" cycle of an instruction,

which is either once or twice per instruction {some instructions have two fetch

or Ml cycles). If a typical instruction takes 5 microseconds, R counts 200,000

times per second, making the time between external events such as keypresses

sufficiently large to generate true random numbers.

Sample Calling Sequence

NAME OF SUBROUTINE? RANDOM
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUT: OUTPUT:
HL" HL- 16 RANDOM

#

NAME OF SUBROUTINE?

150

Notes

1. To get a number in a range other than 0-127, subtract the range required

from the value in HL until the number is less than the range required. If the

number returned is 99, for example, and the number required is 0-9, then

subtracting 10 until the result is less than 10 produces 9, a number in the range

required.

Program Listing

7FB0

7F00 F5
7F01 ED5F
7F03 6F
7F04 2600
7F06 Fl
7F07 C39A0A
7F0A C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250

ERRORS

ORG 7F00H ;0520

;* RANDOM NUMBER GENERATOR. GENERATES A TRUE RANDOM NUM-*
?* BER PROVIDED CALLED AT ASYNCHRONOUS TIMES! *
!* INPUT: NONE *

!* output: RANDOM NUMBER 0-127 IN HL *
;##4f «-«#*««***««*#«*««««*««*«-»««##«#•)(•-»««•«•*)('«'«««#«-»««****•)(••)(•

RANDOM PUSH
LD

LD
POP
JP
RET
END

AF
AiR
LiA
Ht0
AF
0A9AH

;SAVE REGISTER
;GET 0-127 FROM R
!NOW IN L
;N0W in HL
; RESTORE REGISTER
;***RETURN WITH ARG***
; NON-BASIC RETURN

RANDOM DECIMAL VALUES

245. 237. 95, 111, 38, 0, 241, 195, 154, 10i
201

CHKSUM= 247

RCRECD: READ CASSETTE RECORD

System Configuration

Model I, Model III.

Description

RCRECD reads a previously u'ritten record from cassette to memory. The

WCRECD subroutine must have been used to generate the cassette record. The

record may be any number of bytes, from 1 to the limits of memory. The record

is prefixed by a four-byte header that holds the starting address and number of

bytes in the remainder of the record. The record is terminated by a checksum

byte that is the additive checksum of all bytes in the record. Data in the record

may represent any type of data the user desires; the record is read in as a "core

image."

151

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block are the starting address of the data to be read

in, in standard Z-80 address format, least significant byte followed by most
significant byte. If the starting address of the cassette record header is to be
used, this parameter is 0. The next two bytes of the parameter block are re-

served for the number of bytes value from the record header. The next byte is

reserved for the checksum from the record header.

On output, the contents of the parameter block is unchanged and the record

has been read from cassette. PARAM+2,+ 3 contain the starting address of the

data from tape, if this address was to be used. PARAM+4 contains the check-

sum for the read operation. If this value is a zero, the tape data has been read

correctly; otherwise, an invalid read of one or more cassette bytes has oc-

curred.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

+2

+3

+4

STARTING ADD
OR IF

USE TAPE ADD

RESERVED
FOR#

OF BYTES

RESERVED
FOR CHECKSUM

OUTPUT

H L

^ UNCHANGED

PARAM+0

+ 1

+2

+3

+4
»

STARTING ADD
OR ADDRESS
FROM TAPE

#0F
BYTES FROM

TAPE

IF GOOD
CHECKSUM

Algorithm

The RCRECD subroutine uses Level II or Level III ROM subroutines to perform

the write. First, a CALL is made to 212 H to select cassette 0. Next, a call is made
to 296 H to bypass the leader and sync byte on the cassette.

The four-byte header is next read from the cassette record. The number of bytes

from the cassette record is saved in the parameter block. The starting address

from the cassette record is saved if the starting address was zero. At this time

also, the B register contains the checksum of the first four cassette bytes.

The value from PARAM+ 0, +1 (original starting address or starting address

from cassette) is picked up at RCR020. The code from RCR030 on is a loop to

read a cassette byte by a CALL to 235H, store the byte in memory via the HL
pointer, increment the pointer and decrement the byte count, and checksum
each byte. When DE has been decremented down to zero, the read of the body
of the cassette record is done, and a final read is performed to pick up the

checksum byte from the cassette.

The checksum value in B is subtracted from the cassette checksum, and the

result stored in the parameter block. The two should be equal, resulting in a

difference of zero. Finally, a CALL to 1F8H is done to deselect the cassette.

152

Sample Calling Sequence

NAME OF SUBROUTINE? RCRECD
HL VAL..UE?

PARAMETER 40000
40000
f:u..ock location?

parameter block values?
+ 2
•+220
+ A- 1

-^ 5
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000

USE TAPE ADDRESS

INITIALIZE FOR EXAMPLE

INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

1

OUTPUT:
HL-= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

1 60
ADDRESS FROM TAPE (3C00H)

-1024 BYTES

CHECKSUM OK

NAME OF SUBROUTINE?

Notes

1. This subroutine uses cassette only.

2. For 500 baud tape operations, each 1000 bytes will take about 20 seconds.

3. This subroutine does not save registers.

Program Listing

7F00

7F00
7F01
7F02
7F05
7F08
7F0B
7F0C
7F0E
7F10
7F13
7F1A
7F15
7F18
7F19
7F1A
7F1B
7F1E
7F1F

F3
AF
CD 1202
CD9602
CD7F0A
E5
DDEl
DDE5
CD3502
6F
E5
CD3502
El
67
E5
CD3502
5F

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400

ORG 7F00H ;0520
l**»******#*******#***^^*^(*^t.**^^^(.^«.^(.^^^^^fr^^^(.^(.^^^(.^t^^^^^(.^(.^^^^^(.^(.^^#^t#

* READ RECORD FROM CASSETTE. READS RECORD PREVIOUSLY *
I* WRITTEN BY WCRECD ROUTINE. *
* INPUT: HL=> PARAMETER BLOCK
!* PARAM+0»+l=STRTNG ADDR OR IF TAPE ADDRS *
* PARAM+2 J +3= RESERVED FOR NUMBER OF BYTES *
!* PARAM+4=RESERVED FOR CHECKSUM *
* OUTPUT :PARAM+0»+l=START I NG ADDRESS? 0RI6 OR TAPE *
!* PARAM+2»+3=# OF BYTES FROM TAPE RECORD *
» PARAM+4=CHECKSUM. IF VALID, ELSE NON-ZER *
l*************#*****##**^^«***^^^(.^«.^(.#^(.^t#^(.^^^^^(.##*^^*^t.^^^^*^(.^(.

RCRECD DI
XOR
CALL
CALL
CALL
PUSH
POP
PUSH
CALL
LD
PUSH
wr*lL..Li_

POP

PUSH
CALL
LD
PUSH

212H
296H
0A7FH
HL
IX
IX
235H
L»A
HL
235H
HL
H,A
HL
235H
E.A
DE

tDISABLE INTERRUPTS
;ZERO A
! SELECT CASSETTE
? BYPASS LEADER
;#**SET PB LOC'N***
5 TRANSFER TO IX

JSAVE
;GET START LSB
;SAVE

;GET START MSB
? RESTORE LSB
; MERGE MSB

?GET # LSB
;SAVE

153

7F20 CD3502 00410 CALL 235H
7F23 Dl 00420 POP DE
7F24 57 00430 LD D,A
7F25 El 00440 POP HL
7F26 DDEl 00450 POP IX
7F28 7A 00460 LD A»D
7F29 B3 00470 ADD A»E
7F2A 84 00480 ADD A)H
7F2B 85 00490 ADD A»L
7F2C 47 00500 LD B»A
7F2D DD7302 00510 LD (IX+2),E
7F30 DD7203 00520 LD <IX+3))D
7F33 DD7E00 00530 LD A, (IX+0)
7F36 B7 00540 OR A
7F37 2006 00550 JR NZ»RCR020
7F39 DD7500 00560 LD <IX+0)»L
7F3C DD7401 00570 LD (IX+1),H
7F3F DD6E00 00580 RCR020 LD L» (IX+0)
7F42 DD6601 00590 LD H, (IX+1)
7F45 DDES 00600 PUSH IX
7F47 C5 00610 RCR030 PUSH BC
7F4S D5 00620 PUSH DE
7F49 E5 00630 PUSH HL
7F4A CD3502 00640 CALL 235H
7F4D El 00650 POP HL
7F4E Dl 00660 POP DE
7F4F CI 00670 POP BC
7F50 77 00680 LD (HL)»A
7F51 80 00690 ADD AtB
7F52 47 00700 LD B,A
7F53 23 00710 INC HL
7F54 IB 00720 DEC DE
7F55 7A 00730 LD A,D
7F56 B3 00740 OR E
7F57 20EE 00750 JR NZ,RCR030
7F59 C5 00760 PUSH BC
7F5A CD3502 00770 CALL 235H
7F5D CI 00780 POP BC
7F5E DDEl 00790 POP IX
7F60 90 00800 SUB B
7F61 DD7704 00810 LD (IX+4)»A
7F64 CDF801 00820 CALL 1F8H
7F67 C9 00830 RET
0000 00040 END
00000 TOTAL ERRORS

;QET # MSB
; RESTORE #

? RESTORE STARTING ADDRESS
; POINTER TO PAR BLOCK
; INITIALIZE CHECKSUM

;SAVE CHECKSUM
7 SAVE # OF BYTES

;GET starting ADDRESS
;TEST FOR
?G0 IF USE ADDRESS IN PB
; STORE TAPE ADDRESS

;GET STARTING ADDRESS

!SAVE POINTER
;SAVE CHECKSUM
;SAVE ENDING ADDRESS
;SAVE CURRENT LOCATION
;READ NEXT BYTE
; RESTORE POINTER
! RESTORE ENDING LOC'N
; RESTORE CHECKSUM
; STORE BYTE
;ADD IN CHECKSUM
;SAVE CHECKSUM
;BUMP POINTER
; DECREMENT # OF BYTES
;TEST FOR

;G0 if not LAST BYTE
;SAVE CHECKSUM
;READ CHECKSUM BYTE
; RESTORE CHECKSUM
"RESTORE POINTER
;TEST CHECKSUM
; STORE FLAG
; DESELECT
! RETURN TO CALLING PROG

RCRECD DECIMAL VALUES

2435 175) 205, 18) 2» 205* 150* 2) 205, 127,
10) 229) 221) 225) 221) 229) 205) 53) 2) 111)
229) 205) 53) 2) 225) 103) 229) 205) 53, 2)
95, 213) 205) 53) 2) 209, 87, 225, 221, 225,
122) 131, 132) 133) 71) 221, 115, 2, 221, 114.
3^ 221) 126, 0, 183, 32, 6, 221, 117, 0,
221, 116) 1, 221, 110) 0) 221) 102) 1) 221,
229, 197) 213) 229, 205) 53, 2, 225, 209, 193.
119, 128) 71) 35) 27, 122, 179, 32, 238, 197,
205, 53, 2, 193, 221) 225, 144) 221, 119) 4)
205, 248) 1) 201

CHKSUM= 185

154

RDCOMS: READ RS-232-C SWITCHES

System Configuration

Model I.

Description

RDCOMS reads the configuration of switches on the RS-232-C controller

board. The configuration of the switches is analyzed and put into separate

parameters. RDCOMS may be used to verify that the switches are set correctly

without having to reopen the RS-232-C access and reset the switches.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

six bytes of the parameter block are reserved for the results of the read. The

last two bytes of the parameter block (PARAM+6,+ 7) hold the address of

RDCOMS in standard Z-80 address format, least significant byte followed by

most significant byte. This address can be obtained from the USR call address

in BASIC or in the assembly-language CALL address.

On output, the first two bytes of the parameter block contain the baud rate for

which the RS-232-C interface is set, 110, 150, 300, 600, 1200, 2400, 4800, or

9600. The next byte is set to a zero if parity is enabled, or to a one if parity is

disabled. The next byte of the parameter block is set to a zero if one stop bit is

used, or to a one if two stop bits are used. The next byte contains the number of

bits in the RS-232-C transfer; is 5 bits, 1 is 7 bits, 2 is 6 bits, or 3 is 8 bits. The

next byte contains a zero if odd parity is used, or a one if even parity is used.

INPUT OUTPUT

POINTER TO PARAM+0
\

^
1

UNCHANGED

PARAM+0

+ 1

RESERVED - -

+2 RESERVED

+3 RESERVED

+4 RESERVED

+5 RESERVED

+6

+7

ADDRESS
OF

RDCOMS
-

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

P

BAUD
RATE

0=PE, 1=PD

0=1 STOP BIT
1=2 STOP BITS

0=5 BITS, 1=7 BITS]
2=6 BITS. 3=8 BITS

0=ODD PAR
1=EVEN PAR

-- UNCHANGED --

155

Algorithm

The SETCOM subroutine reads the switches and strips and aligns the fields into

the proper format for the parameter block.

First the switches are read by an "IN A,(0E9H)." Next, the parity type is

obtained by a rotate left and an AND of 1 and stored in the parameter block.

The switch byte is then rotated again two bits and an AND of 3 picks up the

number of bits, which is stored in the parameter block. The switch byte is then

rotated left and an AND of 1 picks up the number of stop bits, which is stored in

the parameter block. The switch byte is then rotated left and an AND of 1 picks

up the parity enable/disable bit, which is stored in the parameter block. The
switch byte is then rotated left three times. An AND of 7 obtains the baud rate

index.

The baud rate index is put into HL and an ADD of HL to itself is done to

multiply the index by two. The result is added to the location of RDCOMS and

to the displacement of TABBD. HL now points to the TABBD entry, which is the

baud rate corresponding to the switch code. This code is picked up from the

table and stored in the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? RDCOMS
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 2

-INITIALIZE FOR EXAMPLE

START OF RDCOMS

+ 220
+ 420
+6 2 37890
+ 800
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37890
SUBROUTINE EXECUTED AT 37890
INPUT!
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+ 148

OUTPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

176
4

1

148

1200 BAUD

PE

TWO STOP BITS

SIX BIT LENGTH
EVEN PARITY

-UNCHANGED

NAME OF SUBROUTINE?

Notes

1. Note transposed order of number of bits.

156

Program Listing

7F00 00100 ORG 7F00H ;0522
00110 *«****************##*****###*##«***»*«#*-»(.*.j(.**»*»******^)t*
00120 ; * READ RS-232-C SWITCHES. READS THE RS-232-C BOARD *
00130 * SWITCHES. *
00140 ; # INPUT: HL=> PARAMETER BLOCK *
00150 # PARAM+0 - PARAM+5S SEE OUTPUT *
00160 * PARAM+6»+7! ADDRESS OF RDCOMS »
00170 * OUTPUT HL=> PARAMETER BLOCK *
00180 * PARAM+0, +1=BAUD RATE - 110) 150, 300, 600, *
00190 120 , 2400, 4800, 9600 *
00200 * PARAM+2=0=PARITY ENABLED, 1=PARITY DISAB
00210 * PARAM+3=0=ONE STOP BIT, 1=TW0 STOP BITS *
00220 * PARAM+4=0=5 BITS, 1=7 BITS, 2=6 BITS, 3=8 *
00230 !* BITS *
00240 # PARAM+5=0=ODD PARITY, 1=EVEN »
00250 ;**#**************#»******»****#******##»****)<*********)«•
00260

7F00 F5 00270 RDCOMS PUSH AF ;SAVE REGISTERS
7F01 C5 00280 PUSH BC
7F02 D5 00290 PUSH DE
7F03 E5 00300 PUSH HL
7F0A DDE5 00310 PUSH IX
7F06 CD7F0A 00320 CALL 0A7FH !***GET PB LOC'N***
7F09 E5 00330 PUSH HL ; TRANSFER TO IX
7F0A DDEl 00340 POP IX
7F0C DBE9 00350 IN A, (0E9H) ;READ SWITCHES
7F0E 47 00360 LD B,A ;SAVE IN B
7F0F CB00 00370 PLC B ;ALIGN
7Fil 78 00380 LD A,B
7F12 E601 00390 AND 1 ;6ET PARITY TYPE
7F14 DD7705 00400 LD (IX+5),A ! STORE
7Fi7 CB00 00410 PLC B SALIGN
7F19 CB00 00420 RLC B
7F1B 78 00430 LD A,B
7F1C E603 00440 AND 3 !GET # OF BITS
71- IE DD7704 00450 LD (IX+4),A ? STORE
7F21 CB00 00460 RLC B ;ALIGN
7F23 78 00470 LD A,B
7F24 E601 00480 AND 1 ;GET # OF STOP BITS
7F26 DD7703 00490 LD (IX+3),A ; STORE
7F29 CB00 00500 RLC B ;ALIGN
7F2B 78 00510 LD A,B
7F2C E601 00520 AND 1 ;6ET PARITY ENAB/DIS
7F2E DD7702 00530 LD (IX+2),A ; STORE
7F31 CB00 00540 RLC B 5ALIGN
7F33 CB00 00550 RLC B
7F35 CB00 00560 RLC B
7F37 78 00570 LD A,B
7F38 E607 00580 AND 7 ;GET BAUD INDEX
7F3A 6F 00590 LD L,A ?BAUD index NOW IN L
7F3B 2600 00600 LD H,0 ;now in HL
7F3D 29 00610 ADD HL»HL ;INDEX«2
7F3E DD5E06 00620 LD E, (IX+6) ; location OF rdcoms
7F41 DD5607 00630 LD D, (IX+7)
7F44 19 00640 ADD HL,DE ! INDEX PLUS BASE ADDRESS
7F45 115900 00650 LD DE,TABBD 5 BAUD RATE TABLE
7F4S 19 00660 ADD HLiDE ; INDEX + BASE + TABLE DIS
7F49 7E 00670 LD A, <HL) ;GET TABLE ENTRY
7F4A DD7700 00680 LD (IX+0),A ? STORE
7F4D 23 00690 INC HL ; POINT TO NEXT BYTE
7F4E 7E 00700 LD A, (HL) ;GET NEXT BYTE
7F4F DD7701 00710 LD CIX+1),A ; STORE

157

7F52 DDEl 00720 POP IX
7F54 El 00730 POP HL
7F55 Dl 00740 POP DE
71-56 CI 00750 POP BC
7F57 Fl 00760 POP AF
7F58 C9 00770 RET
0059 00780 TABBD EQU *-"RDCOMS
7F59 6E00 00790 DEFW 110
7F5B 9600 00800 DEFW 150
7F5D 2C01 00810 DEFW 300
7F5F 5802 00820 DEFW 600
7F61 B00A 00830 DEFW 1200
7F63 6009 00840 DEFW 2400
7F65 C012 00850 DEFW 4800
7F67 8025 00860 DEFW 9600
0000 00870 END
00000 TOTAL ERRORS

; RESTORE REGISTERS

; RETURN TO CALLING PROG
!BAUD RATE TABLE

RDCOMS DECIMAL VALUES

245, 197, 213, 229, 221, 229, 205, 127, 10,
221, 225, 219, 233, 71, 203, 0, 120, 230, 1

221, 119, 5, 203, 0, 203, 0, 120, 230, 3,

229

1

li9i 221, 119i
2, 203,

4* 203, 0, 120, 230, 1

3, 203, 0, 120, 230, 1, 221, 119
0, 203, 0, 203, 0, 120, 230, 7, 111, 38,
0, 41, 221, 94, 6, 221, 86, 7, 25, 17,
89, 0, 25, 126, 221, 119, 0, 35, 126, 221,
119, 1, 221, 225, 225, 209, 193, 241, 201,
0, 150, 0, 44, 1, 88, 2, 176, 4, 96,
9, 192, 18, 128, 37

110,

READDS: READ DISK SECTOR

CHKSUM= 122

System Configuration

Model 1.

Description

READDS reads one sector from a specified disk drive into a 256-byte user

buffer. The user must know where a particular file is and what sectors are in-

volved to utilize this subroutine; it is not a general-purpose "file manage"
subroutine.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the disk drive number, to 3, corresponding

to disk drives 1 through 4. The next byte of the parameter block contains the

track number, through N. (The standard TRS-80 usesdiskdriveswith 35 tracks;

other drives are available for 40 tracks.) The next byte is the sector number,

through N {0 through 9 will be the most common range). The next two bytes are

the user buffer area for the read in standard Z-80 address format, least signifi-

158

cant byte followed by most significant byte. The next byte contains a zero if a

wait is to occur until the disk drive motor is brought up to speed; the byte

contains a 1 if the motor is running (disk operation has just been completed)

and no wait is necessary. The next byte (PARAM+6) is reserved for the status of

the disk read on output.

On output, all parameters remain unchanged except for PARAM+6, which

contains the status of the read. Status is for a successful read, or nonzero if an

error occurred during any portion of the read. If an error did not occur, the

specified disk sector has been read into the buffer area.

INPUT

H

POINTER TO PARAM+0

OUTPUT

1

UNCHANGED

•+-0 DRIVE # 0-3

+ 1 TRACK #
+2 SECTOR #
+3

+4

BUFFER
ADDRESS
(MEM 1+0)

+5 0=WAIT 1=N0
WAIT

+6 RESERVED

PARAM+0

+ 1

+2

+3

+4

+5

+6

»

UNCHANGED

UNCHANGED

UNCHANGED

-- UNCHANGED --

UNCHANGED

0=NO ERROR
7^0=ERROR

MEMl+0

+ 1

+2

+3

+4

+5

+6

RESERVED
FOR
READ
DATA »

MEM1+0

+ 1

+2

+3

+4

+5

+6

256 BYTES
OF

SECTOR
FROM
DISK

Algorithm

The disk drive number in L is first converted to the proper select configuration

at REA010. The select byte is then output to disk memory-mapped address

37E0H to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at REA015 counts HL

through 65,536 counts to wait until the disk drive motor is up to speed before

continuing.

The disk status is then examined (REA020). If the disk is not busy, the track

number is loaded into the disk controller track register (37EFH) and a seek

command is given (37ECH) to cause the controller to "seek" the track for the

operation. A series of time-wasting instructions is then done.

The code at REA030 gets the disk status after completion of the seek and-ANDs it

with a "proper result" mask. If the status is normal, the read continues, other-

wise an "abnormal" completion is done to REA090.

159

The sector address from the parameter block is next output to the controller

sector register (37EEH). Two time-wasting instructions are then done.

A read command Is then isued to the disk controller command register

(37ECH). Further time-wasting instructions are done.

The loop at REA040 performs the actual read of the disk sector. A total of 256
separate reads is done. HL contains the disk address of 37ECH, DE contains a

pointer to the buffer address, and BC contains the data register address of the

disk controller. For each of the 256 reads, status is checked. If bit is set, all 256
bytes have been read. If bit 1 of the status is set, the disk controller is still busy
and a loop back to REA040 is done. If bit 1 of the status is not set the next byte is

read, stored in memory, and the memory buffer pointer incremented.

At the automatic (by the controller) termination of the read, status is again read,

and an AND of 1 CFH is done to check for the proper completion bits. The status

is stored back into the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? READDS
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
•+ 1 DRIVE
+ 1 1 17 TRACK 17

+ 2 1 SECTOR
•+ 3 2 45000 BUFFER
+ 510 WAIT
+ 610
+ 700
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
input:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3
PARAM+ 4
PARAM+ 5
PARAM+ 6

17

200
175

OUTPUT

:

HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+
PARAM+
PARAM+
PARAM+

17

200
175

UNCHANGED

STATUS = OK

NAME OF SUBROUTINE?

Notes

1. Always perform an RESTDS operation before doing initial disk I/O to reset

the disk controller.

160

Program Listing

7K 00

7F00
7F01
7F02
7F03
7F04
7F06
7F09
7F0A
7F0C
7F0F
7F10
7F11
7F13
7F14
7F16
7F19
7F1C
7F1D
7F1F
7F22
7F23
7F24
7F25
7F27
7F2A
7F2C
7F2E
7F31
7F3A
7F35
7F36
7F38
7F3E
7F3C
7F3D
7F3E
7F3F
7F42
7F44
7F46
7F48
7F4A
7F4D
7F50
7F51
7F52
7F55

F5
C5

E5
DDES
CD7F0A
E5
DDEl
DD7E00
3C
47
3E80
07
10FD
32E037
DD7E05
B7
2008
210000
2B
7D
B4
20FB
3AEC37
CB47
20F9
DD7E01
32EF37

CI
3E17
32EC37
C5
CI
C5
CI
3AEC37
CB47
20F9
Eo98
202C
DD7E02
32EE37
C5
CI
21EC37
DD5E03

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
C0^60
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710

ORG 7F00H ;0522
^(.^^^^***##^^»^(.******#*************#*>f•*******•»^***»**
* READ DISK SECTOR. READS SPECIFIED TRACK, SECTOR INTO *

* MEMORY BUFFER.
* INPUT: HL=> PARAMETER BLOCK
* PARAM+0==DRIVE #» - 3
* PARAM+1=TRACK #, - N
* PARAM+2=SECT0R #, - N
* PARAM+3,+4=BUFFER ADDRESS
* PARAM+5=0=WAIT AFTER SELECT, 1=N0 WAIT
* PARAM+6=RESERVED FOR STATUS
* OUTPUTS TRACK, SECTOR READ INTO BUFFER
* PARAM+6=STATUS, 0=OK, 1=BAD
^^.#^f^^^(.^<.##*#******************HK.**^<•******^<**************

READDS

REA0 1

REA015

REA020

REA030

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
INC
LD
LD
RLCA
DJNZ
LD
LD
OR
JR
LD
DEC
LD
OR
JR
LD
BIT
JR
LD
LD
PUSH
POP
LD
LD
PUSH
POP
PUSH
POP
LD
BIT
JR
AND
JR
LD
LD
PUSH
POP
LD
LD

AF
BC

HL
IX
0A7FH
HL
IX
A, (IX-+-0)

A
B,A
A,80H

REA010
(37E0H),A
A, (IX+5)
A
N2,REA020
HL,0
HL
A,L
H
NZ,REA015
A, (37ECH)
0, A
NZ,REA020
A, (IX+1

)

<37EFH) »A
BC
BC
A, 17H
(37ECH),A
BC
BC
BC
BC
A, (37ECH)
0,A
NZ,REA030
98H
NZ,REA090
A, (IX+2)
(37EEH) ,

A

BC
BC
HL,37ECH
E, (IX+3>

;SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

;GET DRIVE #
; INCREMENT BY ONE
;PUT IN B FOR CONVERT
;MASK

; ALIGN FOR SELECT
; CONVERT TO ADDRESS

^SELECT DRIVE
;GET WAIT/NO WAIT
;TEST
;G0 IF NO WAIT
;WAIT COUNT

; DELAY LOOP 6
;TEST DONE 4

;4
;LOOP UNTIL HL=0 7/1:

;GET STATUS
;TEST BUSY
;L00P IF BUSY

;GET TRACK NUMBER
; OUTPUT TRACK #

; WASTE TIME

;SEEK COMMAND
; OUTPUT
; WASTE TIME

;GET STATUS
;TEST BUSY
;L00P if BUSY

;TEST FOR NORMAL COMPL
;G0 IF ABNORMAL
GET SECTOR #
; OUTPUT
;WASTE TIME

?DISK ADDRESS
;PUT BUFFER ADDRESS IN DE

161

7F58 DD5604 00720 LD D, (IX+4)
7F5B 3EBC 00730 LD A,BCH ;READ COMMAND
7F5D 77 00740 LD (ML))

A

; OUTPUT
7F5E C5 00750 PUSH BC ; WASTE TIME
7F5F CI 00760 POP BC
7F60 C5 00770 PUSH BC
7F61 CI 00780 POP BC
7F62 01EF37 00790 LD BC,37EFH ;DATA REG ADDRESS
7F65 7E 00800 REA040 LD A) <HL) ;GET STATUS
7F66 0F 00810 RRCA ;ALIGN
7F67 3008 00820 JR NC, REA050 ;G0 IF DONE
7F69 0F 00830 RRCA

; ALIGN
7F6A 30F9 00840 JR NC7REA040 ;G0 IF NOT DR<3
7F6C 0A 00850 LD A, (BC) ;GET BYTE
7F6D 12 00860 LD (DE) ,

A

! STORE IN MEMORY
7F6E 13 00870 INC DE ; INCREMENT MEMORY PNTR
7F6F iaF4 00880 JR REA040 ;L00P TIL DONE
7F71 3AEC37 00890 REA050 LD A) <37ECH) ;GET STATUS
7F74 E61C 00900 AND iCH ; CHECK FOR PROPER STATUS
7F76 DD7706 00910 REA090 LD (IX+6),A ; STORE STATUS
7F79 DDEl 00920 POP IX ; RESTORE REGISTERS
7F7B El 00930 POP HL
7F7C Dl 00940 POP DE
7F7D CI 00950 POP BC
7F7E Fl 00960 POP AF
7F7F 09 00970 RET ; RETURN TO CALLING PROG
0000 00980 END
00000 TOTAL ERRORS

READDS DECIMAL VALUES

245. 197) 213 > 229 » 221, 229, 205, 127
221, 225, 221, 126, 0, 60, 71, 62, 128
16, 253, 50? 224, 55, 221, 126, 5, 183
8, 33, 0, 0, 43, 125, 180, 32, 251, 58
236, 55, 203, 71, 32, 249, 221, 126, 1

239, 55, 197, 193, 62, 23, 50, 236, 55
193, 197, 193, 58, 236, 55, 203, 71, 32, 249

101
7,

32,

50,
197-

55,
86,
239-

230, 152, 32, 44, 221, 126, 2, 50, 238;
197, 193, 33, 236, 55, 221, 94, 3, 221
4, 62, 140, 119, 197, 193, 197, 193, 1

55, 126, 15, 48, 8, 15, 48, 249, 10, IS,
19, 24, 244, 58, 236, 55, 230, 28, 221, 119,
6, 221, 225, 225, 209, 193, 241, 201

CHKSUM= 12

RESTDS: RESTORE DISK

System Configuration

Model I.

Description

RESTDS performs a restore operation on disk drive 1 through 4. The disk drive

head is moved over track 0. RESTDS is an "initialization" procedure for

READDS and WRDSEC to reset the disk to a known configuration.

Input/Output Parameters

On input, the L register contains the drive number of the disk drive to be used,

through 3 (corresponding to drives 1 through 4). The H register is set to if a

162

"wait after select" is to be done, or to a 1 if "no wait" is to occur. The wait is

used if no current disk operation is taking place and the disk drive motor is not

spinning.

On output, the disk head is restored over track 0. If the operation is successful,

HL is returned with a zero result. If a disk error has occurred, HL is returned

with a nonzero result.

0=WA1T,
1=N0 WAIT DRIVE #,0-3 ^

OUTPUT

H

0=OK, ?t 0=ERROR

Algorithm

The disk drive number in L is first converted to the proper select configuration

at RES010. The select byte is then output to disk memory-mapped address

37E0H to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at RES015 counts HL

through 65,536 counts to wait until the disk drive motor is up to speed before

continuing.

The disk status is then examined (RES020). If the disk is not busy, a restore

command (3) is sent to the disk controller command register at address 37ECH.

A series of time-wasting instructions is then done.

The code at RES030 gets the disk status after completion of the restore, ANDs it

with a "proper result" mask, and returns the status in HL.

Sample Calling Sequence

NAME OF SUBROUTINE? RESTDS
HL VALUE? WAIT, DRIVE
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 3B000
INPUT: OUTPUT:
HL=^ HL= STATUS = OK

NAME OF SUBROUTINE?

Program Listing

7F00 00100
00110
00120
00130
00140
00150
00160
00170

7F00 F5 00180
7F01 C5 00190
7F02 CD7F0A 00200
7F05 7D 00210
7F06 3C 00220

ORG 7F00H ;0522
;)<#**»***»»*********»****************»******»************
!* RESTORE DISK. PERFORMS A RESTORE OPERATION ON DISK. *

;* INPUT: H=0 IF WAIT AFTER SELECT* 1 IF NO WAIT
;* L=DRIVE NUMBER* 0-3 *

;* OUTPUT :HL=0 FOR OK? <>0 FOR ERROR *

RESTDS PUSH AF
PUSH BC
CALL 0A7FH
LD A*L
INC A

?SAVE REGISTERS

;»**GET DRIVE #**
;PUT IN A
; INCREMENT BY ONE

163

7FU
7F12

7F07 47
7F0S 3E80
7F0A 07
7F0B 10FD
7F0D 32E037
7F10 7C

B7
2008

7F14 210000
7F17 2B
7F1B 7D
7F19 B4
7F1A 20FB
7F1C 3AEC37
7FiF CB47
7F21 20F9
7F23 3E03
7F25 32EC37
7F28 C5
7F29 CI
7F2A C5
7F2B CI
7F2C 3AEC37
7F2F CB47
7F31 20F9
7F33 E698
7F35 6F
7F36 2600
7F38 CI
7F39 Fl
7F3A C39A0A
7F3D C9
0000
00000 TOTAL

00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550

ERRORS

RES010

RES015

RES020

RES030

LD
LD
RLCA
DJNZ
LD
LD
OR
JR
LD
DEC
LD
OR
JR
LD
BIT
JR
LD
LD
PUSH
POP
PUSH
POP
LD
BIT
JR
AND
LD
LD
POP
POP
JP
RET
END

A
80H

REB010
(37E0H),A
A>H
A
NZ » RES020
HLi0
HL
A»L
H
NZ)RES015
A, (37ECH)
0iA
NZ RES020
A»3
(37ECH>,A
BC
BC
BC
BC
A, (37ECH)
0iA
NZ»RES030
98H
L,A
H»0
BC
AF
0A9AH

;N0U) IN B
;MASK FOR CONVERSION

; CONVERT TO ADDRESS
JLOOP 'TIL DONE

; SELECT DRIVE
;GET WAIT/NO WAIT
» TEST
;G0 IF NO WAIT
!WAIT COUNT

; DELAY LOOP 6
1TEST DONE 4
!4
SLOOP UNTIL HL=0 7/12
;get status
JTEST busy
;G0 IF BUSY

; RESTORE COMMAND
; OUTPUT TO DISK
; WASTE TIME

;GET STATUS
;TEST BUSY
;G0 IF BUSY

!TEST STATUS
SNOW IN A
;NOW IN HL
; RESTORE REGISTERS

5#**RETURN STATUS***
! NON-BASIC RETURN

RESTDS DECIMAL VALUES

245, 197, 205 » 127, 10, 125, 60, 71, 62, 128
7, 16, 253, 50, 224, 55, 124, 183, 32, 8,
33, 0, 0, 43, 125, 180, 32, 251, 58, 236,
55, 203, 71, 32, 249, 62, 3, 50, 236, 55,
197, 193, 197, 193, 58, 236, 55, 203, 71
249, 230, 152, 111, 38, 0, 193, 241, 195
10, 201

32,
154-

CHKSUM= 197

RKNOWT: READ KEYBOARD WITH NO WAIT

System Configuration

Model I, Model III.

Description

RKNOWT reads the keyboard and returns immediately after scanning all keys
to determine if a keypress has occurred. If a keypress has occurred, the subrou-
tine returns with the key code; if no keypress has occurred, the subroutine
returns with 0. The key position Is converted to a code from a user-specified

table of codes. Normally, these codes would be the ASCII codes for the keys on

164

the keyboard, but the user may substitute his own codes for special key func-

tions. Both upper- and lower-case keys are translated, and all keys are read

including BREAK, CLEAR, up arrow, down arrow, right arrow, and left arrow.

Input/Output Parameters

On input, the HL register pair contains the address of RKNOWT. This address is

the same as the USR location in BASIC or the address in the assembly-language

call. It is used to make all of the code in RKNOWT relocatable.

On output, HL contains the keycode if a key was pressed, or if no key was

detected.

INPUT

+
ADDRESS OF RKNOWT ^

OUTPUT

H L

CHARACTER
CODE OR

ROW0

Algorithm

The basic problem in RKNOWT is to detect if a key is being pressed, and if it

is, to convert its row-column coordinates into an index to a table to obtain the

key code.

The table is at RKNTAB. RKNTAB is a 120-byte table that contains all the trans-

lation codes for the keys. The row arrangement is determined by the electrical

connections to the keys, shown below. The first 56 bytes of the table represent

keys with no SHIFT. There is a "gap" of 8 unused bytes to simplify coding, and

then 56 additional bytes that represent keys with a SHIFT.

Keyboard layout and codes.

BIT

1 2 3 4 5 6 7

@ A B C D E F G

H 1 J K L M N

P Q R S T U V W

X Y Z

!

1 2
#
3 4

%
5

&
6 7

(

8
)

9

+ < = > ?

/

ENTER CLEAR BREAK T i - - SPACE

SHIFT

RKNOWT/RKWAIT
HEXADECIMAL TABLE VALUES

FOR STANDARD ASCII

40,41,42,43,44,45,46,47

48,49,4A,4B,4C,4D,4E,4F

50,51,52,53,54,55,56,57

58,59, 5A,0,0,0,0,0

30.31.32.33.34,35.36,37

38,39,3A,3B,2C,2D,2E,2F

0D,2F,01,5B,5C,5D,5E,20

(GAP) 0,0,0,0,0,0,0,0

20,61,62.63,64,65,66,67
68,69,6A,6B,6C,6D,6E,6F

70,71,72,73,74,75,76,77

78,79,7A,0,0,0,0,0

20,21,22,23,24,25,26,27
28,29,2A,2B,3C,3D,3E,3F

0D,2F,01,5B,5C,5D,5E,20

165

The loop at RKN030 scans the seven rows of the keyboard and looks for a
keypress in a row. The address of row is 3801 H, and this is initially put
into HL. If no key is found in rowO, the L portion of the address is shifted left to

produce an address in HL of 3802H. This process is repeated for the additional

rows until all seven rows have been scanned, as evidenced by a one bit in bit 7
of L. If no key has been found (A register is a zero), a return with HL equal to

zero is made at RKN090.

If any row is nonzero when read, RKN040 is entered. At this point, the row
address of 3801 H, 3802H, 3804H, etc., is in HL; the code at RKN050 converts
this row address to a row number to 7 times 8. This "index" of 0,8, 16,24,32,
40, or 48 is saved.

The A register contains the column bits for the row. One column bit {or more
for multiple key presses) is a one. The code at RKN070 converts the column bit

into a column number of 7 to 0. This column number is then added to ROW*8.

Next, the SHIFT key is read by "LD A,{3880H)." The shift key bit is aligned and
merged with COL+ ROW*8 to produce an index of SHIFT*64+ ROW*8+ COL.
This index is then added to the start of RKNOWT and the displacement of the
code table, RKNTAB, to point to a location within the table corresponding
to the key pressed. The code just prior to RKN090 accesses the code table to

pick up the proper code for the key that has been pressed. If multiple keys in

the same row have been pressed, the rightmost key is detected and the others

ignored.

Sample Calling Sequence

NAME OF SUE?.ROUTINE? RKNOWT
HL VALUE? 367BS ADDRESS OF RKNOWT
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 36788
SUBROUTINE EXECUTED AT 36788
INPUT: OUTPUT:
HL= 36788 HL= NO KEY PRESSED

NAME OF SUBROUTINE?

Notes

1. The eight bytes between lower and upper case may contain any values.

2. The calling program must "time out" keyboard debounce.

Program Listing

7F00 00100 ORG 7F00H ;0522
001 10 ; *»***»**»*»***********************«*****«*##**#)(•«#***#* #
00120 ;« READ KEYBOARD NO WAIT. READS KEYBOARD AND RETURNS *
00130 ;* WITH NO WAIT. *
00140 ?* INPUT: HL=> ADDRESS OF RKWAIT *
00150 !* OUTPUT !HL=CHARACTER READ OR IF NO KEY PRESSED *
00160 *»*»»***»***#***»**»«#*»»»»»*«»»»»»»*»»**•*«#*#*###*«««»*
00170 ?

166

7F00 F5 00180 RKNOWT PUSH AF
7F01 C5 00190 PUSH BC
7F02 DDES 00200 PUSH IX
7F0A CD7F0A 00210 CALL 0A7FH
7F07 E5 00220 PUSH HL
7F08 DDEl 00230 POP IX
7F0A 210138 00240 RKN020 LD HLi3801H
7F0D 7E 00250 RKN030 LD A» (HL)
7F0E B7 00260 OR A
7F0F 200B 00270 JR NZ 1 RKN040
7F11 CB25 00280 SLA L

7F13 CB7D 00290 BIT 7»L
7F15 28F6 00300 JR Z . RKN030
7F17 210000 00310 LD HL»0
7F1A 1828 00320 JR RKN090
7F1C 4F 00330 RKN040 LD C»A
7F1D AF 00340 XOR A
7F1E CB3D 00350 RKN050 SRL L
7F20 3804 00360 JR C»RKN060
7F22 C608 00370 ADD A-,3

7F24 18F8 00380 JR RKN050
7F26 06FF 00390 RKN060 LD B»0FFH
7F28 04 00400 RKN070 INC B
7F29 CB39 00410 SRL C
7F2B 30FB 00420 JR NC,RKN070
7F2D 80 00430 ADD A)B
7F2E 4F 00440 LD C,A
7F2F 3A8038 00450 LD A» (3880H)
7F32 0F 00460 RRCA
7F33 0F 00470 RRCA
7F34 81 00480 ADD A,C
7F35 4F 00490 LD C»A
7F36 0600 00500 LD Bi0
7F38 DD09 00510 ADD IXfBC
7K3A 014C00 00520 LD BC, RKNTAB
7F3D DD09 00530 ADD IX, BC
7F3F DD6E00 00540 LD L, (IX+0)
7F42 2600 00550 LD H,0
7F44 DDEl 00560 RKN090 POP IX
7F46 CI 00570 POP BC
7F47 Fl 00580 POP AF
7F48 C39A0A 00590 JP 0A9AH
7F4B C9 00600 RET
004C 00610 RKNTAB EQU *-RKNOWT
0008 00620 DEFS 8
0008 00630 DEFS 8
0008 00640 DEFS 8
0008 00650 DEFS 8
0008 00660 DEFS 8
0008 00670 DEFS 8
0008 00680 DEFS 8
0008 00690 DEFS 8
0008 00700 DEFS 8
0008 00710 DEFS 8
0008 00720 DEFS 8
0008 00730 DEFS 8
0008 00740 DEFS 8
0008 00750 DEFS 8
0008 00760 DEFS 8
0000 00770 END
00000 TOTAL ERRORS

?SAVE REGISTERS

;*#*GET BASE ADDRESS***
; TRANSFER TO IX

; ADDRESS OF FIRST ROW
;GET NEXT ROW
STEST FOR KEY
?G0 IF KEY PRESS
;GET NEXT ROW ADDRESS
;TEST FOR LAST ADDR
!G0 IF NOT LAST

;0 FOR NO KEY
;G0 to RETURN
;SAVE COLUMN BITS
; CLEAR COUNT

; SHI FT OUT ROW ADDRESS
;G0 IF ONE BIT FOUND
; R0W*8
SLOOP TIL DONE

; INITIALIZE COUNT
;FIND COLUMN BIT
; SHI FT OUT COLUMNS
;L00P 'TIL FOUND

; R0W*8+C0L
;now in C
;GET SHIFT BIT
;NOW IN BIT 7
;N0W IN BIT 6
; SH IFT*64 +R0W*8+ COL
; INDEX TO C
?NOW IN BC
?BASE PLUS INDEX
; TRANSLATION TABLE
;BASE+INDEX+DISPL
;GET CHARACTER
;now in HL
; RESTORE REGISTERS

RETURN WITH ARGUMENT
NON-BASIC RETURN
TRANSLATION TABLE
NO SHIFT ROW

1

2
3
4
5

6
NOT USED
SHIFT ROW

RKNOWT DECIMAL VALUES

245, 197, 221, 229, 205,
33, 1, 56, 126, 183, 32,
125, 40, 246, 33, 0, 0,

127, 10, 229, 221,
11, 203, 37, 203,

>4, 40, 79, 175,

225

,

167

203i 61 » 56» 4^ 198» 8, 24? 248i 6» 255*
4, 203> 57, 48, 251, 128, 79, 58, 128, 56,
15, 15, 129, 79, 6, 0, 221, 9, 1, 76,
0, 221, 9, 221, 110, 0, 38, 0, 221, 225,
193, 241, 195, 154, 10, 201

CHKSUM= 29

RKWAIT: READ KEYBOARD AND WAIT

System Configuration

Model I, Model III.

Description

RKWAIT reads the keyboard and returns after a key has been pressed. The key
position is converted to a code from a user-specified table of codes. Normally,
these codes would be the ASCII codes for the keys on the keyboard, but the
user may substitute his own codes for special key functions. Both upper- and
lower-case keys are translated, and all keys are read including BREAK, CLEAR,
up arrow, down arrow, right arrow, and left arrow.

Input/Output Parameters

On input, the HL register pair contains the address of RKWAIT. This address is

the same as the USR location in BASIC or the address in the assembly-language
call. It is used to make all the code in RKWAIT relocatable.

On output, HL contains the keycode.

INPUT

H

ADDRESS OF RKWAIT ^

OUTPUT

H L

CHARACTER
CODE

Algorithm

The basic problem in RKWAIT is to detect if a key is being pressed and if it is,

to convert its row column coordinates into an index to a table to obtain the key
code.

The table is at RKWTAB. RKWTAB is a 120-byte table that contains all the

translation codes for the keys. The row arrangement is determined. by the elec-

trical connections to the keys, shown below. The first 56 bytes of the table

represent keys with no SHIFT. There is a "gap" of 8 unused bytes to simplify

coding, and then 56 additional bytes that represent keys with a SHIFT.

168

ROW0

1

BIT

2 3 4 5

@ A B C D E F G

H 1 J K L M N

P Q R S T U V W

X Y Z

!

1 2
#
3

S

4

%
5

&
6 7

(

8
)

9

* + < = > ?

/

ENTER CLEAR BREAK T I - - SPACE

SHIFT

Keyboard layout and codes.

RKNOWT/RKWAIT
HEXADECIMAL TABLE VALUES

FOR STANDARD ASCII

40,41,42,43,44,45,46,47

48,49,4A,4B,4C,4D,4E,4F

50,51,52,53,54,55,56,57

to "

58,59,5A,0,0,0,0,0

30,31.32,33,34,35,36,37

38,39,3A,3B,2C,2D,2E,2F

0D,2F,01,5B,5C,5D,5E,20

(GAP) 0,0,0,0,0,0,0,0

20,61,62,63,64,65,66,67
68,69,6A,6B,6C,6D,6E,6F

70,71,72,73,74,75,76,77
78,79.7A,0,0,0,0,0

20,21,22,23,24,25,26,27
28,29,2A,2B,3C,3D,3E,3F
0D,2F,01,5B,5C,5D,5E,20

The loop at RKW030 scans the seven rows of the keyboard and looks for a

keypress in a row. The address of row is 3801 H, and this is initially put

into HL. If no key is found in row 0, the L portion of the address is shifted left to

produce an address in HL of 3802H. This process Is repeated for the additional

rows until all seven rows have been scanned, as evidenced by a one bit in bit 7

of L. If no key has been found after seven rows, a loop is made back to RKW020

to repeat the scan.

If any row is nonzero when read, RKN040 is entered. At this point, the row

address of 3801 H, 3802H, 3804H, etc., is in HL; the code at RKW050 converts

this row address to a row number of to 7 times 8. This "index" of 0, 8, 16, 24,

32, 40, or 48 is saved.

The A register contains the column bits for the row. One (or more for multiple

key presses) is a one. The code at RKN070 converts the column bit into a

column number of 7 to 0. This column number is then added to ROW*8.

Next, the SHIFT key is read by "LD A,(3880H)." The shift key bit is aligned and

merged with COL+ ROW*8 to produce an index of SHIFT*64+ ROW*8+ COL.

At this point a "debounce delay" of 50 milliseconds is performed. This ensures

that the key is not reread if RKWAIT is reentered immediately by the calling

program.

The index is then added to the start of RKWAIT and the displacement of the

code table, RKWTAB, to point to a location within the table corresponding to

the key pressed. The code just prior to RKW090 accesses the code table to pick

up the proper code for the key that has been pressed. If multiple keys in the

same row have been pressed, the rightmost key is detected and the others

ignored.

169

Sample Calling Sequence

NAME OF SUBROUTINE? RKWAIT
HL VALUE? 38000 ADDRESS OF RKWAIT
F'AF^AMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUT: OUTPUT:
HL= 38000 HL= 65 "A" KEY, NO SHIFT

NAME OF SUBROUTINE?

Notes

1. The eight bytes between lower and upper case may contain any values.

2. The debounce delay may be adjusted as required. A 50 millisecond delay
is about 20 characters per second or 240 words per minute. Change locations
7F33H and 7F34H to alter the debounce delay.

Program Listing

7F00

7F00
7F01
7F02
7F04
7F07
7F08
7F0A
7F0D
7F0E
7F0F
7F11
7F13
7F15
7F17
7F19
7F1A
7F1B
7F1D
7F1F
7F21
7f 23
7F25
7F26
7F2S
7F2A
7F2B
7F2C
7F2F
7F30
7F31
7F32
7F35

F5
C5
DDES
CD7F0A
E5
DDEl
210138
7E
87
2008
CB25
CB7D
28F6
IBFl
4F
AF
CB3D
3804
C608
18FS
06FF
04
CB39
30FB
80
4F
3A8038
0F
0F
81
21100F
01FFFF

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490

ORG 7F00H 5 052;

'.t MWT?. *'u'^S*^'o5£oS'^^
^^^'^- ^E^^S KEYBOARD AND WAITS *!* UNTIL KEY PRESS.

n^.w. ^
!* INPUT: HL=> ADDRESS OF RKWAIT *
;» OUTPUT :HL=CHARACTER READ *

RKWAIT

RKW020
RKW030

RKW040

RKW050

RKW060
RKW070

PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
LD
OR
JR
SLA
BIT
JR
JR
LD
XOR
SRL
JR
ADD
JR
LD
INC
&RL
JR
ADD
LD
LD
RRCA
RRCA
ADD
LD

AF
BC
IX
0A7FH
HL
IX
HL,3801H
A» (HL)
A
NZ,RKW040
L
7,L
Z » RKW030
RKW020
C»A
A
L
C»RKW060
Aj8
RKW050
B,0FFH
B
C
NC»RKW070
A»e
C,A
A» <3880H>

A?C
HL»3B56
BC,-1

iSAVE REGISTERS

;***GET BASE ADDRESS***
; TRANSFER TO IX

; ADDRESS OF FIRST ROW
;GET NEXT ROW
!TEST FOR KEY
?G0 IF KEY PRESS
;GET NEXT ROW ADDRESS
;TEST FOR LAST ADDR
;60 IF NOT LAST
;LAST-L00P 'TIL KEY

;SAVE COLUMN BITS
; CLEAR COUNT

; SHI FT OUT ROW ADDRESS
;G0 IF ONE BIT FOUND
7 ROW*

8

;L00P TIL DONE
! INITIALIZE COUNT

;FIND COLUMN BIT
; SHI FT OUT COLUMNS
LOOP 'TIL FOUND

? ROW*8+ COL
;N0W IN C
;GET SHIFT BIT
;NOW IN BIT 7
;NOW IN BIT 6
"SHI FT*64+R0W*S+'C0L
; DELAY COUNT (50 MS)
; DECREMENT VALUE

170

7F38 09 00500 RKW080 ADD HL,BC
7F39 38FD 00510 JR C,RKW0a0
7F3e 4F 00520 L.D C»A
7F3C 0600 00530 LD B«0
7F3E DD09 00540 ADD I X . BC
7F40 015200 00550 LD 8C, RKWTAB
7F43 DD09 00560 ADD IX»BC
7FA5 DD6E00 00570 LD L» (IX+0)
7F48 2600 00580 LD H«0
7F4A DDEl 00590 POP IX
7F4C CI 00600 POP BC
7F4D Fl 00610 POP AF
7F4E C39A0A 00620 JP 0A9AH
7F51 C9 00630 RET
0(352 00640 RKWTAB E6jU *-RKWAIT
00198 00650 DEFS 8
0008 00660 DEFS 8
0008 00670 DEFS 8
e^ims 00680 DEFS 8
0008 00690 DEFS 8
0008 00700 DEFS 8
0008 00710 DEFS 8
0008 00720 DEFS 8
0008 00730 DEFS 8
0008 00740 DEFS 8
0008 00750 DEFS 8
0008 00760 DEFS 8
0008 00770 DEFS 8
0008 00780 DEFS 8
0008 00790 DEFS 8
0000 00800 END
00000 TOTAL ERRORS

1 DELAY FOR BOUNCE 11
-LOOP 'TIL HL NEG 7/12

; INDEX TO C
?NOW IN BC
5BASE PLUS INDEX
? TRANSLATION TABLE
;BASE+INDEX+DISPL
;GET CHARACTER
;now in HL
; RESTORE REGISTERS

»*»RETURN WITH ARGUMENT***
NON-BASIC RETURN
TRANSLATION TABLE
NO SHIFT ROW

1

2
3
4
5
6

NOT USED
SHIFT ROW

RKWAIT DECIMAL VALUES

245i 197i 2215 229) 205* 127» 10» 229, 221

i

33) 1, 56) 126) 183) 32, 8) 203) 37) 203,
125, 40, 246, 24, 241, 79, 175, 203, 61, 56'
4, 198, 8) 24) 248) 6) 255) 4) 203, 57)
43, 251, 128, 79, 58, 128, 56) 15, 15, 129,
33, 16, 15) 1) 255, 255, 9) 56, 253, 79,
6, 0, 221, 9, 1, 82) 0, 221, 9, 221,
110, 0, 38, 0, 221, 225, 193, 241, 195, 154i
10) 201

CHKSUM= 69

SCDOWN: SCROLL SCREEN DOWN

System Configuration

Model I, Model III.

Description

SCDOWN scrolls the video display down one line. Scrolling down causes lines

1 through 15 to be moved up into line positions through 14. Scrolling can be
used in displaying text or data that cannot be displayed in the 1024 bytes of one
video screen.

171

When scrolling down, line 15 is blanked in preparation for displaying the next

line "below" the screen.

Input/Output Parameters

There are no input or output parameters. A call to SCDOWN simply causes a

scroll down of one line, with a return to the calling program immediately fol-

lowing.

OUTPUT

NONE ^ UNCHANGED
1

Algorithm

Scrolling is easily and efficiently handled by use of the Z-80 "block move"
instructions. The LDIR moves a block of data from one area of memory to

another, transferring the data "beginning to end" (lower-valued memory loca-

tions to higher-valued memory locations) of each block, one byte at a time.

The LDIR automatically transfers video memory bytes to locations 64 bytes

"down" in memory. A total of 960 bytes are transferred as the first line "disap-

pears."

After the transfer, the last line has been moved up to the second to last line, but

still remains on the bottom of the screen. This line is "blanked" by a fill of 64
bytes of blank characters at SCD010.

Sample Calling Sequence

NAME OF SUBROUTINE? SCDOWN
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 36666
SUBROUTINE EXECUTED AT 36666
INPUT! OUTPUT:

NAME OF SUBROUTINE?

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 21 403

C

00100
00U0
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

ORG 7F00H ;0522
;***»*#*#*#**#****##**#*#**#^^^^^(.^e.^(,^^^^^^^(.^^^(.#^^^^^(.^f^^^(.^^^(,^^^^^(,^^^^^(.^^^^

;* SCROLL SCREEN DOWN. SCROLLS SCREEN DOWN ONE LINE. *
;* INPUT: NONE *
5* OUTPUT : SCREEN SCROLLED DOWN *
;***###*****##*#^f*#*^^*^^###*^^^t^^^^^f.^(.^(.*****•^(*^{•^l^^**#^^«*^^#^(.**

SCDOWN PUSH
PUSH
PUSH
PUSH
LD

AF
BC
DE
HL
HL,3C40H

;SAVE REGISTERS

? SOURCE

172

7F07 U003C 00220 LD DEi3C00H ? DESTINATION
7F0A 01C003 00230 LD BCi960 ?# OF BYTES
7FBD EDB0 00240 LDIR ; SCROLL
7F0F 21C03F 00250 LD HL,3FC0H ;LINE TO BE BLANKED
7F12 3E20 00260 LD Ai ' '

7- LOAD BLANK CHARACTER
7F14 0640 00270 LD B»64 ;64 CHARACTERS ON LINE
7F16 77 00280 SCD010 LD (HL) 1 A 5 STORE BLANK IN LINE
7F17 23 00290 INC HL 5 BUMP POINTER
7F18 10FC 00300 DJNZ SCD010 ;loop if not done
7F1A El 00310 POP HL ; RESTORE REGISTERS
7F1B Dl 00320 POP DE
7F1C CI 00330 POP BC
7F1D Fl 00340 POP AF
7FIE C9 00350 RET ; RETURN
0000 00360 END
00000 TOTAL ERRORS

SCUSCR: SCROLL SCREEN UP

SCDOWN DECIMAL VALUES

245, 197, 213, 229, 33, 64, 60, 17, 0, 60,
1, 192, 3, 237, 176, 33, 192, 63, 62, 32,
6, 64, 119, 35, 16, 252, 225, 209, 193, 241
201

CHKSUM= 86

System Configuration

Model I, Model 111.

Description

SCUSCR scrolls the video display up one line. Scrolling up causes lines

through 14 to be moved down into line positions 1 through 15. Scrolling can be

used in d isplaying text or data that cannot be d isplayed in the 1 024 bytes of one

video screen.

When scrolling up, line is blanked in preparation for displaying the next line

"above" the screen.

Input/Output Parameters

There are no input or output parameters. A call to SCUSCR simply causes

a scroll up of one line, with a return to the calling program immediately fol-

lowing.

INPUT OUTPUT

—I

—

NONE ^ UNCHANGED

173

Algorithm

Scrolling is easily and efficiently handled by use of the Z-80 "block move"
instructions. The LDDR moves a block of data from one area of memory to

another, transferring the data "end to beginning" (higher-valued memory loca-

tions to lower-valued memory locations) of each block, one byte at a time.

The LDDR automatically transfers video memory bytes to locations 64 bytes

"up" in memory. A total of 960 bytes are transferred as the last line "disap-
pears."

After the transfer, the first line has been moved down to the second line, but

still remains on the top of the screen. This line is "blanked" by a fill of 64 bytes

of blank characters at SCU010.

Sample Calling Sequence

NAME OF SUBROUTINE? SCUSCR
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 41111
SUBROUTINE EXECUTED AT 41111
INPUT: OUTPUT:

NAME OF SUBROUTINE?

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 21803F
7F07 11C03F
7F0A 01C003
7F0D EDB8
7F0F 21003C
7F12 3E20
7F14 0640
7F16 77
7F17 23
7F18 10FC
7F1A El
7F1B Dl
7F1C CI
7F1D Fl
7F1E C9
0000
00000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360

ERRORS

ORG 7F00H ;0522

» SCROLL SCREEN UP. SCROLLS SCREEN UP ONE LINE.
* INPUT: NONE #
* OUTPUT: SCREEN SCROLLED UP «
^(•^^**#^^#«*^^»**^^.#*^<.^^*##^^^^#^^^^^^^f^^^^#^^^^#^{.^^^t.K^(^f^e##•|^*«*^nf^f

SCUSCR

SCU010

PUSH
PUSH
PUSH
PUSH
LD
LD
LD
LDDR
LD
LD
LD

INC
DJNZ
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
HL 1 3F80H
DE.3FC0H
BC.960

HL»3C00H
A»' '

Bi64
(HL)>A
HL
SCU010
HL
DE
BC
AF

;SAVE REGISTERS

; SOURCE
; DESTINATION
?# OF BYTES

? SCROLL
;LINE to BE BLANKED
;L0AD BLANK CHARACTER
;64 CHARACTERS ON LINE

; STORE BLANK IN LINE
;BUMP POINTER
JLOOP IF NOT DONE

; RESTORE REGISTERS

; RETURN

174

SCUSCR DECIMAL VALUES

245i 197i 213. 229j 33i i28i 63) 17» 192. 63.
1. 192* 3. 237. 184. 33. 0. 60. 62. 32.
6i 64. 119. 35. 16. 252. 225. 209. 193. 241.
201

CHKBUri= 161

SDASCI: SCREEN DUMP TO PRINTER IN ASCII

Configuration

Model I, Model III.

Description

SDASCI dumps the contents of the video display to the system line printer.

SDASCI may be called at any time to record the contents of the screen. ASCII

characters are printed as they appear on the screen. Graphics characters are

printed as a period. The system line printer must be able to print 64 character

positions across. The screen is printed as 16 lines of 64 characters.

Input/Output Parameters

There are no input parameters. The screen contents are printed and a return to

the calling program is done.

INPUT OUTPUT

H L H L

=^ '

'
NONE UNCHANGED

Algorithm

The HL register pair holds the current screen location starting from 3C00H, the

screen start. The B register is used to hold the number of characters per line, 64.

It is decremented down to zero so that a carriage return at the end of line can

be made to the system line printer.

There are two loops. The main loop starts at SDA005. The inner loop handles

each screen line and starts at SDA010. For each new line, the line character

count of 64 is placed into the B register at SDA005.

In the SDAOIO loop, a character is loaded into A from the next character posi-

tion. Bit? of the character is tested. If this bit Is a one, a period is substituted for

the graphics character. If the character is not a graphics character (SDA020), a

20H is subtracted from the character and bit 7 is tested. If bit 7 is set, the value

of the character is less than 20H, and 40H is added to compensate for the lower

case option. The character is then saved in the stack while a status check is

made of the line printer.

175

The code at SDA050 checks line printer status. When the line printer is ready,

the character is popped from the stack and printed. The HL pointer is then

incremented by one, and the line character count in B decremented. If B is

zero, a carriage return is output to the line printer for the end of the line by a

jump back to SDA040.

SDA060 tests for a condition of -1 in the B register. If this is true, a carriage

return has just been output, and a test is made for HL=4000H, which marks the

end of the dump. If H is not equal to 40H, a jump is made back to SDA005 to

output the next line. If there is not a -1 in B at SDA060, the current line is still

being processed and a jump is made back to SDA010 for the next character in

the line.

Sample Calling Sequence

NAME OF SUBROUTINE? SDASCI
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 40000
TRS~B0 ASSEMBLY LANGUAGE SUBROUTINES EXERCISER

NAME OF SUBROUTINE? SDASCI
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK t LOCATION?
MOVE SUBROUTINE TO
? 40000

-16 SCREEN LINES

SUBROUTINE
INPUT:

EXECUTED AT 40000
OUTPUT:

NAME OF SUBROUTINE?

71-00

Notes

1. If this subroutine is used for the Model III, make the following change in

the listing: Substitute "OUT {0F8H),A" for "LD (37E8H),A". Replace the corre-

sponding decimal values of "50, 232, 55" with decimal values of "21
1 , 248, 0".

Program Listing

00100 ORG 7F00H i0520
001 1 ; ******#***#»**»#***####*#***#*##^(.#*#^^.^(.^^*##^^^t^t^(.^(.*^«***
00120 ;* SCREEN DUMP TO PRINTER. CAUSES CONTENTS OF SCREEN TO *
00130 ;* BE DUMPED TO THE SYSTEM LINE PRINTER. GRAPHICS ARE *
00140 * PRINTED AS A PERIOD. *
00150 ;* INPUT: NONE #
00160 J* OUTPUT: SCREEN CONTENTS PRINTED ' *
001 70 ; *******###*****###*#*##*###*^^#»^^^^^(.^^^(.^^^^^^^^^^^^^^^^#^^^(.
00180 ?

176

7F00 F5
7F01 C5
7F02 E5
7F03 21003C
7F06 0640
7F08 7E
7F09 CB7F
7F0B 2804
7F0D 3E2E
7F0F 180A
7MI D620
7F13 CB7F
7F15 2802
7F17 C640
7FI9 C620
7F1B F5
7F1C 3AE837
7F1F E6F0
7F21 FE30
7F23 20F7
7F25 Fl
7F26 32E837
7F29 23
7F2A 05
7F2e 78
7F2C B7
7F2D 2004
7F2F 3E0D
7F31 18ES
7F33 FEFF
7h35 20D1
7F37 28
7h38 7C
7F39 FE40
7t-3B 20C9
7F3D El
7F3E CI
7F3F Fl
7F40 C9
0000
00000 TOTAL

00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580

ERRORS

SDASCI

SDA005
SDA010

BDA020

SDA030
SDA040
SDA050

SDA060

PUSH
PUSH
PUSH
LD
LD
LD
BIT
JR
LD
JR
SUB
BIT
JR
ADD
ADD
PUSH
LD
AND
CP
JR
POP
LD
INC
DEC
LD
OR
JR
LD
JR
CP
JR
DEC
LD
CP
JR
POP
POP
POP
RET
END

AF
BC
HL
HL»3C00H
B»64
A» <HL)
7»A
Z?SDA020
A» ' .

'

SDA040
20H
7,

A

Z , SDA030
A»40H
A 1 20H
AF
A, (37E8H)
0F0H
30H
NZ»SDA050
AF
<37E8H)»A
HL
B
A»B
A
NZ) SDA060
A» 13
SDA040
0FFH
NZ»SDA010
HL
A.H
40H
NZ » SDA005
HL
BC
AF

SSAVE REGISTERS

; SCREEN START ADDRESS
!# OF CHARACTERS/LINE

?GET NEXT SCREEN BYTE
J TEST FOR GRAPHICS
;G0 IF GRAPHICS BYTE
5 PERIOD FOR GRAPHICS
;G0 TO PRINT
;TEST for CONTROL
; CONTROL IF SET
?G0 IF NOT LT 20H
? ADJUST FOR CONTROL
; RESTORE FOR SUB
;SAVE CHARACTER

;GET PRINTER STATUS
;MASK OUT UNUSED BITS
;test status
;G0 IF BUSY

; RESTORE CHARACTER
! PRINT CHARACTER
;BUMP SCREEN POINTER
; DECREMENT CHAR CNT
;GET COUNT
STEST
;G0 IF NOT
5 END OF LINE
; OUTPUT CR
;TEST FOR -1

?STILL IN LINE
; ADJUST FOR FALSE INC
;JUST PRINTED CR
?AT END OF SCREEN?
;go if no

; RESTORE REGISTERS

; RETURN TO CALLING PROG

SDASCI DECIMAL VALUES

245? 197, 229» 33, 0, 60, 6, 64, 126, 203,
127, 40, 4, 62, 46, 24, 10, 214, 32, 203,
127, 40, 2, 198, 64, 19B, 32, 245, 58, 235
55, 230, 240, 254, 48, 32, 247, 241, 50
55, 35, 5,_120, 183, 32, 4, 62, 13, 24,
232, 254, 255, 32, 209, 43, 124, 254
201, 225, 193, 241, 201

CHKSUM= 163

64, 32'

SDGRAP: SCREEN DUMP TO PRINTER IN GRAPHICS

Configuration

Model I, Model III.

Description

SDGRAP dumps the contents of the video display to the system line printer.

SDGRAP may be called at any time to record the contents of the screen. Graph-

177

ics characters are printed as they appear on the screen by an "O." ASCII char-

acters are not printed. The system line printer must be able to print 128 charac-

ter positions across. The screen is printed as 48 rows of 128 pixels.

Input/Output Parameters

There are no input parameters. The screen contents are printed and a return to

the calling program is done.

INPUT OUTPUT

H
, L H L

NONE UNCHANGED

Algorithm

The SDGRAP subroutine uses an internal print subroutine at SDG050. This

subroutine first tests the current character position contents in the A register for

graphics. If the current contents are nongraphics (ASCII), a blank character is

used for the print; if the current contents are graphics, an "O" is used for the
print. The blank or "O" is then saved in the stack.

Next in the print subroutine, a test is made for printer status. The code at

SDG060 loops until the printer is not busy. When the printer is ready, the blank
or "O" character is output. The print subroutine then adjusts a "bit mask" in

the B register. This mask represents the current bit position in the character

position being tested. Each graphics character has six bit positions, bits 5

through 0. The bit mask is shifted left one bit to mask the next bit position.

Finally, the print subroutine tests for the return point. There are three return

points. If bits 0, 2, or 4 have just been printed, a return Is made to SDG030. If

bits 1 , 3, or 5 have just been printed, a return is made to SDG035. If neither of

these conditions is present (B equals zero), a carriage return has just been
printed and a return is made to SDG040. The normal subroutine structure is not
used so that all code in SDGRAP can be relocatable.

The main code in SDGRAP uses three loops. The outermost loop (SDGOIO)
handles character positions, in sets of three graphics rows. The next innermost
loop handles the three rows within each character position. The innermost
loop handles each row of graphics bits.

Each set of three rows (one line) starts off with the mask bit in B set for pixel 0.

The character is picked up via the pointer in HL. SDG050 Is called to output the

first pixel. The B mask is now set to pixel 1 . SDG050 is again called for pixel 1

.

Next, (SDG035), the line pointer in HL, is bumped, and the bit mask is shifted

back to the right two bit positions. For the first row, B would now hold 1 . Now a

test is made of HL. If HL is not at the end of line, the next character is picked up
and pixels and 1 printed. If HL is at the end of line, a carriage return is

printed by a call to SDG050, and the bit mask In B is shifted left two bit po-

sitions. If the first row had just been printed, B would now contain a 4. HL is

now adjusted to point back to the beginning of the line by adding -64. If the

next row is still within a character position, a loop back to SDC012 prints the

next row.

178

If the next row starts a new line, the pointer in HL is bumped by 64 to point to

the next Hne of three rows. A test is made for HL= 4000H, signifying that al!

rows have been printed. If this is not the case, a jump is made back to SDG010

to print the next set of three rows.

Sample Calling Sequence

NAME OF SUBROUTINE? SDGRAP
HL VALUE?
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38888

-48 SCREEN ROWS

SUBROUTINE EXECUTED AT 38888
input: OUTPUT:

NAME OF SUBROUTINE?

179

Notes

1. ASCII characters on the screen are ignored, but will not cause erroneous
results.

2. The dimensions of the printout on many printers will be 12.8 inches hori-

zontal by 8 inches vertical, which will be approximately the "aspect ratio" of

the screen.

3. if this subroutine is used for the Model III, make the following change in

the listing: Substitute "OUT (0F8H),A" for "LD (37E8H),A." Replace the corre-

sponding decimal values of "50, 232, 55" with decimal values of "21
1 , 248, 0."

Program Listing

7F00

7FBB
7F01
7F02
7F03
7F04
7F07
7F09
7F0A
7F0B
7F0C
7F0E
7F0F
7FIi
7F12
7F14
7F16
7F17
7F18
7F1A
7F1C
7F1D
7F1F
7F21
7F22
7F24
7F26
7F29
7F2A
7F2C
7F2E
7F3I
7F32
7F33
7F35
7F37
7F38
7F39
7F3A
7F3B

F5
C5
D5
E5
21003C
0601
C5
CI
7E
182E
7E
182B
23
CB38
CB38
C5
7D
E63F
20EE
47
3E0D
1826
CI

CB20
CB20
1 1 C0FF
19
CB70
28DB
114000
19
7C
FE40
20D0
El
Dl
CI
Fl
C9

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580

ORG 7F00H ;0520

;» GRAPHICS DUMP TO PRINTER. CAUSES CONTENTS OF SCREEN *

;* TO BE DUMPED TO SYSTEM LINE PRINTER AS 128 BY 48 MAT-*
J* RIX OF OS. TEXT IS IGNORED. *

;* INPUT: NONE *

J* OUTPUT: SCREEN CONTENTS PRINTED *

;*****#*#************«**#**«**********#*#***********#***#

SDGRAP PUSH
PUSH
PUSH
PUSH
LD

SDG010 LD
SDG012 PUSH
SDG015 POP
SDG020 LD

JR
SDG030 LD

JR
SDG035 INC

SRL
SRL
PUSH
LD
AND
JR
LD

JR
SDG040 POP

SLA
SLA
LD
ADD
BIT
JR
LD
ADD
LD
CP
JR
POP
POP
POP
POP
RET

; PRINT SUBROUT

AF
BC
DE
HL
HL»3C00H
B»i
BC
BC
A) (HL)
SDG050
A. (HL)
SDG050
HL
B
B
BC
A»L
3FH
NZ»SDG015
B)A
Ai 13
SDG054
BC
B
B
DE?-64
HL»DE
6»B
Z»SDG012
DE»64
HL»DE
AiH
40H
NZ»SDG010
HL
DE
BC
AF

INE

;SAVE REGISTERS

; START OF SCREEN
;MASK BIT FOR UPPER LEFT
?SAVE MASK
•IGET MASK

;get character
output lft side bit
!GET character
JOUTPUT RIGHT SIDE BIT
;BUMP line POINTER
; ADJUST BACK MASK

5 SAVE MASK
;get char pos addr
?TEST FOR 64TH CHAR
5 GO IF NOT END OF LINE

;0 TO B
; CARRIAGE RETURN
;PRINT
; RESTORE BIT MASK
;NEXT LINE MASK

;FOR RTN TO LINE START
! RESET TO LINE START
;TEST FOR THREE LINES
;G0 IF NOT THREE

5F0R NEXT SCREEN LINE
; POINT TO NEXT SCREEN LINE
?GET MS BYTE OF ADDRESS
;TEST FOR END OF SCREEN
5G0 IF NOT END

? RESTORE REGISTERS

; RETURN TO CALLING PROGRAM

180

7r3C CB7F 00590 SDG050 BIT 7»A ;TEST FOR NON-GRAPHICS
7F3E 2801 00600 JR Z»SDG052 !G0 IF NON-GRAPHICS
7F40 A0 00610 AND B !GET GRAPHICS BIT
7F41 3E20 00620 SDG052 LD A»' '

; BLANK
7F43 2802 00630 JR Z»SDG054 ?G0 IF BIT RESET
7F45 3E4F 00640 LD A»'0' ;BIT SET
7F47 F5 00650 SDG054 PUSH AF ;SAVE CHARACTER
7F48 3AE837 00660 SDG060 LD A, (37E8H) ;GET PRINTER STATUS
7F4B E6F0 00670 AND 0F0H ;MASK out INACTIVE BIT
7F4D FE30 00680 CP 30H ;test for status
7F4F 20F7 00690 JR NZ»SDG060 ;loop if busy
7F51 Fl 00700 POP AF ; restore character
7F52 32ES37 00710 LD (37EBH),A ! OUTPUT character
7F55 CB20 00720 SLA B ; adjust BIT MASK
7F57 78 00730 LD A»B ?GET BIT MASK
7F58 E6AA 00740 AND 0AAH 1TEST FOR RETURN
7F5A 20B2 00750 JR NZ I SDG030 ; RETURN FOR RIGHT SIDE
7F5C 78 00760 LD AtB ;GET BIT MASK
7F5D E654 00770 AND 54H ;TEST FOR RETURN
7F5F 20B0 00780 JR NZ,SDG035 ; RETURN FOR NEXT ROW
7F61 18BE 00790 JR SDG040 ? RETURN FOR LINE
0000 00800 END
00000 TOTAL ERRORS

SDGRAP DECIMAL VALUES

245, 197? 213? 229» 33» 0, 60» 6» 1» 197,
193, 126, 24, 46, 126, 24, 43, 35, 203, 56,
203, 56, 197, 125, 230, 63, 32, 238, 71, 62,
13, 24, 38, 193, 203, 32, 203, 32, 17, 192,
255, 25, 203, 112, 40, 219, 17, 64, 0, 25,
124, 254, 64, 32, 208, 225, 209, 193, 241, 201,
203, 127, 40, 1, 160, 62, 32, 40, 2, 62,
79, 245, 58, 232, 55, 230, 240, 254, 48, 32,
247, 241, 50, 232, 55, 203, 32, 120, 230, 170,
32, 178, 120, 230, 84, 32, 176, 24, 190

CHKSUM= 64

SETCOM: SET RS-232-C INTERFACE

System Configuration

Model I.

Description

SETCOM programs the RS-232-C controller in lieu of setting the switches on the

RS-232-C controller board. (SETCOM must be run before the NECDRV program

can be used.)

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block are the baud rate for which the RS-232-C

interface is to be set, 1 10, 150, 300, 600, 1200, 2400, 4800, or 9600. The next byte

is set to a zero if parity is to be enabled, or to a one if parity is to be disabled.

181

The next byte of the parameter block is set to a zero if one stop bit is to be used,

or to a one if two stop bits are to be used. The next byte contains the number of

bits in the RS-232-C transfer; is 5 bits, 1 is 7 bits, 2 is 6 bits, or 3 is 8 bits. The
next byte contains a zero if odd parity is to be used, or a one if even parity is

to be used.

On output, the parameter block remains unchanged, and the RS-232-C inter-

face is initialized.

INPUT

POINTER TO PARAM+0
\

PARAM+0

+ 1

BAUD
RATE

+2 0-PE 1=PD

+3 0=1 STOP BIT
1=2 STOP BITS

+4 0=5 BITS, 1=7 BITS
2=6 BITS, 3=8 BITS

+5 0=ODD PAR
1=EVEN PAR

OUTPUT

V
UNCHANGED

1

/

PARAM+0

+ 1

+2

+3

+4

+5

1

- UNCHANGED - -

UNCHANGED

UNCHANGED>
/

UNCHANGED

UNCHANGED

Algorithm

The SETCOM subroutine reads the parameters, merges, and aligns them into

the proper format for the RS-232-C controller, and writes them out to the con-

troller.

First, the controller is reset by an "OUT (0E8H),A." Next, the parity type is

picked up into A and shifted to yield OOOOOPOO. Next, the number of bits is

merged, and shifted to yield OOOOPNNO. Next, the number of stop bits

is merged and shifted to yield OOOPNNSO. Next, the parity enable/disable bit is

merged and shifted to yield PNNSPOOO. Next, the BRK and RTS bits are set and
the PNNSP101 configuration is output to port address OEAH.

The next portion of code converts the baud rate to the proper RS-232-C code.

To keep the code relocatable, "linear" code (not table lookup) is used. The
least significant byte of the baud rate is picked up and compared to the Is byte

of 110, 150, 300, etc. The proper code is then output to port address 0E9H.

Sample Calling Sequence

NAME OF SUBROUTINE? SETCOM
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

1200
1

1

MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 39000

1200 BAUD
PD
ONE STOP BIT

SEVEN BITS

ODD PARITY

182

SUBROUTINE EXECUTED AT 39000
INPUT: OUTPUT:
HL= 40000 HL= 40000
PARAM+ 176 PARAM+ 176
PARAM+ 1 4 PARAM+ 1 4
PARAM+ 2 1 PARAM+ 2 1

PARAM+ 3 PARAM+ 3
PARAM+ 4 1 PARAM+ 4 1

PARAM+ 5 PARAM+ 5

-UNCHANGED

NAME OF SUBROUTINE?

Notes

1. No check is made on proper parameters in the parameter block.

2. The OR prior to OEAH output may be modified as required to set a differ-

ent configuration of BRK, DTR, RTS.

3. Note transposed order of number of bits.

Program Listing

7F00

7F00
7F01
7F02
7F04
7F07
7F08
7F0A
7F0C
7F0F
7F10
7F11
7F14
7F15
7F18
7F19
7F1C
7F1D
7F1E
7F1F
7F21
7F23
7F26
7F28
7F2A
7F2C
7F2E
7F30

F5

DDES
CD7F0A
E5
DDEl
D3Eo
DD7E05
07
07
DDB604
07
DDB603
07
DDB602
07
07
07
F605
D3EA
DD7E00
FE6E
2004
3E22
1832
FE96
2004

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500

ORG 7F00H ;0522
***************************###****^(.**^(.#^(.^(.^(.^t^t.^^^t.^t.^t.^^^t.^(.^^*^^

* SET RS-232~C. PROGRAMS THE RS-232-C CONTROLLER. *
* INPUT: HL=> PARAMETER BLOCK *
* PARAM+0»+l=BAUD RATE - 110, 150, 300, 600, *
* 1200, 2400, 4800, 9600 »
* PARAM+2=0=PARITY ENABLED, 1=PARITY DISAB »
* PARAM+3=0=ONE STOP BIT, 1=TW0 STOP BITS *
* PARAM+4=0=5 BITS, 1=7 BITS, 2=6 BITS, 3=8 *
* BITS *
* PARAM+5=0=ODD PARITY, 1=EVEN *
* OUTPUT :RS-232~C CONTROLLER INITIALIZED »

SETCOM

SET010

PUSH
PUSH
PUSH
CALL
PUSH
POP
OUT
LD
RLCA
RLCA
OR
RLCA
OR
RLCA
OR
RLCA
RLCA
RLCA
OR
OUT

CP
JR
LD
JR
CP
JR

AF
HL
IX
0A7FH
HL
IX
(0EBH),A
A, (IX+5)

<IX+4)

(IX+3)

(IX+2)

(0EAH),A
A, (IX+0)
110
NZ,SET010
A,22H
BET080
150
NZ , SET020

;SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

; RESET RS-232-C
; PARITY
; ALIGN

;MERGE # BITS
;ALIGN
5# OF STOP BITS
;ALIGN
^PARITY ENAB/DIS
; ALIGN

;SET BRK, RTS
; OUTPUT
;get lbb of baud rate
;110?
;G0 IF no
;110 code
;G0 to SET
!150?
!G0 IF NO

183

7F32 3E44 00510 LD A,44H
7F3A 1B2A 00520 JR SET080
7F36 FE2C 00530 SET020 CP 44
7F38 2004 00540 JR NZ»SET030
7F3A 3E55 00550 LD A)55H
7F3C 1822 00560 JR SET080
7F3E FE58 00570 SET030 CP 88
7FA0 2004 00580 JR NZ,SET040
7F42 3E66 00590 LD A»66H
7F44 IBIA 00600 JR SET080
7F46 FEB0 00610 SET040 CP 176
7F48 2004 00620 JR NZ,SET050
7F4A 3E77 00630 LD A,77H
7F4C 1812 00640 JR SET0B0
7F4E FE60 00650 SET050 CP 96
7F50 2004 00660 JR NZ»SET060
7F52 3EAA 00670 LD A»0AAH
7F54 1S0A 00680 JR SET080
7F56 FEC0 00690 SET060 CP 192
7F58 2004 00700 JR NZ,SET070
7F5A 3ECC 00710 LD A,0CCH
7F5C 1802 00720 JR BET080
7F5E 3EEE 00730 SET070 LD A,0EEH
7F60 32E900 00740 SET080 LD (0E9H) ,

A

7F63 DDEl 00750 POP IX
7F65 El 00760 POP HL
7F66 Fl 00770 POP AF
7F67 C9 00780 RET
0000 00790 END
00000 TOTAL ERRORS

150 CODE
GO TO SET
300?
GO IF NO
300 CODE
GO TO SET
600?
GO IF NO
600 CODE
GO TO SET
1200?
GO IF NO
1200 CODE
GO TO SET
2400?
GO IF NO
2400 CODE
GO TO SET
4800?
GO IF NO
4800 CODE
GO TO SET
9600 CODE
OUTPUT TO BRG
RESTORE REGISTERS

RETURN TO CALLING PROG

SET COM DECIMAL VALUES

245 » 229 » 22 li 229 » 205? 127? 10» 229
211) 232? 221 1 126? 5> 7* l^ 221) 182
7 » 2215 1 82 1 3) 7 ? 22 1 » 1 82 » 2 > 7 » 7 ?

l^ 246) 5) 211) 234) 221) 126) 0) 254
32) 4) 62) 34) 24) 50) 254) 150* 32) 4)
62) 68) 24) 42) 254) 44) 32) 4) 62) 85)
24) 34) 254) 88) 32) 4) 62) 102) 24) 26)
254) 176) 32) 4) 62) 119) 24) 18) 254) 96
32) 4) 62) 170) 24) 10) 254) 192) 32) 4)
62) 204) 24) 2) 62) 238) 50) 233) 0) 221)
225) 225) 241) 201

22 1) 225

!

4)

110)

CHKSUM= 186

SOIARR: SEARCH ONE-DIMENSIONAL INTEGER ARRAY

Sysiem Configuration

Model I, Model III, Model II Stand Alone.

Description

SOIARR searches a BASIC or other one-dimensional integer array for a given

16-bit search key. The array nnay be any size within memory limits. The array is

assumed to be made up of 16-bit entries. SOIARR returns the address of the

entry matching the search key, or a -1 if no entry matches the search key.

184

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the 16-bit address of the array, ar-

ranged in standard Z-80 address format, least significant byte followed by most

significant byte. The next two bytes of the array contain the number of entries

in the array. {Note that this value is one-half the number of bytes in the array!)

The next two bytes contain the 16-bit search key. The arrangement of the

search key may correspond to the arrangement of data in the array. If the array

is a BASIC array, the data In the search key will be least significant byte fol-

lowed by most significant byte; if the array is made up of two ASCII characters

arranged first and second, then the search key should have the same arrange-

ment. The last two bytes are reserved for the result of the search.

On output, PARAM+6, +7 holds the address of the entry corresponding to the

search key, or —1 if no entry has been found.

INPUT

H L
1

POINTER TO PARAM+0

PARA

'

M+0

+ 1

+2

+3

+4

+5

+6

+7

ADDRESS
OF ARRAY
(MEM 1+0)

-

- SIZE OF
ARRAY

-

-
16-BIT
SEARCH
KEY

-

-
RESERVED

FOR
RESULT

-

OUTPUT

v
UNCHANGED

1

/

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

1

- UNCHANGED -

- UNCHANGED - .

7>

- UNCHANGED - -

POINTER TO
- FOUND ENTRY -

OR -1
-

MEM 1+0

+ 1

ENTRY
MEM1+0

+ 1

UNCHANGED "

+2
ENTRY 1

+2

+3 > +3
/

+4

+5
ENTRY 2

+4

+5

+6 +6

Algorithm

The SOIARR scans the array one entry (two bytes) at a time from beginning to

end, looking for the search key. The number of entries is put into BC, the

starting address of the array into lY, and the search key in DE. HL is used as a

working register for the compare of the entries to the key.

185

The loop at SOI010 performs the scan. The next entry is put into HL. The search

key in DE is then subtracted from HL. If the result is zero, the current address in

lY is returned in HL. If the result is nonzero, no match occurred, and the code at

SO1020 increments lY by two to point to the next entry, and then decrements

the count of entries in BC. A test is then made of BC; if it is zero, all entries have

been tested and a "not found" return is made. If there are additional entries to

be tested, a loop back to SOIOIO is done.

Sample Calling Sequence

NAME OF SUBROUTINE? SOIARR
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 2 45000 ADDRESS OF ARRAY
+ 22 5 5 ENTRIES (10 BYTES)
+ 42 i:234 SEARCH KEY
+ 6 2
+ B
MEMORY BLOCK iL LOCATION? 45000
MEMORY BLOCK]L VALUES?
+ 2 2;345
+ 22 3456
+ 42 5678 - 5 ENTRY ARRAY (TABLE)
+ 6 2 6789
+ 82 i:234
+ 10 (3

MEMORY BLOCK ;":: LOCATION?
MOVE SUBROUT I

r

^E TO? 38000
SUBROUTIN{~ EXECUTED AT 38000
INPUT: OUTPUT
HL= 40000 HL= 40000
PARAM+ 200 PARAM+ 200~
PARAM+ 1 175 PARAM+ 1 175
PARAM+ 2 5 PARAM+ 2 5 -UNCHANGEDPARAM+ 3 PARAM+ 3
PARAM+ 4 210 PARAM+ 4 210
PARAM+ 5 4 PARAM+ 5 4 _

PARAM+ 6 PARAM+ 6 208"
PARAM+ 7 PARAM+ 7 175

- FOUND AT 45

MEMB1+ 41 MEMB1+ 41
-

MEMB1+ 1 9 MEMB1+ 1 9
MEMB1+ 2 128 MEMBi+ 2 1 28
MEMB 1

+

3 13 MEMB1+ 3 13
MEMB1+ 4 46 MEMB1+ 4 46
MEMBi+ 5 22 MEMB1+ 5 22 -UNCHANGED
MEMB1+ 6 133 MEMB1+ 6 133
MEMB1+ 7 26 MEMB1+ 7 26
MEMB1+ 8 210 MEMB1+ 8 210
MEMB 1

+

9 4 MEMB 1

+

9 4

NAME OF SUBROUTINE?

Notes

1. "Array" in this case corresponds to a table of two-byte entries.

186

Program Listing

7F00

7F00
7F01
7F02
7F03
7F04
7F06
7F0S
7F0B
7F0C
7F0E
7F11
7F14
7F17
7F1A
7F1D
7F20
7F21
7F23
7F26
7F29
7F2A
7F2C
7F2E
7F30
7F3I
7F33
7F35
7F37
7F38
7F39
7F3A
7F3C
7F3F
7F42
7F45
7F47
7F49
7F4A
7F4B
7F4C
7F4D
0000
00000

F5
C5
D5
E5
DDE5
FDE5
CD7F0A
E5
DDEl
DD4E02
DD4603
DD6E00
DD6601
DD5E04
DD5605
E5
FDEl
FD6E00
FD6601
B7
ED52
2005
FDE5
El
180C
FD23
FD23
0B
79
80
20E7
21FFFF
DD7506
DD7407
FDEl
DDE!
El
Dl
CI

Fl
C9

TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640

ERRORS

ORG 7F00H 5 0522
»»##*****«*******#^t*#^^**#*^^^(.^(.^t.^t^^^t.^t.^{.^^^e^^^t.^^^t.#^^^(.^^^t****#^^»

* SEARCH ONE-D INTEGER ARRAY. SEARCHES INTEGER ARRAY *
FOR SPECIFIED SEARCH KEY. *

INPUT: HL=> PARAMETER BLOCK *
PARAM+0»+l=ADDRESS OF ARRAY *
PARAM+2,+3=SIZE OF ARRAY *
PARAM+4» +5= 16-BIT SEARCH KEY *
PARAM+6» +7=RESERVED FOR RESULT OF SEARCH *

output: PARAM+6, +7 HOLDS ADDRESS IF KEY FOUND OR *
-1 OTHERWISE *

****#**#****#***#*##*»^fr*^^^^^^^^^(.^t^t.^(.#**^^^(,^^^^^^^(.^^^^^^^^^^^(.^f^^^^^^^(.^t^(.

SOIARR

SOI010

SO I020

SO I030

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

PUSH
POP
LD
LD
LD
LD

LD
PUSH
POP
LD
LD
OR
SBC
JR
PUSH
POP
JR
INC
INC
DEC
LD
OR
JR
LD
LD
LD
POP
POP
POP
POP
POP
POP
RET
END

AF
BC
DE
HL
IX
lY
0A7FH
HL
IX
C» (IX+2)
B, (IX+3)
Lj (IX+0)
H. (IX+1)
E. <IX+4)
D» (IX+5)
HL
lY
L» <IY+0)
Hj (IY+1

)

A
HL.DE
N2»SOI020
lY
HL
SO I 030
lY
lY
BC
A»C
6
N2,SOI010
HL»-1
(IX+6)»L
(IX-t-7)»H

lY
IX
HL
DE
BC
AF

;SAVE REGISTERS

;»**GET PB LOC'N»»*
; TRANSFER TO IX

?PUT SIZE IN BC

;PUT ADDRESS IN HL

SPUT KEY IN DE

;ARRAY ADDRESS TO lY

;GET NEXT ARRAY ENTRY

; CLEAR CARRY
;TEST for EQUALITY
JGO IF NOT FOUND
! TRANSFER lY TO HL

!g0 to return
; increment array loc'n

; decrement count
;test count

JLOOP IF count not
;'NOT FOUND' FLAG
; STORE LOC'N OR NOT FOUND

? RESTORE REGISTERS

5 RETURN TO CALLING PROG

SOIARR DECIMAL VALUES

245» 197, 213, 229, 221, 229, 253, 229, 205, 127,
10, :=::29, 221, 225, 221, 78, 2, 221, 70, 3,

187

221? 110? 0»
86 » 5i 229)
1 » 183? 237

I

12» 253 » 35

1

33 » S!55» 255

»

225, 221, 225-

221, 102, 1, 221, 94, A, 221,
i:53, 225, 253, 110, 0, 253, 102
82, 32, 5, 253, 229, 225, 24,
253, 35, 11, 121, 176, 32, 231
221, 117, 6, 221, 116, 1'

225, 209, 193, 241, 201
253^

CHKSUM= 17

SPCAST: SERIAL PRINTER FROM CASSETTE

System Configuration

Model I, Model III.

Description

SPCAST uses the cassette output port to implement output to a serial printer.

Additional external "hardware" is required to convert the cassette voltage lev-

els to levels compatible with serial printers. A character at a time is output with

a baud rate of 110, 300, 600, or 1200.

The format for output is one start bit, seven or eight data bits, and one stop bit

with no parity. If the character to be output is a seven-bit ASCII character, the

most significant bit should be set to zero, and the result will be seven data bits

with two stop bits, if the character to be output is an eight-bit character, the

result will be eight data bits with one stop bit.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the address of SPCAST, in standard

Z-80 address format. The next byte contains a baud rate code of 0, 1, 2, or 3,

corresponding to 1 10, 300, 600, or 1200 baud. The next byte contains the char-

acter to be output.

On output, the character has been transmitted. The parameter block remains

unchanged.

INPUT

H

POINTER TO PARAM+0

PARAM+0

+ 1

ADDRESS
OF

SPCAST

+2 0=110, 1=300,
2=600,3=1200

+3 CHARACTER p

OUTPUT

1
*

1

UNCHANGED
1

1

M+0

+ 1

- UNCHANGED - -

+2 UNCHANGED

+3 UNCHANGED

188

Algorithm

SPCAST must take the given character and "strip off" the eight bits, translating

each into a serial bit, which is sent out to the serial printer through the cassette

port. The timing for each "bit time" is determined by the specified baud rate.

SPCAST first outputs a cassette off code by outputting a 2 to port OFFH. Next,

the baud rate code is obtained from the second byte of the parameter block.

The code is multiplied by two and added to the start address of SPCAST and the

table displacement. The result now points to a timing value in BAUDTB which

represents the "bit time" for the given baud rate. This two-byte value is picked

up and put into DE.

The cassette port is now turned on by outputting a 1 to OFFH. This is the "start"

bit. The count in DE is put into HL and the delay loop at SPC010 delays for one

bit time.

The code at SPC01 5 is the main output loop of SPCAST. It loops eight times. For

each loop, a bit from the character in C is shifted out into the carry. If the bit is

a 0, a 2 level is output to port OFFH; if the bit is a 1 , a 1 level is output to port

OFFH. The second-level loop at SPC030 delays one bit time by decrementing

the delay count in HL. If eight iterations have not been performed, another bit is

transmitted.

The loop at SPC040 outputs a "stop" bit and delays for one bit time to terminate

the transmission of the character.

Sample Calling Sequence

NAME OF SUBROUTINE? SPCAST
HL VALUE? 39000
PARAMETER BLOCK LOCATION? 39000
PARAMETER BLOCK VALUES?+02 37000 ADDRESS OF SPCAST
+ 211 BAUD RATE = 300

+ 3 1 65 "A" TO BE OUTPUT
+ 400
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT: OUTPUT:
HL= 39000 HL= 39000
PARAM+ 136 PARAM+ 136
PARAM+ 1 1A4
PARAM+ 2 1

PARAM+ 1 144
PARAM+ 2 1

-UNCHANGED

PARAM+ 3 65 PARAM+ 3 65

NAME OF SUBROUTINE?

Notes

1. External electronics must convert the cassette signal levels to RS-232-C

compatible levels. The output signal level for a logic is approximately volts.

189

The output signal level for a logic 1 is approximately 0.85 volts. Corresponding
RS-232-C signal levels are +3 volts or more for a logic and -3 volts or less

for a logic 1

.

2. Multiply the BAUDTB values by 1.143 for a Model III.

Program Listing

7F00

7F0B
7F01
7F02
7F03
7F04
7F06
7F09
7F0A
7F0C
7F0E
7F10
7Fi3
7F15
7F16
7F19
7F1C
7F1D
7F20
7F21
7F22
7F23
7F24
7F25
7F26
7F28
7F2A
7F2B
7F2C
7F2D
7F2F
7F32
7F34
7F35
7F36
7F38
7F3A
7F3C
7F3E
7F40
7F41
7F42
7F43
7F45
7F47
7F48
7F49

F5
C5
D5
E5
DDE5
CD7F0A
E5
DDEl
3E01
D3FF
DD6E02
2600

DD5E00
DD5601
19
115900
19
5E

56
D5

3E02
D3FF
2B
7C
B5
20FB
DD4E03
0608
D5
El
3E02
CB39
3002
3E01
D3FF
2B
7C
B5
20FB
10ED
D5
El
3E01

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670

ORG 7F00H ;0522

* SERIAL PRINTER FROM CASSETTE. OUTPUTS A CHARACTER TO *
A SERIAL PRINTER USING THE CPU CASSETTE PORT *

INPUT :HL=> PARAMETER BLOCK
PARAM+0,+l=ADDRESS OF SPCAST *
PARAM+2=BAUD RATE CODE 0=n0> 1=300, «

2=6001 3=1200 *
PARAM+3=CHARACTER TO BE OUTPUT *

OUTPUT: CHARACTER OUTPUT TO PRINTER *

SPCAST

SPC010

SPC015

SPC020
BPC030

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
OUT
LD
LD
ADD
LD
LD
ADD
LD
ADD
LD
INC
LD
PUSH
POP
LD
OUT
DEC
LD
OR
JR
LD
LD
PUSH
pop
LD
SRL
JR

OUT
DEC
LD
OR
JR
DJNZ
PUSH
POP
LD

AF
ec
DE
HL
IX
0A7FH
HL
IX
A, 1

(0FFH),A
L» < IX+2)
H,0
HLiHL
E, (IX+0)
D, (IX+i)
HL,DE
DE ? BAUDTB
HL , DE
E, (HL)
HL
D» (HL)
DE
HL
A, 2
(0FFH),A
HL
A»H
L
NZ,SPC010
C, (IX+3)
B,8
DE
HL
A,

2

C
NC,SPC020
A> 1

(0FFH) 5 A
HL
A»H
L..

NZ,SPC030
SPC015
DE
HL
A, 1

:SAVE REGISTERS

;***GET PB LOC'N»**
? TRANSFER TO IX

; CASSETTE ON CODE
; SPACING
"GET RATE CODE
;NOW IN HL
; C0DE*2
; ADDRESS OF THIS CODE

;START+CODE
; TABLE DISPLACEMENT
"POINT TO TIMING COUNT
GET MS BYTE
; POINT TO NEXT BYTE
;GET LS BYTE
; COUNT TO HL

? CASSETTE OFF CODE
iTURN OFF CASSETTE FOR SP

5 DECREMENT COUNT 6
7 TEST COUNT 4
;TEST FOR ZERO 4
;60 IF NOT BIT TIME 7/i:

JGET CHARACTER
ITERATION COUNT

; TRANSFER COUNT TO HL

; CASSETTE OFF CODE
; SHI FT OUT BIT
;G0 IF ZERO
; CASSETTE ON CODE
; OUTPUT TO CASSETTE

; DECREMENT COUNT
;TEST COUNT

GO IF NOT DONE
;G0 IF MORE BITS

; TRANSFER COUNT TO HL

"CASSETTE ON CODE

190

7F4B D3FF 00680 OUT (0FFH)fA
7F4D 2B 00690 SPC040 DEC HL
7F4E 7C 00700 LD AjH
7F4F B5 00710 OR L
7F50 20FB 00720 JR NZ, SPC040
7F52 DDEl 00730 POP rx
7F5A El 00740 POP HL
7F55 Dl 00750 POP DE
7F56 CI 00760 POP BC
7F57 Fl 00770 POP AF
7F58 C9 00780 RET
0059 00790 BAUDTB EQU *-SPCAST
7F59 6C02 00800 DEFW 620
7FSB E300 00810 DEFW 227
7F5D 7200 00820 DEFW 114
7F5F 3900 00830 DEFW 57
0000 00840 END
00000 TOTAL ERRORS

1 output to cassette
decrement count
!test count

;go if cnt not zero
; RESTORE REGISTERS

; RETURN
5 BAUD COUNT TABLE
m0
;300
;600
;1200

SPCAST DECIMAL VALUES

245, 197, 213, 229, 221, 229, 205, 127, 10, 229,
221, 225, 62, 1, 211, 255, 221, 110, 2, 38,
0, 41, 221, 94, 0, 221, 86, 1, 25, 17,
89, 0, 25, 94, 35, 86, 213, 225, 62, 2,
211, 255, 43, 124, 181, 32, 251, 221, 78, 3,
6, 8, 213, 225, 62, 2, 203, 57, 48, 2,
62, 1, 211, 255, 43, 124, 181, 32, 251, 16,
237, 213, 225, 62, 1, 211, 255, 43, 124, 181,
32, 251, 221, 225, 225, 209, 193, 241,
2, k:27, 0, 114, 0, 57,

•01, 108,

SQROOT: SQUARE ROOT

CHKSUM=^^ 15

System Configuration

Model I, Model III, Model II Stand Alone.

Description

SQROOT calculates the integer square root of a given 16-bit number. For ex-

ample, if the number Is 30,000, the subroutine will return 54 as the square root

in place of 54.77.

Input/Output Parameters

On input, HL contains the "square," the number whose square root is to be

found.

On output, HL contains the integer portion of the square root.

INPUT

H L
+

NUMBER, 0-65535

OUTPUT

H L
-I-

INTEGER SQUARE ROOT
1

191

Algorithm

The SQROOT subroutine performs the square root operation by using the
widely-known fact that the square root of any number is equal to the number of

odd integers contained in the square. The square of 17, for example, contains

1 + 3+5+7=16. The total number of odd integers is 4, and this is the inte-

ger square root contained in 17.

The B register is initialized with a count of - 1 ; B will count the number of odd
integers in the square. DE is initialized with -

1 ; DE will hold the negated value
of the next odd integer—-!, -3, -5, and so forth.

The loop at SQROIO successively subtracts an odd integer from the original

number by the "ADD HL,DE." The count of odd numbers in B is incremented
with every subtract. The loop is terminated when the "residue" goes negative
and the carry flag is reset after the add. At that point, the count of odd numbers
is returned in HL.

Sample Calling Sequence

NAME OF SUBROUTINE? SQROOT
HL VALUE? 65535 SQUARE ROOT IS 255.99 . .

.

PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 55000
SUBROUTINE EXECUTED AT 55000
INPUT: OUTPUT:
HL= 65535 HL= 255 INTEGER VALUE OF SQUARE ROOT

NAME OF SUBROUTINE?

Notes

1

.

The square may be "scaled-up" to achieve more precision. For example, if

the square root of a number less than 100 is to be found, multiply the number
by 256. The square root will then represent 16 times the actual square root.

For example, 99 times 256 = 25344. The square root returned by the subrou-

tine wil
I
be 1 59. This represents 1 59/1 6 or 9 and 1 5/1 6 or 9.9375, much closer to

the actual square root of 9.949.

2. The square input in HL is an "unsigned" number. The maximum square

can be 65,535.

Program Listing

7F00

7F00 C5
7F01 D5
7F02 CD7F0A

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200

ORG 7F00H 5 0522

;* SQUARE ROOT. CALCULATES INTEGER PORTION OF SQUARE *
5* ROOT OF A GIVEN NUMBER. ^^

;* INPUT: HL=NUMBER #
;* OUTPUT :HL= INTEGER PORTION OF SQUARE RT OF NUMBER *

SQROOT PUSH
PUSH
CALL

BC

0A7FH

!SAVE REGISTERS

;***GET NUMBER***

192

7F05 06FF 00210 LD Bi0FFH
7F07 IIFFFF 00220 LD DE5~1
7F0A 04 00230 SQR010 INC B
7F0B 19 00240 ADD HL»DE
7F0C IB 00250 DEC DE
7F0D IB 00260 DEC DE
7F0E 38FA 00270 JR C»SQR010
7F10 68 00280 LD L.B
7Fil 2600 00290 LD Hi0
7i 13 Dl 00300 POP DE
7F14 CI 00310 POP BC
7ei5 C39A0A 00320 JP 0A9AH
7F18 C9 00330 RET
0t;)00 00340 END
00000 TOTAL ERRORS

; INITIALIZE RESULT
; FIRST ODD SUBTRAHEND

;INCRENENT RESULT COUNT
! SUBTRACT ODD NUMBER
;FIND next ODD NUMBER

? CONTINUE IF NOT MINUS
;GET RESULT
SNOW IN HL
; RESTORE REGISTERS

;***RETURN ARGUMENT***
; NON-BASIC RETURN

SQROOT DECIMAL VALUES

197, 213, 205

1

4 J 25 J 27) 27

1

193, 195, 154:

127, 10, 6, 255, 17, 255, 255-
56, 250, 104, 38, 0, 209,
10, 201

CHKSUM= 217

SROARR: SORT ONE-DIMENSIONAL INTEGER ARRAY

System Configuration

Model I, Model III, Model II Stand Alone.

Description

SROARR sorts a BASIC or other one-dimensional integer array. The array may
be any size within memory limits. The array is assumed to be made up of 16-bit

entries. SROARR arranges the entries in the array in ascending order based on

their binary weight on a sixteen bit "unsigned" basis. In this scheme an entry of

8000H will be after an entry of 7FFFH. A "bubble sort" is used which requires

no additional memory buffer other than the array itself.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the 16-bit address of the array, ar-

ranged in standard Z-80 address format, least significant byte followed by most

significant byte. The next two bytes of the array contain the number of entries

in the array. (Note that this value is one-half the number of bytes in the array!)

On output, the array has been sorted in memory. The parameter block remains

unchanged.

INPUT OUTPUT

H

POINTER TO PARAM+0 ^ UNCHANGED

193

PARAM+0

+ 1

POINTER TO
ARRAY

(MEM 1+0)

+2

+3

SIZE OF
ARRAY

PARAM+0

+ 1

+2

+3P

-- UNCHANGED --

-- UNCHANGED --

MEM 1+0

+ 1

ENTRY
MEM 1+0

+ 1

-

+2
ENTRY 1

+2
\

SORTED
ARRAY+3 / ^^

+4

+5
ENTRY 2

+4

+5

+6 +6

Algorithm

The SROARR sorts the entries by a bubble sort. This sort scans the array from
bottom to top, moving one entry at a time. Each entry is compared to the next
entry. If the top entry is a higher value than the next entry, the two entries are
swapped, otherwise the entries are left unchanged. The next entry is then com-
pared in the same fashion until all entries in the array have been examined. At
the end of the scan, a "swap" flag is examined. If a swap occurred, another
pass is made through the array. If no swap occurred, the array is sorted. A
number of passes through the array may have to be made to sort the entries.

There are two loops in SROARR. The innermost loop controls the scan from top
to bottom for every pass and starts at SROOIO. The outermost loop handles the
next pass after a complete scan through the array and starts at SRO005.

The innermost loop at SROOIO loads HL with the entry pointed to by lY and
loads DE with the next entry. A subtract is done to compare the two. If the HL
entry is "heavier" than the DE entry, a swap is made by storing HL and DE and
a "swap" flag in IX is set. If the HL entry is the same or "lighter," no swap
occurs. The lY pointer is then incremented to point to the next entry, the count
of entries in BC is decremented, and a test is made of BC. If there are more
entries, a jump is made to SROOIO for the next entry comparison.

If BC is zero, all entries have been compared for this pass. IX contains the
"swap" flag, and it is tested for nonzero, indicating a swap. If it is nonzero, a

jump is made back to SRO005 to start over at the first entry and to reset the
"swap" flag. The sort is over when a complete pass is made without the
"swap" flag being set.

Sample Calling Sequence

NAME OF SUBROUTINE? SROARR
HL VALUE? 4000(3
PARAMETER BLOCK LOCATION? 40000

194

PARAMETER BLOCK VALUES?
+ 2
+ 2 2
+ 40
MEMORY
MEMORY

45000
5

LOCATION OF ARRAY
5 ENTRIES

- INITIALIZE VALUES FOR EXAMPLE

BLOCK 1 LOCATION? 45000
BLOCK 1 VALUES?

+ 2 7890
+ 2 2 6789
+ 4 2 5678
•+• 6 2 4567
+ 8 2 3456
+ 10
MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777
INPUTS
HL=^ 40000
PARAM+
PARAM+
PARAM+
PARAM+
ME:IMB1 +
MEMB 1

+

MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+

200
175
5

210
30
133
26
46

215
17
128
13

OUTPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
MEMB 1

+

MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB1+
MEMB 1

+

MEMB1+
MEMB1+
MEMB1+

200'

175
5

.

128"

13

17
46
22
133
26
210

-UNCHANGED

- RESORTED

NAME OF SUBROUTINE?

Notes

1. The bubble sort is not particularly speedy, but requires minimal memory.

2. The number of entries must be two or greater.

Program Listing

7F00

7f 00
7F01
7F02
7F03
7F04
7F06
7F08
7F0B
7F0C
7F0E
7F11
7F14

F5
C5
D5

DDE5
FDE5
CD7F0A
E5
DDEl
DD4E02
DD4603
08

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310

ORG
; -If-***********

;* SORT ONE~D
;* ASCENDING

INPUT:

7F00H ;05;

INTEGER ARRAY. SORTS INTEGER ARRAY INTO #
ORDER. #
HL=>PARAMETER BLOCK «
PARAM+0)+l=ADDRESS OF ARRAY *
PARAM+2!+3=SIZE OF ARRAY *

OUTPUT: ARRAY SORTED IN ASCENDING ORDER *

;

7*
; *

SROARR

SRO005

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD

DEC

AF
BC
DE
HL
IX
lY
0A7FH
HL
IX
C) (IX+2)
B, (IX+3)
BC

;SAVE REGISTERS

;*#«GET PB LOC'N***
; TRANSFER TO IX

;PUT SIZE IN BC

;SIZE - 1 FOR SORT

195

7F15 DD6E00 00320 LD L, (IX+0)
7F1S DD6601 00330 LD H, (IX+1)
7F1B E5 00340 PUSH HL
7F1C FDEl 00350 POP lY
7F1E DDE5 00360 PUSH IX
7F20 DD2 10000 00370 LD IXf0
7F24 FD6E00 00380 SRO010 LD L, (IY+0)
7F27 FD6601 00390 LD H, <IY+1)
7F2A FD5E02 00400 LD E , (I Y+2

)

7F2D FD5603 00410 LD D) <IY+3)
7F30 B7 00420 OR A
7F31 ED52 00430 SBC HL.DE
7F33 3811 00440 JR C,SRO020
7F35 280F 00450 JR Z,SRO020
7F37 19 00460 ADD HL,DE
7F3S DD23 00470 INC IX
7F3A FD7300 00480 LD (IY+0>,E
7F3D FD7201 00490 LD CIY+1)»D
7F40 FD7502 00500 LD <IY+2),L
7F43 FD7403 00510 LD (IY+3),H
7F46 FD23 00520 SRO020 INC lY
7F48 FD23 00530 INC lY
7F4A 0B 00540 DEC BC
7F4B 78 00550 LD A»B
7F4C Bl 00560 OR C
7F4D 20D5 00570 JR NZ,SRO010
7F4F DDE5 00580 PUSH IX
7F51 El 00590 POP HL
7F52 ED42 00600 SBC HL.BC
7F54 DDEl 00610 POP IX
7F56 20B6 00620 JR NZ»SRO005
7F58 FDEl 00630 POP lY
7F5A DDE! 00640 POP IX
7F5C El 00650 POP HL
7F5D Dl 00660 POP DE
7F5E CI 00670 POP BC
7F5F Fl 00680 POP AF
7F60 C9 00690 RET
0000 00700 END

;PUT ADDRESS IN HL

;COPY INTO lY

;SAVE IX
;SET 'NO CHANGE' FLAG

;PUT CUR ENTRY INTO HL

!PUT NEXT ENTRY IN DE

; CLEAR CARRY
; COMPARE PAIR
;G0 IF CUR<NEXT
!G0 IF EQUAL
; RESTORE VALUE
;SET SWAP FLAG
;SWAP PAIR

? POINT TO NEXT ENTRY

; DECREMENT COUNT
!TEST COUNT

;G0 if NOT END
;flag to HL

;test flag
; restore ix
;G0 if SWAP OCCURED

! RESTORE REGISTERS

00000 TOTAL ERRORS

SROARR DECIMAL VALUES

5, 127^245, _ 197, 213, 229, 221, 229, 253, 229,
10, -Z-Z^, 221, 225, 221, 78, 2, 221, 70, 3,
11, 221, 110, 0, 221, 102, 1, 229, 253, 225,
221, 229, 221, 33, 0, 0, 253, 110, 0, 253,
102, 1, 253, 94, 2, 253, 86, 3, 183, 237,
82, 56, 17, 40, 15, 25, 221, 35, 253, 115,
0, 253, 114, 1, 253, 117, 2, 253, 116, 3,
253, 35, 253, 35, 11, 120, 177, 32, 213, 221,
2;'9, 225, 237, 66, 221, 225, 32, 182, 253, 22'=j

,

221, 225, 225, 209, 193, 241, 201

CHKSUM= 242

SSNCHR: SEARCH STRING FOR N CHARACTERS

System Configuration

Model I, Model III, Model II Stand Alone.

196

Description

SSNCHR searches a string of any length for a "substring" of any length. A
"found" or "not found" address of the substring is returned. The strings may
contain any combinations of data—ASCil, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the starting address of the string to be

searched in standard Z-80 address format, least significant byte followed by

most significant byte. The next two bytes of the parameter block contain the

number of bytes in the string to be searched. The next two bytes of the parame-

ter block contain the starting address of the "key" string, the string for which

the search is to be made. The next two bytes in the parameter block contain the

number of bytes in the key string. The next two bytes are reserved for the result.

On output, PARAM-l-7,-1-8 contain the result of the search. All other bytes in

the parameter block are unchanged. The result is a - 1 if the search key has not

been found in the string to be searched. If the search key has been found, the

result is the actual address of the first occurrence of the search key in the string

to be searched.

INPUT

H

POINTER TO PARAM+^ ^

OUTPUT

UNCHANGED
1

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

+8

START ADDRESS
-OF STRING TO BE-|-
SRCHED(MEM1+0)

BYTES IN

STRING TO
BE SRCHED

STARTING
ADDRESS OF —
KEY STRING

BYTES IN KEY

RESERVED
FOR RESULT

^

PARAM-Hd

+ 1

+2

+3

+4

+5

+6

+7

+8

-- UNCHANGED --

-- UNCHANGED -

-- UNCHANGED --

UNCHANGED

ADDRESS IF

FOUND OR -1

MEM1+0

+ 1

+2

+3

+4

+5

+6

STRING
TO BE

SEARCHED

MEM 1+0

+ 1

»
+2

+3

+4

+5

+6

- - UNCHANGED - -

197

MEM2-I-0

+ 1

+2

+3

+4

+5

+6

KEY
STRING

MEM2+0
- -

+1
- -

+2
V - UNCHANGED -
^> +3
/

+4

+5
- -

+4 J

Algorithm

The SSNCHR subroutine performs the search in two steps. First, a "CPIR" block

search is made for the first character. If the first character is not found, the

search has been unsuccessful. If the first character is found, a further compari-

son is done for the other characters in the search string.

The registers are first set up for the CPIR. The string start address of the string to

be searched is put into the HL register pair. The number of bytes in the string to

be searched is put into BC. The first character of the search string is put into the

A register. (Also at this point, the search string start is put into DE.) The CPIR
search is done at SSN060.

If the Z flag is not set after the CPIR, the first character of the string has not been
found and the code at SSN080 puts a - 1 into the result. If the Z flag is set, the

first character of the string has been found.

The code at SSN070 compares the remaining bytes to see if the key string

matches. In this loop, HL points to the locations of the string to be searched,

while lY points to the locations in the key string. B contains the count of the

number of characters in the key string. If any characters do not compare, a

return back to the CPIR is done with HL pointing to the next byte after the byte

that was found. If all characters compare, the address of the first character in

the string to be searched is put into the result.

Sample Calling Sequence

NAME OF SUBROUTINE? SSNCHR
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 02

MEMORY
MEMORY

45000
6
46000
3

BLOCK
BLOCK

START OF STRING TO BE SEARCHED
6 BYTES IN STRING TO BE SEARCHED
START OF KEY STRING
3 BYTES IN KEY STRING

LOCATION?
VALUES?

45000

1

MEMORY

3
4

5

BLOCK

STRING TO BE SEARCHED

2 LOCATION? 46000

198

MEMORY BLOCK 2 VALUES?
+ 1 3^
4 1 1 4 -KEY STRING
+ 2 1 5_
+ 30
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUT: OUTPUT
HL= 40000 HL= 40000
PARAM+ 200 PARAM+ 200
PARAM4- 1 175 PARAM+ 1 175
PARAM+ "'

6 PARAM+ 2 6
PARAM+ 3 PARAM4- 3 -UNCHANGED
PARAM+ 4 176 PARAM4- 4 176
PARAM+ 5 179 PARAM4- 5 179
PARAM4- 6 3 PARAM+ 6 3 _

PARAM+
PARAM+

7
8

PARAM4-
PARAM+

7
8

203
"

175_
-FOUND AT 45

MEMB1+ MEMB1+
MEMB1+ 1 1 MEMBi+ 1 1

MEMB14- 2 2 MEMB1+- 2
MEMB1+ 3 3 MEMB1+ 3 3
MEMB1+- 4 4 MEMB1+ 4 4 -UNCHANGED
MEMB1+ 5 5 MEMB1+ 5 5

MEMB2+ 3 MEMB2+ 3
MEMB2+ 1 4 MEMB2+ 1 4
MEMB2+ 2 5 MEMB2+ 2 5

NAME OF SUBROUTINE?

Notes

1. The key string may be one byte.

2. The key string may not contain a larger number of bytes than the string to

be searched.

Program Listing

7F00

7F00 F5
7F01 C5
7F02 D5
7F03 E5
7F04 DDE5
7F06 FDE5
7F08 CD7F0A
7F0B E5
7F0C DDEl
7F0E DD6E00

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340

ORG 7F00H
##*************^(^(^(.^^^^^^.«^^^(.#^t.^(**^(.^«.^(.*^(.^^#****^^^^.*^^.

* SEARCH STRING FOR N CHARACTERS. SEARCHES STRING FOR *
* A SUBSTRING.
* INPUT: HL=> PARAMETER BLOCK *
* PARA,+0,+l=STARTING ADDRESS OF STRING TO *
* BE SEARCHED *
* PARAM+2,+3=# BYTES IN STRING TO BE SRCHED *
* PARAM+4.+5=STARTING ADDRESS OF KEY STRING *
* PARAM+-6=# OF BYTES IN KEY *
* PARAM+7?+8=RESERVED FOR RESULT *
* OUTPUT :PARAM+7.+8=ADDRESS OF SUBSTRING IF FOUND *
* OR -1 IF NOT FOUND *
**************)^)^*^(^(.*^^**^(^^^^»#*^^^^^t^^^(.^t^^^^.^(.^(.^^*^(.^t*

SSNCHR PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

PUSH
POP
LD

AF
BC
DE
HL
IX
lY
0A7FH
HL
IX
L, (IX+0)

;SAVE REGISTERS

!***GET PB LOC'N***
J TRANSFER TO IX

;PUT STRING START IN HL

199

7F11 DD6601 00350 LD H. (IX+1)
7F14 DD4E02 00360 LD C» (IX+2)
7F17 DD4603 00370 LD B, (IX+3)
7F1A DD5E04 00380 LD E» <IX+4)
7F1D DD5605 00390 LD Di <IX+5)
7F20 D5 00400 PUSH DE
7F21 FDEl 00410 POP lY
7F23 FD7E00 00420 BSN060 LD A, (IY+0)
7F26 EDBl 00430 CPIR
7F28 2021 00440 JR NZ)SSN080
7F2A DD4606 00450 LD B, <IX+6)
7F2D 05 00460 DEC B
7F2E 2813 00470 JR Z , SSN072
7F30 E5 00480 PUSH HL
7F31 FDE5 00490 PUSH lY
7F33 FD23 00500 INC lY
7F35 7E 00510 SSN070 LD A, (HL)
7F36 FDBE00 00520 CP (lY)
7F39 200B 00530 JR NZ.SSN075
7F3B 23 00540 INC HL
7F3C FD23 00550 INC lY
7F3E 10F5 00560 DJNZ SSN070
7F40 FDEl 00570 POP lY
7F42 El 00580 POP HL
7F43 2B 00590 SSN072 DEC HL
7F44 1808 00600 JR SSN090
7F46 FDEl 00610 SSN075 POP lY
7F4S El 00620 POP HL
7F49 18D8 00630 JR SSN060
7F4B 21FFFF 00640 SSN080 LD HL»-1
7F4E DD7507 00650 SSN090 LD <IX+7),L
7F51 DD7408 00660 LD (IX+8),H
7F54 FDEl 00670 POP lY
7F56 DDEl 00680 POP IX
7F5B El 00690 POP HL
7F59 Di 00700 POP DE
7F5A CI 00710 POP BC
7F5B Fl 00720 POP AF
7F5C C9 00730 RET
0000 00740 END
00000 TOTAL ERRORS

;PUT # OF BYTES IN BC

;PUT SS IN DE

; TRANSFER TO lY

;eET FIRST CHAR OF SS
; SEARCH FOR 1ST CHAR

;G0 IF FIRST CHAR NOT FND
;GET # OF BYTES IN SS
; DECREMENT FOR FIRST
;ONE BYTE KEY CASE
;SAVE LOC'N OF FIRST
;SAVE 1ST CHAR OF SS
; POINT TO SECOND OF SS

;GET NEXT BYTE
! COMPARE
;go if no match
;bump string hntr
"bump ss pntr
?G0 if more

;GET 1ST CHAR POS OF SS
; RESTORE LOC'N OF FIRST+1
; ADJUST FOR CPIR
;G0 for CLEANUP
! RESET
J RESTORE CUR LOC'N
! CONTINUE CPIR
;NOT FOUND FLAG
;STORE LOC'N OR 'NOT FND'

; RESTORE REGISTERS

; RETURN TO CALLING PROG

SSNCHR decimal VALUES

245» 197? 213» 229, 221 » 229, 253, 229, 205
10f 229, 221, 225, 221, 110, 0, 221, 102, 1,
221, 78, 2, 221, 70, 3, 221, 94, 4, 221,
86, 5, 213, 253, 225, 253, 126, 0, 237, 177,
32, 33, 221, 70, 6, 5, 40, 19, 229, 253,
229, 253, 35, 126, 253, 190, 0, 32, 11, 35,
253, 35, 16, 245, 253, 225, 225, 43, 24, 8,
253, 225, 225, 24, 216, 33, 255, 255, 221, 117,
7, 221, 116, 8, 253, 225, 221, 225, 225, 209,
193, 241, 201

127

1

CHKSUM= 198

SSOCHR: SEARCH STRING FOR ONE CHARACTER

System Configuration

Model I, Model III, Model II Stand Alone.

200

Description

SSOCHR searches a string of any length for a given byte. A "found" or "not

found" address of the character is returned. The string and byte may contain

any combinations of data—ASCII, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the starting address of the string to be

searched in standard Z-80 address format, least significant byte followed by

most significant byte. The next two bytes of the parameter block contain the

number of bytes in the string to be searched. The next bytes of the parameter

block contain the "key" byte, the byte for which the search is to be made. The
next two bytes are reserved for the result.

On output, PARAM+5, + 6 contain the result of the search. All other bytes in

the parameter block are unchanged. The result is a -1 if the search byte has

not been found in the string to be searched. If the search byte has been found,

the result is the actual address of the first occurrence of the search byte in the

string to be searched.

INPUT

H L

POINTER TO PARAM+0

PARAM+0

+ 1

+2

+3

+4

+5

+6

ADDRESS
OF MEM 1+0

-

- # BYTES
IN STRING

-

SRCH CHAR

-
RESERVED

FOR
RESULT

-

OUTPUT

H L
I

\
UNCHANGED

1

y
1

PARAM+0

+ 1

- UNCHANGED - -

=^
+2

+3

+4

+5

+6

- UNCHANGED - -

UNCHANGED

ADDRESS OF
- FOUND CHAR -

OR-1
-

MEM1+0

+ 1

+2

+3

+4

+5

+6

MEM 1+0

STRING
OF

CHARACTERS
-

+ 1

+2
- UNCHANGED -

_
> +3

/
+4

- -
+5

+6
-

Algorithm

The SSOCHR subroutine performs the search by a "CPIR" block search for the

first character.

201

The registers are first set up for the CPIR. The string start address of the string to

be searched is put into the HL register pair. The number of bytes in the string to

be searched are put into BC. The search byte is put into the A register. The CPiR

search is then done.

If the Z flag is not set after the CPIR, the key byte has not been found and the

code at SSOOIO puts a - 1 into the result. If the Z flag is set, the key byte has

been found.

Sample Calling Sequence

NAME OF SUBROUTINE? SSOCHR
HL VALUE? 50000
PARAMETER BLOCK LOCATION? 50000
PARAMETER BLOCK VALUES?

1

40000
5 ADDRESS OF STRING TO BE SEARCHED
66 5 BYTES

SEARCH CHARACTER

MEMORY BLOCK 1 LOCATION? 40000
MEMORY BLOCK 1 VALUES?

i 67
1 1 68
2 1 66 [-STRING TO BE SEARCHED
3 1 65
4 1 60
5

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 52000
SUBROUTINE EXECUTED AT 52000
INPUT:
HL= 50000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+
MEMBI+
MEMB1+
MEMB1+

64
156
5

66

67
68
66
65
60

OUTPUT:
HL= 50000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+
PARAM+
PARAM+
PARAM+
MEMB1+
MEMB1+ 1

MEMB1+ 2
MEMB1+ 3
MEMBI+ 4

64
156
5

66
66
156 _

67
68
66
65
60

-UNCHANGED

-FOUND AT 40002

UNCHANGED

NAME OF SUBROUTINE?

Program Listing

7F00 00100
00110
00120
00130
00140
00150
00160
00170
00 180
00190
00200
00210
00220

ORG 7F00H ;0522

» ONE-CHARACTER STRING SEARCH. SEARCHES STRING FOR ONE *
* GIVEN CHARACTER. *
» INPUT: HL=> PARAMETER BLOCK «
* PARAM+0»+l=ADDRESS OF STRING TO BE SRCHED ^

* PARAM+2»+3=# OF BYTES *
* PARAM+4=SEARCH CHARACTER #
* PARAM+5,+6=RESERVED FOR RESULT *
* OUTPUT :PARAM+5» +6 SET TO -1 IF NOT FOUND OR ADD- *
* RESS OF CHARACTER IF FOUND *
*****»***»***^t^(^(•^(^^*^^*^(•^^**^^^t*»*^^*^(.^(.^(.^nnt^(^f•^t•»***»***^(•^^*

202

7F00 F5 00230 SSOCHR PUSH AF
7F01 C5 00240 PUSH BC
7F02 E5 00250 PUSH HL
7F03 DDES 00260 PUSH IX
7F05 CD7F0A 00270 CALL 0A7FH
7F08 E5 00280 PUSH HL
7F09 DDEl 00290 POP IX
7F0B DD6E00 00300 LD L, <IX+0)
7F0E DD660I 00310 LD H» (IX+1)
7F11 DDAE02 00320 LD C. (IX+2)
7F14 DD4603 00330 LD B. (IX+3)
7F17 DD7E04 00340 LD A» (IX+4)
7F1A EDBl 00350 CPIR
7F1C 2003 00360 JR NZ,SSO010
7F1E 2B 00370 DEC HL
7F1F 1803 00380 JR SSO020
7F21 21FFFF 00390 SSO010 LD HL,~1
7F24 DD7505 00400 SSO020 LD (IX+5),L

wii mir'' mm t-gp
(IX+6),H
IX

7F2C El 00430 POP HL
7F2D CI 00440 POP BC
7F2E Fl 00450 POP AF
7F2F C9 00460 RET
0000 00470 END
00000 TOTAL ERRORS

5SAVE REGISTERS

;***GET PB LOC*N***
; TRANSFER TO IX

IPUT STRING ADDRESS IN HL

;PUT # BYTES IN BC

;PUT SEARCH KEY IN A
? SEARCH

;G0 if not FOUND
; FOUND 5 ADJUST POINTER
;G0 TO STORE RESULT
;FLAG for NOT FOUND
; STORE RESULT

; RESTORE REGISTERS

; RETURN TO CALLING PROG

SSOCHR DECIMAL VALUES

245, 197, 229, 221, 229, 205, 127, 10, 229, 221,
225, 221, 110, 0, 221, 102, 1, 221, 78, 2,
221, 70, 3, 221, 126, 4, 237, 177, 32, 3,
43, 24, 3, 33, 255, 255, 221, 117, 5, 221,
116, 6, 221, 225, 225, 193, 241, 201

CHKSUM= 137

SSTCHR: SEARCH STRING FOR TWO CHARACTERS

System Configuration

Model I, Model III, Model II Stand Alone.

Description

SSTCHR searches a string of any length for a "substring" of two bytes. A
"found" or "not found" address of the substring Is returned. The strings may
contain any combinations of data—ASCII, binary, or other combinations.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain the starting address of the string to be
searched in standard Z-80 address format, least significant byte followed by
most significant byte. The next two bytes of the parameter block contain the

number of bytes in the string to be searched. The next two bytes of the parameter
block contain the "key" string, the string for which the search is to be made.
The next two bytes are reserved for the result.

203

On output, PARAM+6,+ 7 contain the result of the search. All other bytes in

the parameter block are unchanged. The result is a — 1 if the search key has not

been fpund In the string to be searched. If the search key has been found, the

result is the actual address of the first occurrence of the search key in the string

to be searched.

INPUT OUTPUT

POINTER TO PARAM+0
1

PARAM+0

+ 1

ADDRESS OF
STRING TO BE
SEARCHED
(MEM 1+0}

+2

+3
#0F
BYTES

+4

+5
SEARCH

CHARACTERS

+6

+7

RESERVED
FOR RESULT "

4>

^

PARAM+0

+ 1

+2

+3

+4

+5

+6

+7

-- UNCHANGED --

-- UNCHANGED --

UNCHANGED

-- UNCHANGED --

ADDRESS OF
FOUND STRING

OR -1

MEM 1+0

+ 1

+2

+3

+4

+5

+6

STRING
TO
BE

SEARCHED »

MEM1+0

+ 1

+2

+3

+4

+5

+6

UNCHANGED

Algorithm

The SSTCHR subroutine perfornns the search in two steps. First, a "CPIR" block

search is made for the first character. If the first character is not found, the

search has been unsuccessful. If the first character is found, a further compari-

son is done for the second character in the search string.

The registers are first set up for the CPIR. The string start address of the string to

be searched is put into the HL register pair. The number of bytes in the string to

be searched is put into BC. The first character of the search string is put into the

A register. The CPIR search is then done.

If the Z flag is not set after the CPIR, the first character of the string has not been

found and the code at SST020 puts a - 1 into the result. If the Z flag is set, the

first character of the string has been found.

The code following the CPIR compares the remaining byte to see if the key

string matches. In this loop, HL points to the location of the second byte in the

string to be searched, while IX points to the parameter block location. If the

second character does not compare; a return back to the CPIR is. done with HL
pointing to the next byte after the byte that was found. If the second character

compares, the address of the first character in the string to be searched is put

into the result.

204

Sample Calling Sequence

NAME OF SUBROUTINE? SSTCHR
HL VALUE? 42222
PARAMETER BLOCK LOCATION? 42;
PARAMETER BLOCK VALUES?
+ 2 45555 START OF STRING TO BE SEARCHED
+ 22 7 7 BYTES IN STRING TO BE SEARCHED
•+4 1

+ 5 1

49
48

-SEARCH CHARACTERS

H- 6 2
+ 80
MEMORY BLOCK 1 LOCATION? 45555
MEMORY BLOCK 1 VALUES?
+ 1 45
+ 1 1 46
+ 2 1 47
4 3 1

+ 4 1

48
49

-INITIALIZE STRING TO BE SEARCHED
FOR EXAMPLE

4 5 1 48
+ 6 1 47
4 7

MEMORY BLOCK 2 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUTS OUTPUT
HL= 42:;22 HL= 42222
PARAM+ 243 PARAM+ 243 ^

PARAM+ 1 177 PARAM+ 1 177
PARAM+
PARAM+

2 7
3

PARAM+
PARAM+

2
3

7 -UNCHANGED

PARAM+ 4 49 PARAM+ 4 49
PARAM+ 5 48 PARAM+ 5 48 _

PARAM+
PARAM+

6
7

PARAM+
PARAM+

6
7

247 "

177 _
-FOUND AT 45559

MEMB1+ 45 MEMB1+ 45 "

MEMB1+ 1 46 MEMB1+ 1 46
MEMB1+ 2 47 MEMB 1

+

!i' 47
MEMB1+
MEMB1+

3 48
4 49

MEMB1+
MEMB 1

+

3
4

48
49

-UNCHANGED

MEMB1+ 5 48 MEMBi+ 5 48
MEMB 1

+

6 47 MEMB1+ 6 47

NAME OF SUBROUTINE?

Notes

1. if a search is to be made for an address, the order of the search key should

be least significant byte followed by most significant byte. If the search is for

character data, the order of the search key should be first character, second
character. In other words, arrange the bytes the way they would occur in the

string to be searched.

Program Listing

7F00 00100 ORG 7F00H 5 0522
00110 ;*###»*****##**#«#»***•)^^(.^^^^^^^^*#»^^#^(.##^^#^^^^^^^(.#^^##^(.^(.#^(.^^^^^^^^

00120 ;* TWO-CHARACTER STRING SEARCH. SEARCHES STRING FOR TWO *
00130 !* GIVEN CHARACTERS. »
00140 ;* INPUT: HL=> PARAMETER BLOCK *
00150 ;* PARAM+0,+l=ADDRESS OF STRING TO BE SRCHED *
00160 ;* PARAM+2.+3=# OF BYTES *
00170 5* PARAM+4»+5=SEARCH CHARACTERS *
00180 ;* PARAM+6»+7=RESERVED FOR RESULT *
00190 ; OUTPUT: PARAM+6) +7 SET TO -1 IF NOT FOUND OR ADD- *
00200 ;* RESS OF CHARACTERS IF FOUND *
00210 ;#**#*«**#*»#»**#-«(»*»»***#»»*•»*»»***«»#»«****»*#*»##*»**

205

00220 ;

7F00 F5 00230 SSTCHR PUSH AF
7F01 C5 00240 PUSH BC
7F02 E5 00250 PUSH HL
7F03 DDE5 00260 PUSH IX
7F05 CD7F0A 00270 CALL 0A7FH
7F0S E5 00280 PUSH HL
7F09 DDEl 00290 POP IX
7F0B DD6E00 00300 LD L? (IX+0)
7F0E DD6601 00310 LD H, (IX + 1)
7F11 DD4E02 00320 LD C, (IX+2)
7F14 DD4603 00330 LD Bi (IX+3)
7F17 DD7E04 00340 SST010 LD A* <IX+4)
7F1A EDBl 00350 CPIR
7F1C 200D 00360 JR NZ»SST020
7F1E 78 00370 LD AiB
7F1F Bl 00380 OR C
7F20 2809 00390 JR Z » SST020
7F22 DD7E05 00400 LD A, (IX+5)
7F25 BE 00410 CP (HL)
7F26 20EF 00420 JR NZ»SST010
7F28 2B 00430 DEC HL
7F29 1803 00440 JR SST030
7F2B 21FFFF 00450 SST020 LD HL,-1
7F2E DD7506 00460 SST030 LD (IX+6),L
7F31 DD7407 00470 LD <IX+7).H
7F34 DDEl 00480 POP IX
7F36 El 00490 POP HL
7F37 CI 00500 POP BC
7F38 Fl 00510 POP AF
7F39 C9 00520 RET
0000 00530 END
00000 TOTAL ERRORS

;SAVE REGISTERS

;***GET PB LOC'N***
? TRANSFER TO IX

;PUT STRING ADDRESS IN HL

;PUT # BYTES IN BC

;PUT SEARCH KEY IN A
; SEARCH

;G0 IF NOT FOUND
;TEST FOR END

;G0 IF AT END OF STRING
;GET SECOND CHAR OF KEY
; COMPARE TO NEXT BYTE
; CONTINUE IF NO MATCH

; ADJUST BACK TO START
;G0 TO STORE RESULT
FLAG FOR NOT FOUND
; STORE RESULT

; RESTORE REGISTERS

; RETURN TO CALLING PROG

SSTCHR DECIMAL VALUES

245, 197, 229 > 221, 229) 205, 127, 10, 229,
225, 221, 110, 0, 221, 102, 1, 221, 78, 2,
221, 70, 3, 221, 126, 4, 237, 177, 32, 13,
120, 177, 40, 9, 221, 126, 5, 190, 32, 239,
43, 24, 3, 33, 255, 255, 221, 117, 6, 221,
116, 7, 221, 225, 225, 193, 241, 201

221

CHKSUM= 28

SXCASS: WRITE/READ SCREEN CONTENTS TO CASSETTE

System Configuration

Model I, Model ill.

Description

SXCASS writes the video display as a cassette record or reads in a previously

written record to the display. All screen characters and graphics are written to

the cassette and the subsequent read will restore the entire screen as it ap-

peared before the write.

206

Input/Output Parameters

On input, the HL register pair contains a zero for a write or a one for a read. On
output, the screen has been written as a single cassette record, or the next

cassette record has been read to the screen.

INPUT

H

SMWRITE 1=READ ±>

OUTPUT

UNCHANGED

Algorithm

If a screen write is to be performed, the code at SXC010 is executed. This uses

the ROM subroutine to write leader (287H) of zeroes and a sync byte. The loop

at SXCOIO calls the ROM "write cassette byte" subroutine to write the video

display memory contents from location 3C00H through 3FFFH. HL contains the

pointer to video display memory. The write is done until the H register contains

40H, signifying that the last screen byte has been written. No checksum or

other header data is put on the cassette record.

If a read screen is to be performed, the code at SXC025 Is executed. ROM
subroutine 296H is called to bypass the leader of the next cassette record. The
loop at SXC030 calls the ROM "read cassette byte" subroutine to read in the

bytes of the next cassette record into video memory locations 3C00H through

3FFFH. HL is used as a memory pointer. The read is done until the H register

contains 40H, signifying that the last screen byte has been read.

Sample Calling Sequence

NAME OF SUBROUTINE? SXCASS
HL VALUE? WRITE
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37777
SUBROUTINE EXECUTED AT 37777
INPUT: OUTPUT:
HL= HL=

NAME OF SUBROUTINE?

Notes

1. The read or write operation takes approximately 25 seconds.

2. This subroutine does not save registers.

Program Listing

7F00 00100
00110
00120
00130
00140
00150
00160

ORG 7F00H 5 0520

i* WRITE/READ SCREEN CONTENTS TO CASSETTE. *
;* INPUTS HL=0 FOR WRITE SCREEN? 1 FOR READ *
!* output: SCREEN/ CASSETTE ACTIONS *

207

7F00 F3 00170 SXCASS DI
7F01 AF 00180 XOR A
7F02 CD I 202 00190 CALL 2I2H
7F05 CD7F0A 00200 CALL 0A7FH
7F08 CB45 00210 BIT 0,L
7F0A 2014 00220 JR NZ»SXC025

00230 ; WRITE HERE
7F0C CDS702 00240 CALL 2S7H
7F0F 21 003

C

00250 LD HL?3C00H
7F12 E5 00260 SXC010 PUSH HL
7F13 7E 00270 LD A, (HL)
7F14 CD6402 00280 CALL 264H
7F17 El 00290 POP HL
7F18 23 00300 INC HL
7F19 7C 00310 LD A,H
7F1A FE40 00320 CP 40H
7F1C 20F4 00330 JR NZ,SXC010
7F1E 1812 00340 JR SXC040

00350 ; READ HERE
7F20 CD9602 00360 SXC025 CALL 296H
7F23 21003C 00370 LD HL . 3C00H
7F26 E5 00380 SXC030 PUSH HL
7K27 CD3502 00390 CALL 235H
7F2A El 00400 POP HL
7F2B 77 00410 LD (HL) ,

A

7F2C 23 00420 INC HL
7F2D 7C 00430 LD A,H
7F2E FE40 00440 CP 40H
7F30 20F4 00450 JR NZ,SXC030
7F32 CDFS01 00460 SXC040 CALL IFSH
7F35 C9 00470 RET
0000 004S0 END
00000 TOTAL ERRORS

SXCASS DECIMAL VALUES

; DISABLE INTERRUPTS
;ZERO A
; SELECT CASSETTE
-***GET FUNCTION***
;TEST FUNCTION
<50 IF READ CASSETTE

;WRITE LEADER
; START OF SCREEN

;SAVE CURRENT LOCATION
;GET NEXT BYTE
-WRITE TO CASSETTE
; RESTORE POINTER
;BUMP POINTER
;GET POINTER MSB
;TEST FOR SCREEN END+1
;LOOP IF NOT END

; CLEANUP

; BYPASS LEADER
; START OF SCREEN

;SAVE CURRENT LOCATION
;READ NEXT BYTE
; RESTORE POINTER
; STORE BYTE
;BUMP POINTER
;6ET POINTER MSB
?TEST FOR SCREEN END+1
;L00P IF NOT END

; DESELECT
; RETURN TO CALLING PROG

243, 175, 205, IB- 205, 127, 10, 203, 69'

TIMEDL: TIME DELAY

32, 20, 205, 135, 2, 33, 0, 60, 229, 126,
205, 100, 2, 225, 35, 124, 254, 64, 32, 244

1

24, 18, 205, 150, 2, 33, 0, 60, 229, 205,
53, 2, 225, 119, 35, 124, 254, 64, 32, 244,
205, 248, 1, 201

CHKSUM= 229

System Configuration

Model I, Mode! Ill, Model II Stand Alone.

Description

TIMEDL delays a specified amount of time, from 1 millisecond to 65,536 milli-

seconds, before returning to the user calling program.

tnput/Output Parameters

On input, the HL register pair contains the number of milliseconds to delay,

from 1 to 65,536. A value of zero is treated as 65,536. TIMEDL returns after the

specified delay.

208

INPUT

H L
1 V

OUTPUT

H L
1

DELAY COUNT 0-65,535
1

UNCHANGED^

Algorithm

The 1 mitiisecond time delay loop is the heart of TIMEDL. It consists of one
instruction, the DJNZ at TIM020. This instruction takes 1 3 cycles when the loop
is made or 8 cycles when B is decremented to zero. With a given count in B,

therefore, the time delay is:

Delay (cycles) = (CNT-1)*13 + 8

A cycle in the Model I with a standard clock takes 0.56375 microseconds. The

delay In microseconds is therefore:

Delay (microseconds) = (CNT-1)*7.32875 + 4.51

To get a time delay of 1000 microseconds (1 millisecond):

1000 = (CNT-1)*7.32875 + 4.51;

CNT= 134.83

The outer loop of TIMEDL controls the number of 1 millisecond inner loops.

The outer loop has some overhead associated with it, so the count in B for the

DJNZ is made 1 34 even. The actual time delay for a given value in HL, HLCNT,
is now:

Delay (cycles) = HLCNT*(7 + (133*13+ 8) +15 +12)

Delay (microseconds) = HLCNT*998.40

This is about a 0.1 % error on the low side, or about a millisecond for a one-

second delay.

Sample Calling Sequence

NAME OF SUBROUTINE? TIMEDL
HL VALUE? MAXIMUM DELAY = 65.535 SECONDS
PARAMETER BLOCK LOCATION?
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 50000
SUBROUTINE EXECUTED AT 50000
INPUT: OUTPUT:
HL- HL=

NAME OF SUBROUTINE?

Notes

1. Adjust the immediate value loaded into B for clock modified TRS-80s.

2. Use an immediate value of 153 for Model Ills.

3. Use an immediate value of 151 for Model Ms for delays of .5 to 32768

milliseconds in units of 1/2 millisecond.

209

Program Listing

7F00

7F00 C5
7F01 D5
7F02 E5
7F03 CD7F0A
7F06 110100
7F09 0686
7F0B 10FE
7F0D EDS

2

7F0F 20F8
7F11 El
7FI2 Dl
7F13 CI
7F14 C9
0000
C50000 TOTAL

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300

ERRORS

ORG 7F00H !0520

; TIME DELAY. DELAYS 1 TO 65,536 MILLISECONDS. *
; INPUT: HL=TIME DELAY COUNT» 1 TO 65535. 0=65536 *
! OUTPUT .'RETURN AFTER DELAY #

TIMEDL

TIM010
TIM020

PUSH
PUSH
PUSH
CALL
LD
LD
DJNZ
SBC
JR
POP
POP
POP
RET
END

BC
DE
HL
0A7FH
DE, 1

B,134
TIM020
HL,DE
NZ, TIM010
HL
DE
BC

JSAVE REGISTERS

;***GET TD COUNT***
; DECREMENT

SINNER LOOP COUNT 7
;LOOP FOR 1 MS 8/13

; DECREMENT TD COUNT 15
?G0 IF NOT OVER 7/12

; RESTORE REGISTERS

; RETURN TO CALLING PROG

TIMEDL DECIMAL VALUES

197)
134,
201

213, 229, 205, 127, 10, 17-

16, 254, 237, 82, 32, 248,
1,

225:
0, 6i

209! 193i

CHKSUM=^ 20

TONOUT: TONE ROUTINE

System Configuration

Model I, Model III.

Description

TONOUT outputs a tone through the cassette port. The cassette jack output

may be connected to a small, inexpensive amplifier for audio sound effects or

warn Ing tones. The tone ranges from approximately cycles per second (hertz)

to 14,200 cycles per second. The duration of the tone may be specified by the

user.

TONOUT is not a musical tone generator (see MUNOTE), but is a general-

purpose tone generator to produce tones over a wide range and duration.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block contain a frequency count for the subroutine.

The frequency count may be 1 to 65,535. A frequency count of is regarded as

210

65,536. The frequency decreases as the frequency count increases. A frequency

count of 1 is approximately 14,200 hertz, while a frequency count of 256 is

approximately 150 hertz. The exact frequency is given by

Frequency = 1,000,000 / (25.9*COUNT + 44.53)

The next two bytes of the parameter block contain a duration count of 1 to

65,535. A duration count of is regarded as 65,536. The greater the duration

count, the greater will be the duration of the tone. Each duration count pro-

duces one "cycle" of the tone plus one additional cycle. A tone of 400 hertz,

for example, is 1/400 or 2.5 milliseconds per cycle, and a duration count of 100

would cause the 400 hertz tone to be generated for 100*2.5 milliseconds or 1/4

second. The higher the frequency, the smaller the cycle time, and the duration

count should be adjusted to compensate for this. Two consecutive 400 hertz

and 800 hertz tones of 1/4-second duration, for example, should have duration

counts of 100 and 50, respectively. Maximum duration for a 1000 hertz tone is

65.5 seconds.

INPUT

1
\

1

POINTER TO PARAM+0
1

1

M+0

+ 1

FREQUENCY
COUNT

-

+2

+3

DURATION
COUNT

-

OUTPUT

H L

N.

UNCHANGED
1

/

PARAM+0

+ 1

+2

+3

1

- UNCHANGED - -

- UNCHANGED - .

>/ _

TONOUT uses two loops. The outer loop (from TON010) produces the number

of cycles equal to the duration count. The inner loop is made up of two parts.

The TON020 portion outputs an "on" pulse from the cassette output. The

TON030 portion turns off the cassette port for the same period of time. Both

portions use the frequency count from the parameter block for a timing loop

count.

The frequency count is first put into DE and the duration count into IX. The

TON010 loop puts the DE frequency count into HL and turns on the cassette

(OUT 0FFH,A). The count in HL is then decremented by one in the TON020

timing loop. At the end of the loop, the count is again put into HL from DE, the

cassette is turned off, and the count is decremented by one in the TON030

timing loop. After this loop, the duration, or cycle, count in IX is decremented

by one and if not negative, a jump is made back to TON010 for the next cycle.

Sample Calling Sequence

NAME OF SUBROUTINE? TONOUT
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?

211

FREQUENCY COUNT OF ABOUT 1000 HZ
DURATION OF ABOUT 10 SECONDS

+ 2 37+22 10000
+ A
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 37000
SUBROUTINE EXECUTED AT 37000
INPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

37

16
39

OUTPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

37

16
39

-UNCHANGED

NAME OF SUBROUTINE?

Notes

1. Cassette port electronics limits the tone output to 100 through 6000 hertz

or SO.

2. The frequency equation above is for a standard TRS-80 Model ! clock fre-

quency.

Program Listing

7F00

7F00
7F01
7H02
7F03
7F04
7F06
7F09
7F0A
7F0C
7F0F
7F12
7F13
7F16
7F19
7F1A
7F1B
7F1D
7F20
7F21
7F22
7F24
7F26
7F27
7F2A
7F2B
7F2C
7F2E
7F30

F5
C5
D5
E5
DDES
CD7F0A

DDEl
DD5E00
DD5601
IB
DD4E02
DD4603
0B
C5
DDEl
01FFFF
6B
62
3E01
D3FF
09
DA267F
6B
62

D3FF
09

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320

00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470

ORG 7F00H ;0522

* TONE ROUTINE. OUTPUTS A TONE THROUGH THE CASSETTE *
* PORT OF SPECIFIED FREQUENCY AND DURATION. «
* INPUT: HL=.> PARAMETER BLOCK
* PARAM+0,+l=FREQUENCY COUNT *
* PARAM+2,+3=DURATI0N COUNT *
* OUTPUT: TONE ON CASSETTE PORT *
«*««*»^(•***#*^<.#»^(.##^(.^(.##^(.^(,^^^(.^(.^(.^^*^(.^^^^^t*»»**»»«»**^(•**^(•^(•

TONOUT

TON010

TON020

TON030

PUSH
PUSH
PUSH
PUSH
PUSH

PUSH
POP
LD
LD
DEC
LD
LD
DEC
PUSH
POP

LD
LD
LD
OUT
ADD
JP

LD
LD
OUT
ADD

AF
BC
DE
HL
IX
0A7FH
HL
IX
E, (IX+0)
D» (IX+1)
DE
C> (IX+2)
B, (IX+3)
BC
BC
IX
BC,-1
L»E
H,D
A, 1

(0FFH),A
HL»BC
CjTON020
L,E
H,D
A»2
(0FFH)5A
HL»BC

5SAVE REGISTERS

;***GET PB LOC'N***
! TRANSFER TO IX

;PUT FREQ COUNT IN DE

; ADJUST FOR LOOP
TPUT DUR COUNT IN BC

! ADJUST FOR LOOP
; TRANSFER TO IX

;F0R TIGHT LOOP
;PUT FREQ COUNT IN HL 4
54
! MAX I MUM POSITIVE 7
; OUTPUT n

; COUNT- 1 11
;LP FOR 1/2 CYC 7/12

;PUT FREQ COUNT IN HL 4
;4
; MAX IMUM NEGATIVE 7
; OUTPUT 11

; COUNT- 1 11

212

7F31 38FD 00480 JR C,TON030
7F33 DD09 00490 ADD IX»BC
7F35 DA207F 00500 JP C?TON010
7F38 DDEl 00510 POP IX

7F3A El 00520 POP HL
7F3B Dl 00530 POP DE
7F3C CI 00540 POP BC
7F3D Fl 00550 POP AF
7F3E C9 00560 RET
0000 00570 END
00000 TOTAL ERRORS

;LP FOR 1/2 CYC 7/12
; DECREMENT DUR COUNT 15

;LOOP IF NOT DONE 7/12
; RESTORE REGISTERS

RETURN TO CALLING PROG

TONOUT DECIMAL VALUES

245? 197) 213» 229. 221 » 229, 205» 127) 10!
221» 225> 221» 94» 07 221. 86, 1, 27, 221,
78, 2, 221, 70, 3, 11, 197, 221, 225, 1,

255, 255, 107, 98, 62, 1, 211, 255, 9, 21Si
38, 127, 107, 98, 62, 2, 211, 255, 9, 56,

*9,

:<;53, 221 , 9i

193, 241, 26

;18- 127, 221 209

1

i

CHKSUM= 102

WCRECD: WRITE RECORD TO CASSETTE

System Configuration

Model 1, Model III.

Description

WCRECD writes a variable-length record from memory to cassette. The record

may be any number of bytes, from 1 to the limits of memory. The record is

prefixed by a four-byte header that holds the starting address and number of

bytes in the remainder of the record. The record is terminated by a checksum

byte that is the additive checksum of all bytes in the record. Data in memory

may represent any type of data the user desires; the record is written out as a

"core image."

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

two bytes of the parameter block are the starting address of the data to be

written out, in standard Z-80 address format, least significant byte followed by

most significant byte. The next two bytes of the parameter block are the num-

ber of bytes to be written in the record, 1 to 65,535. A value of is treated as

65,536 bytes.

On output, the contents of the parameter block are unchanged and the

record has been written to cassette.

213

INPUT

H L

POINTER TO PARAM+0

PARAM+0

+ 1

STARTING
BUFFER
ADDRESS

+2

+3

OF BYTES
i- TO BE

WRITTEN

OUTPUT

H L
1

v
UNCHANGED

1

y

PARAM+0

+ 1

+2

+3

f

- UNCHANGED - -

- UNCHANGED -

>
/

Algorithm

The WCRECD subroutine uses Level II or Level III ROM subroutines to perform
the write. First, a CALL is made to 212H to select cassette 0. Next, a call is made
to 287H to write 256 zeroes and a sync byte as leader for the cassette record.

The four-byte header is written out in the WCR005 loop. This header is taken
from the parameter block and consists of the two address bytes and the two
bytes containing the number of bytes in the record. Each byte is written by a

CALL to 264H. A checksum in B is cleared before the operation; after the

four-byte write, it contains the partial checksum for the four bytes.

The starting address for the data and the number of bytes is next put into HL
and DE, respectively. The loop at WCROIO writes out all of the bytes in the

memory block by CALLS to 264H. For each CALL, the current value of the byte

is added to the B checksum subtotal, the pointer to memory in HL is bumped
by one, and the count in DE is decremented by one. When DE reaches zero,

the checksum in B is output as the last byte and the cassette is deselected by a

CALL to 1F8H.

Sample Calling Sequence

NAME OF SUBROUTINE? WCRECD
HL VALUE? 40000
PARAMETER BLOCK LOCATION? 40000
PARAMETER BLOCK VALUES?
+ 2 15360 BUFFER
+ 2 2 .1024 1024 BYTES
+ 400
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 38000
SUBROUTINE EXECUTED AT 38000
INPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM-+- 3

60

4

OUTPUT:
HL= 40000
PARAM+
PARAM+ 1

PARAM+ 2
PARAM+ 3

60
-UNCHANGED

NAME OF SUBROUTINE?

Notes

1. This subroutine uses cassette only.

2. For 500 baud tape operations, each 1000 bytes will take about 20 seconds.

3. This subroutine does not save registers.

214

Program Listing

7F00 00100 ORG 7F00H 5 0520
00110 5 ***#**#»***«#*»»»*»***#**»*»«»##»«»»**»##««*«»»*
00120 ;* WRITE RECORD TO CASSETTE. WRITES A VARIABLE-LENGTH *
00130 ;» RECORD TO CASSETTE FROM fi\ GIVEN BUFFER. *
00140 5* INPUT: HL=> PARAMETER BLOCK *
00150 ;* PARAM+0»+l=STARTING BUFFER ADDRESS
00160 ;» PARAM+2i+3=NUMBER OF BYTES TO BE WRITTEN *
00170 •* OUTPUT: RECORD WRITTEN TO CASSETTE #
00180 ;**********«****»*«»«**»»#»«***-)t-*-)t*******»**»-)(-*»*')t•)(*•)(#***
00190 !

7F00 F3 00200 WCRECD DI ; DISABLE INTERRUPTS
7F01 AF 00210 XOR A !ZERO A
7F02 CD 1202 00220 CALL 212H ; SELECT CASSETTE
7F05 CD8702 00230 CALL 287H ; WRITE LEADER
7F08 CD7F0A 00240 CALL 0A7FH ;«**GET PAR BL ADDR**»
7F0B E5 00250 PUSH HL ;SAVE
7F0C 010004 00260 LD BC» 1024+0 5 4 TO B» TO C
7F0F 7E 00270 UCR005 LD A» (HL) !GET HEADER BYTE
7F10 F5 00280 PUSH AF ;SAVE BYTE
7F11 81 00290 ADD A,C ; CHECKSUM
7hl2 4F 00300 LD C»A ;SAVE CHECKSUM
7F13 Fl 00310 POP AF ; RESTORE ORIG BYTE
7F14 C5 00320 PUSH BC !SAVE COUNT* CHECKSUM
7F15 E5 00330 PUSH HL ;SAVE POINTER
7F16 CD6402 00340 CALL 264H ; WRITE BYTE TO CASSETTE
7Fi9 El 00350 POP HL ; RESTORE POINTER
7F1A CI 00360 POP BC JGET COUNT* CHECKSUM
7F1B 23 00370 INC HL ;BUMP POINTER
7F1C 10F1 00380 DJNZ WCR005 ;L00P for 4 HEADER BYTES
7F1E DDEl 00390 POP IX 5 COMPLETE TRANSFER TO IX
7F20 41 00400 LD B,C ; CHECKSUM
7F21 DD6E00 00410 LD L, <IX+0) !GET STARTING ADDRESS
7F2A DD6601 00420 LD Hi <IX+1)
7F27 DD5E02 00430 LD E, (IX+2) ;GET # BYTES
7F2A DD5603 00440 LD D» (IX+3)
7F2D C5 00450 WCR010 PUSH BC ;SAVE CHECKSUM
7F2E D5 00460 PUSH DE ;SAVE # OF BYTES
7F2F E5 00470 PUSH HL J SAVE CURENT LOCATION
7F30 7E 00480 LD Ai (HL) ;GET NEXT BYTE
7F31 CD6402 00490 CALL 264H 5 WRITE TO CASSETTE
7F34 El 00500 POP HL ; RESTORE POINTER
7F35 Dl 00510 POP DE ; RESTORE # OF BYTES
7F36 CI 00520 POP BC ;6ET CHECKSUM
7F37 7E 00530 LD A? (HL) ;BYTE JUST OUTPUT
7F38 80 00540 ADD AiB ; COMPUTE CHECKSUM
7F39 47 00550 LD B)A !SAVE
7F3A 23 00560 INC HL !BUMP POINTER
7F3B IB 00570 DEC DE 5 DECREMENT # BYTES
7F3C 7A 00580 LD A»D ;TEST FOR ZERO
7F3D B3 00590 OR E
7F3E 20ED 00600 JR NZiWCR010 ;LOOP IF NOT END
7F4B 78 00610 LD A>B ;GET CHECKSUM
7F41 CD6402 00620 CALL 264H ; OUTPUT AS LAST BYTE
7F44 CDFB01 00630 CALL 1F8H ; DESELECT
7F47 C9 00640 RET ? RETURN TO CALLING PROG
0000 00650 END

WCRECD DECIMAL VALUES

243 » 175 1 205) 18i 2i 205) 135) 2) 205) 127)
10) 229) 1) 0) 4, 126) 245, 129) 79) 241)
197, 229) 205) 100, 2, 225, 193, 35, 16, 241
221, 225, 65, 221, 110, 0, 221, 102, 1, 221,

215

94

»

2i 221
100) 2 22
lli'i:!? 179,
1» 201

CHKSUM= 139

86
» 3» 197* 213, 229, 126, 205,

225, 209, 193, 126, 128, 71, 35, 27,
32, 237, 120, 205, 100, 2, 205, 248,

WRDSEC: WRfTE DISK SECTOR

System Configuration

Model I.

Description

WRDSEC writes one sector from a specified buffer area to a specified disk
drive. The user must know where a particular file is to be and what sectors are
involved to utilize this subroutine. It is not a general-purpose "file manage"
subroutine.

Input/Output Parameters

On input, the HL register pair contains a pointer to a parameter block. The first

byte of the parameter block contains the d isk drive number, to 3, correspond-
ing to disk drives 1 through 4. The next byte of the parameter block contains the
track number, through N. (Standard TRS-80s use disk drives with 35 tracks;

other drives are available for 40 tracks.) The next byte is the sector number,
through N {0 through 9 will be the most common range). The next two bytes are
the user buffer area for the write in* standard Z-80 address format, least signifi-

cant byte followed by most significant byte. The next byte contains a zero if a
wait is to occur until the disk drive motor is brought up to speed; the byte
contains a 1 if the motor is running (disk operation has just been completed)
and no wait is necessary. The next byte (PARAM-h6) is reserved for the status of
the disk write on output.

On output, all parameters remain unchanged except for PARAM-l-6, which
contains the status of the write. Status is for a successful write, or nonzero if

an error occurred during any portion of the write. If an error did not occur, the
contents of the buffer has been written to the sector.

INPUT OUTPUT

POINTER TO PARAM+0

PARAM+0 DRIVE # 0-3

+ 1 TRACK #
+2 SECTOR #
+3

+4

BUFFER
ADDRESS
(MEM 1+0)

+5 0=WAIT 1=N0
WAIT

+6 RESERVED

p

UNCHANGED
1

M+0 UNCHANGED

+ 1 UNCHANGED

+2 UNCHANGED

+3

+4
- UNCHANGED - -

+5 UNCHANGED

+6 0=NO ERROR
5^0=ERROR

216

MEM 1+0

+ 1

256
+2 BYTES

+3
- OF

DATA
TO BE

+4
WRITTEN

+5
- -

+6

MEM 1+0

+ 1

+2

-

UNCHANGED> +3

+4

+5

+6

Algorithm

The disk drive number in L is first converted to the proper select configuration

at WRD010. The select byte is then output to disk memory-mapped address

37E0H to select one of the disk drives.

The wait bit is then examined. If this bit is a zero, the loop at WRD015 counts

HL through 65,536 counts to wait until the disk drive motor is up to speed

before continuing.

The disk status is then examined (WRD020). If the disk is not busy, the track

number is loaded into the disk controller track register (37EFH) and a seek

command is given (37ECH) to cause the controller to "seek" the track for the

operation. A series of time-wasting instructions is then done.

The code at WRD030 gets the disk status after completion of the seek and

AMDs it with a "proper result" mask. If the status is normal, the write contin-

ues, otherwise an "abnormal" completion is done to WRD090.

The sector address from the parameter block is next output to the controller

sector register {37EEH). Two time-wasting instructions are then done.

A write command is then issued to the disk controller command register

(37ECH). Further time-wasting instructions are done.

The loop at WRD040 performs the actual write of the d isk sector. A total of 256

separate writes is done, one for each byte. HL contains the disk address of

37ECH, DE contains a pointer to the buffer address, and BC contains the data

register address of the disk controller. For each of the 256 reads, status is

checked. If bit is set, all 256 bytes have been written. If bit 1 of the status is

set, the disk controller is still busy and a loop back to WRD040 is done. If bit 1

of the status is not set the next byte is read from memory, written to the disk,

and the memory buffer pointer incremented.

At the automatic (by the controller) termination of the write, status is again

read, and an AND of 7 is done to check for the proper completion bits. The
status is stored back into the parameter block.

Sample Calling Sequence

NAME OF SUBROUTINE? WRDSEC
HL VALUE? 400130
PARAMETER E?.LOCK LOCATION? 40000
F^ARAMETER BLOCK VALUES?
+ 1. DRIVE
+ 1 1 20 TRACK 20

217

+ 2 1 5 SECTORS
+ 3 2 45000 BUFFER
+ -' 1 WAIT
+ 6> 1

+ 700
MEMORY BLOCK 1 LOCATION?
MOVE SUBROUTINE TO? 3S000
SUBROUTINE EXECUTED AT 38000

1

INPUT:
HL= 40000
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

20
5

200
175

OUTPUTS
HL= 40000
PARAM+
PA RAM-
PARAM+
PARAM+
PARAM+
PARAM+
PARAM+

1+ 1

-UNCHANGED

20
5

200
175

^
_}-STATUS OK

NAME OF SUBROUTINE?

Notes

1. Always perform an RESTDS operation before initial disk I/O to initialize the

disk controller.

Program Listing

7F00

7F00
7F01
7F02
7F03
7F04
7F06
7F09
7F0A
7F0C
7F0F
7F10
7F11
7F13
7F14
7F16
7F19
7F1C
7F1D
7F1F

7F23
7F24

F5
C5
D5
E5
DDE5
CD7F0A
E5
DDEl
DD7E00
3C
47
3EQ0
07
i0FD
32E037
DD7E05
B7
2008
210000
26
7D
84

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450

ORG 7F00H ;0522

* WRITE DISK SECTOR. WRITES BUFFER INTO SPECIFIED
* TRACK* SECTOR OF DISK.
* INPUT: HL=> PARAMETER BLOCK
* PARAM+0=DRIVE #,0-3
* PARAM+1=TRACK #i - N
* PARAM+2=SECT0R #, - N
* PARAM+3i+4=BUFFER ADDRESS
* PARAM+5=0=WAIT AFTER SELECT,
* PARAM+6=STATUS» 0=OK5 1=BAD
* OUTPUT: BUFFER WRITTEN TO TRACK, SECTOR

1=N0 WAIT

#******«»*#^^#**###*»^(.^(.^(.^^#^e^j.**#**#*»»***»*^<.^^#»**#^(.^(.^«.^nn(.^^

WRDSEC

WRD010

WRD015

PUSH
PUSH
PUSH
PUSH
PUSH
CALL
PUSH
POP
LD
INC
LD
LD
RLCA
DJNZ
LD
LD
OR
JR
LD
DEC
LD
OR

AF
BC
DE
HL
IX
0A7FH
HL
IX
A, (IX+0)
A
B,A
A,S0H

WRD0i0
(37E0H>,A
A, (IX+5)
A
NZ,WRD020
HL,0
HL
A,L
H

;SAVE REGISTERS

;***GET PB LOC'N***
; TRANSFER TO IX

;get drive #
! increment by one
;PUT IN B FOR CONVERT
JMASK

; ALIGN FOR SELECT
; CONVERT TO ADDRESS

;SELECT DRIVE
;GET WAIT/NO WAIT
;test
;G0 if NO WAIT
;WAIT COUNT

; DELAY LOOP 6 -

;TEST DONE 4
54

218

7F25 20FB 00460 JR NZ»WRD015
7F27 3AEC37 00470 WRD020 LD A) (37ECH)
7F2A CB47 00480 BIT 05A
7F2C 20F9 00490 JR NZil^lRD020
7F2E DD7E01 00500 LD A, <IX+1)
7F31 32EF37 00510 LD (37EFH)»A
7F34 C5 00520 PUSH BC
7F35 CI 00530 POP BC
7F36 3E17 00540 LD A»i7H
7F3a 32EC37 00550 LD <37ECH>iA
7F3B C5 00560 PUSH BC
7F3C CI 00570 POP BC
7F3D C5 00580 PUSH BC
7F3E CI 00590 POP BC
7F3F 3AEC37 00600 URD030 LD Aj <37ECH)
7F42 CB47 00610 BIT 0iA
7F44 20F9 00620 JR NZ>WRD030
7F46 E69B 00630 AND 98H
7F48 202 C 00640 JR NZ>WRD090
7F4A DD7E02 00650 LD A* (IX+2)
7F4D 32EE37 00660 LD (37EEH)»A
7F50 C5 00670 PUSH BC
7F51 CI 00680 POP BC
7F52 21EC37 00690 LD HL,37ECH
7F55 DD5E03 00700 LD E, (IX+3>
7F58 DD5604 00710 LD Dl (IX+4)
7F5B 3EAC 00720 LD A5 0ACH
7F5D 77 00730 LD (HL > 1 A
7F5E C5 00740 PUSH BC
7F5F Ci 00750 POP BC
7F60 C5 00760 PUSH BC
7F61 CI 00770 POP BC
7F62 0iEF37 00780 LD BC»37EFH
7F65 7E 00790 WRD040 LD A» (HL)
7F66 0F 00800 RRCA
7F67 3008 00810 JR NC,WRD050
7F69 0F 00820 RRCA
7F6A 30F9 00830 JR NC»WRD040
7F6C lA 00840 LD A, (DE)
7F6D 02 00850 LD <BC),A
7F6E 13 00860 INC DE
7F6F 18F4 00870 JR WRD040
7F71 3AEC37 00880 WRD050 LD A, <37ECH)
7F74 E607 00890 AND 7
7F76 DD7706 00900 WRD090 LD <IX+6).A
7F79 DDEl 00910 POP IX
7F7B El 00920 POP HL
7F7C Dl 00930 POP DE
7F7D CI 00940 POP BC
7F7E Fl 00950 POP AF
7F7F C9 00960 RET
0000 00970 END
00000 TOTAL ERRORS

;L00P UNTIL HL=0 7/12
;SET STATUS
;TEST BUSY
5L00P IF BUSY

SGET TRACK NUMBER
; OUTPUT TRACK #
; WASTE TIME

;SEEK COMMAND
; OUTPUT
-.WASTE TIME

;6ET STATUS
!TEST BUSY
JLOOP IF BUSY

!TEST FOR NORMAL COMPL
;60 IF ABNORMAL
;GET SECTOR #
? OUTPUT
; WASTE TIME

;Dli3K ADDRESS
!PUT BUFFER ADDRESS IN DE

; WRITE COMMAND
; OUTPUT
? WASTE TIME

!DATA REG ADDRESS
;GET STATUS
;ALIGN
;G0 IF DONE
;align
;g0 if not drq
;GET BYTE
; OUTPUT TO DISK
; INCREMENT MEMORY PNTR
;L00P til DONE

;GET status
! CHECK FOR PROPER STATUS
; STORE STATUS
! RESTORE REGISTERS

; RETURN TO CALLING PROG

WRDSEC DECIMAL VALUES

221 5 229* 205
/ 1 1 6^'

245, 197, 213, 229
221, 225, 221, 126, 0, 60,
16, 253, 50, 224, 55, 221,
8, 33, 0, 0, 43, 125, 180,
236, 55, 203, 71, 32, 249,
239, 55, 197, 193, 62, 23,
193, 197, 193, 58, 236, 55,
230, 152, 32, 44, 221, 126,

126
32,
221
50,

127,
128i

5, 183i
251, 5Si

126, 1,

236, 55

1

10,

7,

32,

50,
197,

203, 71, 32, 249,
2, 50, 238, 55,

219

197, 193» 33, 236, 55, 221, 94, 3, 221, B6,
4, 62, 172» 119, 197, 193, 197, 193, 1, 239,
55, 126, 15, 48, 8, 15, 48, 249, 26, 2,
19, 24, 244, 58, 236, 55, 230, 7, 221, 119,
6, 221, 225, 225, 209, 193, 241, 201

CHKSUM=

220

Ill
APPENDICES

221

APPENDIX I

Z-80 Instruction Set

The following is a brief explanation of the Z-80 instructions used in the TRS-80

subroutines. Refer to Zilog or Radio Shack documentation for more detailed

descriptions.

ADC

This instruction adds one byte plus the current contents of the Carry flag to the

contents of the A register when used in the format "ADD A,B"; the byte may be
in another CPU register, an immediate value, or from memory. The instruction

adds two bytes from a register pair plus the current contents of the Carry flag to

the contents of HL, IX, or lY, when used in the format "ADD HL,DE." Flags are

affected.

ADD

This instruction adds one byte to the contents of the A register when used in the

format "ADD A,B"; the byte may be in another CPU register, an immediate

223

value, or from memory. The instruction adds two bytes from a register pair, IX,

or lY to the contents of HL, IX, or lY, when used in the format "ADD HL,DE."
Flags are affected.

AND

This instruction logically ANDs one byte and the contents of the A register. The
byte may be in a CPU register, an immediate value, or from memory. Typical

format is "AND B," which ANDs the B and A registers. Flags are affected.

BIT

This instruction tests the bit of a CPU register or memory location. "BIT 7,B"
tests bit 7 of the B register, while "BIT 0, (HL)" tests bit of the memory
location pointed to by the HL register pair. The state of the bit goes into the
Carry flag.

CALL

This instruction calls a subroutine by pushing the return address into the stack.

In the format "CALL 0212H" it is an unconditional call. In the format "CALL
NZ,0212H" it is a conditional call. The conditions may be on the state of the

Zero, Carry, Sign flag, or other flags. No flags affected.

CCF

This instruction complements the Carry flag; a set is changed to reset and vice

versa.

CP

This instruction compares two bytes, one in the A register, and one from an-

other CPU register or memory. The result does not replace the contents of A, but

only sets the flags on the result of the compare. Typical format is "CP (HL),"

which compares A with the contents of the memory location pointed to by the

HL register pair. Flags are affected.

CPD

This instruction performs one step of an "end to beginning" block compare,
using A as the comparison key, HL as the pointer, and BC as the number of

bytes. Flags are affected.

CPDR

This instruction performs an "end to beginning" block compare, using A as

the comparison key, HL as the pointer, and BC as the number of bytes. Flags

are affected.

224

CPI

This instruction performs one step of a "beginning to end" block compare,
using A as the comparison key, HL as the pointer, and BC as the number of

bytes. Flags are affected.

CPIR

This instruction performs a "beginning to end" block compare, using A as the

comparison key, HL as the pointer, and BC as the number of bytes. Flags are

affected.

CPL

This instruction complements the contents of A; all ones are changed to zeroes,

and all zeroes to ones. Most flags are unaffected.

DAA

This instruction adjusts the result in the A register so that it is a "decimal" or

bed result. Flags are affected.

DEC

This instruction decrements the contents of a CPU register by one, when used
in the format "DEC E." When used in the format "DEC HL," it decrements the

contents of a register pair by one. When used in the format "DEC (HL)" or

"DEC (IX+ 5)" it decrements the contents of a memory location by one. Flags

are affected only in the 8-bit case.

Dl

This instruction disables interrupts.

D}NZ

This instruction decrements the contents of the B register and then jumps if the

result is not zero. It is relocatable. Typical format is "DJNZ9000H." Flags are

unaffected.

El

This instruction enables interrupts.

EX

This instruction swaps the contents of EX and HL when it is used in "EX DE,HL"

or points to the "primed set" of the A register and flags when it is used in "EX

AF,AF" or exchanges the first two bytes in the stack with HL, IX, or lY when

used in "EX (SP),HL" format. Flags are unaffected.

225

EXX

This instruction switches to the primed set of BC, DE, and HL Flags are unaf-

fected.

IN

This is the input instruction. It inputs a value from an input/output device into

the A register w/hen in the form "IN A,(OFFH)." Flags are affected.

INC

This instruction increments the contents of a CPU register by one, when used in

the format "INC E." When used in the format "INC HL/' it increments the

contents of a register pair by one. When used in the format "INC (HL)" or "INC
(IX+5)" it increments the contents of a memory location by one. Flags are

affected in 8-bit case only.

}P

This is the jump instruction. In the format "JP 9000H" or "JP (HL)/' it is an
unconditional jump. In the format "JP NZ,9(X)0H/' it is a conditional jump. The
condition may be on the Zero flag (Z, NZ), Carry flag (C, NC), Sign flag (M, P),

or other flags. Flags are unaffected.

This is the jump "relative" instruction. It is identical in function to the "JP"
instruction except that it is relocatable. Typical format is "JR 9000H" for an
unconditional jump or "JR NZ,9000H" for a conditional jump. Flags are unaf-

fected.

LD

This is the load instruction. It transfers data between CPU registers or between
CPU registers and memory. When it is used to transfer data between two CPU
registers, 8 bits will be transferred, and the format will be similar to "LD A,B"
where B is the "source" and A is the destination. When it is used to transfer

from a CPU register to memory, the format will be similar to "LD (3C00H),A"
or "LD (HL),A"; the former transfers 8 bits from A to memory location 3C00H,
the later transfers 8 bits from A to the memory location pointed to by HL. The
format for 8 bit transfers from memory to a register will be reversed, as in "LD
A,(3C00H)" and "LD A,(HL)."

LD can also be used to transfer 16 bits of data between a register pair and
memory. The format will be similar to "LD HL,(3C00H)," which transfers the

contents of location 3C00H and 3C01 H to the L and H registers, respectively.

To transfer data between memory and a register pair, the format, is reversed as

in "LD (3C00H),HL."

226

LD can also be used to transfer immediate data into a register or register pair, as

in "LD A,45H/' which loads A with 45H, or "LD HL,3C00H" which loads HL
with the value 3C00H. Flags are unaffected.

LDD

This instruction performs one step of an "end to beginning" block move, using

HL as the "source pointer," DE as the "destination pointer," and BC as the byte

count. Flags are affected.

LDDR

This instuction performs one step of an "end to beginning" block move, using

HL as the "source pointer," DE as the "destination pointer," and BC as the byte

count. Flags are affected.

LDI

This instruction performs one step of a "beginning to end" block move, using

HL as the "source pointer," DE as the "destination pointer," and BCasthe byte

count. Flags are affected.

LDIR

This instruction performs a "beginning to end" block move, using HL as the

"source pointer," DE as the "destination pointer," and BC as the byte count.

Flags are affected.

NEC

This instruction takes the two's complement of the A register. It "negates" the

contents of A. Flags are affected.

NOP

This instruction is a "no operation" performing no function. Flags are unaf-

fected.

OR

This instruction logically ORs one byte and the contents of the A register. The

byte may be in a CPU register, an immediate value, or from memory. Typical

format is "OR B," which ORs the B and A registers. Flags are affected.

OUT

This is the output instruction. It outputs a byte from the A register to an

input/output device when in the form "OUT (OFFH),A." Flags are unaffected.

227

POP

This instruction POPs a two-byte value from the stack and puts it into a register

pair. "POP DE" loads the D and E registers with the next two bytes from the

stack and adjusts the SP register by two. Flags are unaffected unless AF
POPped.

PUSH

This instruction pushes a register pair, IX, or lY onto the stack. "PUSH BC"
pushes the contents of B and C onto the stack and adjusts the SP register by

two. Flags are unaffected.

RES

This instruction resets a bit in a CPU register or memory location. "RES 5,A"

resets bit 5 of the A register to 0, while "RES 2,(HL)" resets bit 2 of the memory
location pointed to by the HL register pair. Flags are unaffected.

RET

This instruction returns from a subroutine by popping the return address from

the stack. If the format is "RET," it is an unconditional return; if the format is

"RET NZ," the return is conditional upon the Zero, Carry, Sign, or other flags.

Flags are unaffected.

RL

This instruction rotates the contents of a CPU register and carry (nine bits) left

one bit position. Typical format is "RL D" which rotates the D register and

carry. Flags are affected.

RLA

This instruction rotates the A register and carry (nine bits) one bit position left.

Flags are affected.

RLC

This instruction rotates the contents of a CPU register one bit position left.

Typical format is "RLC E," which rotates the E register. Flags are affected.

RLCA

This instruction rotates the A register one bit position left. Flags are affected.

RLD

This instruction rotates the memory location pointed to by HL -and the least

significant four bits of the A register four bits left. It is a "bed shift." Flags are

affected.

228

RR

This instruction rotates the contents of a CPU register and carry (nine bits) one

bit position right. Typical fornnat is "RR B" which rotates the B register and

carry. Flags are affected.

RRA

This instruction rotates the A register and carry (nine bits) one bit position right.

Flags are affected.

RRC

This instruction rotates the contents of a CPU register one bit position right.

Typical format is "RRC H," which rotates the H register. Flags are affected.

RRCA

This instruction rotates the A register one bit position right. Flags are affected.

RRD

This instruction rotates the memory location pointed to by HL and the least

significant four bits of the A register four bits right. It is a "bed shift." Flags are

affected.

SBC

This instruction subtracts one byte minus the current contents of the Carry flag

from the contents of the A register when used in the format "SBC A,B"; the byte

may be in another CPU register, an immediate value, or from memory. The

instruction subtracts two bytes from a register pair minus the current contents of

the Carry flag from the contents of HL, IX, or lY, when used in the format "SBC

HL,DE." Flags are affected.

5CF

This instruction sets the Carry flag.

SET

This instruction sets a bit in a CPU register or memory location. "SET 5,C" sets

bit 5 of the C register, while "SET 0,(HL)" sets bit of the memory location

pointed to by the HL register pair. Flags are unaffected.

5M

This instruction logically shifts a CPU register one bit position left. Typical

format is "SLA H," which shifts the H register. Flags are affected.

229

SRA

This instruction arithmetically shifts a CPU register one bit position right. Typi-

cal format is "SRA A/' which shifts the A register. Flags are affected.

SRL

This instruction logically shifts a CPU register one bit position right. Typical

format is "SRL L," which shifts the L register. Flags are affected.

SUB

This instruction subtracts one byte from the contents of the A register when

used in the format "SUB A,B"; the byte may be in another CPU register, an

immediate value, or from memory. The instruction subtracts two bytes from a

register pair, IX, or lY from the contents of HL, IX, or lY, when used in the

format "SUB HL,DE." Flags are affected.

XOR

This instruction logically exclusive ORs one byte and the contents of the A
register. The byte may be in a CPU register, an immediate value, or from mem-

ory. Typical format is "XOR B," which XORs the B and A registers. Flags are

affected.

230

APPENDIX II

Decimal/Hexadecimal
Conversion

231

00 64 40 128 80 192 C0
1 01 65 41 129 81 193 CI
2 02 66 42 130 82 194 C2
3 03 67 43 131 83 195 C3
4 04 68 44 132 84 196 C4
5 05 69 45 133 85 197 C5
6 06 70 46 134 86 198 C6
7 07 71 47 135 87 199 C7
8 08 72 48 136 88 200 C8
9 09 73 49 137 89 201 C9

10 0A 74 4A 138 SA 202 CA
11 0B 75 4B 139 SB 203 CB
12 0C 76 4C 140 8C 204 CC
13 0D 77 4D 141 8D 205 CD
14 0E 78 4E 142 8E 206 CE
15 0F 79 4F 143 8F 207 CF
16 10 80 50 144 90 208 D0
17 11 81 51 145 91 209 Dl
18 12 82 52 146 92 210 D2
19 13 83 53 147 93 211 D3
20 14 84 54 148 94 212 D4
21 15 85 55 149 95 213 D5
22 16 86 56 150 96 214 06
23 17 87 57 151 97 215 D7
24 18 88 58 152 98 216 D8
25 19 89 59 153 99 217 D9
26 lA 90 5A 154 9A 218 DA
27 IB 91 5B 155 9B 219 DB
28 IC 92 5C 156 9C 220 DC
29 ID 93 5D 157 9D 221 DD
30 IE 94 5E 158 9E 222 DE
31 IF 95 5F 159 9F 223 DF
32 20 96 60 160 A0 224 E0
33 21 97 61 161 Al 225 El
34 22 98 62 162 A2 226 E2
35 23 99 63 163 A3 227 E3
36 24 100 64 164 A4 228 E4
37 25 101 65 165 A5 229 E5
38 26 102 66 166 A6 230 E6
39 27 103 67 167 A7 231 E7
40 28 104 68 168 A8 232 E8
41 29 105 69 169 A9 233 E9
42 2A 106 6A 170 AA 234 EA
43 2B 107 6B 171 AB 235 EB
44 2C 108 6C 172 AC 236 EC
45 2D 109 6D 173 AD 237 ED
46 2E 110 6E 174 AE 238 EE
47 2F 111 6F 175 AF 239 EF
48 30 112 70 176 B0 240 F0
49 31 113 71 177 Bl 241 Fl
50 32 114 72 178 B2 242 F2
51 33 115 73 179 B3 243 F3
52 34 116 74 180 B4 244 F4
53 35 117 75 181 B5 245 F5
54 36 118 76 182 B6 246 F6
55 37 119 77 183 B7 247 F7
56 38 120 78 184 BS 248 F8
57 39 121 79 185 B9 249 F9
58 3A 122 7A 186 BA 250 FA
59 3B 123 7B 187 BB 251 FB
60 3C 124 7C 188 BC 252 FC
61 3D 125 7D 189 BD 253 FD
62 3E 126 7E 190 BE 254 FE
63 3F 127 7F 191 BF 255 FF

232

PERSONAL COMPUTERS

UUi liam Borden,

Assembly Language
Subroutines ™»
Here is a hands-on approach to programming that explains how any TRS-80
computer user can increase productivity and reduce the tediousness of

programming by using assembly-language subroutines,
i

TRS-dO ASSEMBLYLANGUAGE SUBROUTINES uses the speed and
compactness of assembly-language programming and gives you fully

debugged, ready-to-run subroutines, including:

• a subroutine that converts binary numbers in memory to decimal characters
• a subroutine that generates high-speed clearing of a screen block • a
subroutine that outputs music through the cassette port in seven octaves
• a subroutine that generates pseudo-random numbers for simulation or]

modeling • a subroutine that generates high-speed string searches

Each of the 65 fully documented subroutines includes:
• a complete description of what the subroutine does • the input/output

parameters required to use the subroutine • the algorithm for the subroutine
• a sample calling sequence • notes on special uses or features • a decimal
listing • a "check" on the validity of the data.

PRENTICE-HALL, Inc., Englewood Cliffs, New Jersey 07632

-^^tr-j'

ISBN D-13-=1311flfi-2

